ON MULTIPLY PERFECT NUMBERS WITH A SPECIAL PROPERTY

CARL POMERANCE

If m is a multiply perfect number and $m = p^a n$ where p is prime and $n \mid \sigma(p^a)$, then m = 120, 672, 523776, or m is an even perfect number.

1. Introduction. Suppose p is a prime a, n are natural numbers, and

(1.1)
$$p^a \mid \sigma(n)$$
, $n \mid \sigma(p^a)$

where σ is the sum of the divisors function. Then $1 = (p^a, \sigma(p^a)) = (p^a, n)$, so that $p^a n | \sigma(p^a) \sigma(n) = \sigma(p^a n)$; that is $p^a n$ is a multiply perfect number. In this paper we identify all multiply perfect numbers which arise in this fashion.

Let M be the set of Mersenne exponents, that is, $M = \{k: 2^k - 1$ is prime}. We shall prove

THEOREM 1.1. If p, a, n is a solution of (1.1) where p is prime, then either

- (1.2) $p^{a} = 2^{k} 1$, $n = 2^{k-1}$ for some $k \in M$
- (1.3) $p^a = 2^{k-1}$, $n = 2^k 1$ for some $k \in M$
- (1.4) $p^a = 2^3$, n = 15
- (1.5) $p^a = 2^5$, n = 21
- (1.6) $p^a = 2^9$, n = 1023.

COROLLARY 1.1. If m is a multiply perfect number and $m = p^a n$ where p is prime and $n \mid \sigma(p^a)$, then m = 120, 672, 523776, or m is an even perfect number.

Note that in [2] all solutions of (1.1) with $p^a = \sigma(n)$ are enumerated: they are (1.2) and (1.5). Hence in the proof of Theorem 1.1, we may assume $p^a < \sigma(n)$.

We recall that a natural number n is said to be super perfect it $\sigma(\sigma(n)) = 2n$. In [2] and Suryanarayana [8] it is shown that if n is super perfect and if either n or $\sigma(n)$ is a prime power, then $n = 2^{k-1}$ for $k \in M$. Here we will say n is super multiply perfect if $\sigma(\sigma(n))/n$ is an integer.

CARL POMERANCE

COROLLARY 1.2. If n is super multiply perfect, and if n or $\sigma(n)$ is a prime power, then n = 8, 21, 512, or $n = 2^{k-1}$ for some $k \in M$.

If p is a prime, denote by $\sigma_p(n)$ the sum of all those divisors of n which are powers of p. Then $\sigma_p(n) \mid \sigma(n)$.

COROLLARY 1.3. If n > 1 and $n | \sigma_p(\sigma(n))$ for some prime p, then p = 2 and n = 15, 21, or 1023 or $p = 2^k - 1$ for some $k \in M$ and $n = 2^{k-1}$.

We remark that in general the super multiply perfect numbers appear to be quite intractable. Partly complicating matters is that for every K, $\sigma(\sigma(n))/n \ge K$ on a set of density 1. Professor David E. Penney of the University of Georgia, in a computer search, found that there are exactly 37 super multiply perfect numbers ≤ 150000 . Of these, the only odd ones are 1, 15, 21, 1023, and 29127.

Recently, Guy and Selfridge [4], p. 104, published a proof of a stronger version of Theorem 1.1 for the special case p = 2.

2. Preliminaries. If n is a natural number, we let $\omega(n)$ be the number of distinct prime factors of n, and we let $\tau(n)$ be the number of natural divisors of n. If a, b are natural numbers with (a, b) = 1, we let $\operatorname{ord}_a(b)$ be the least positive integer k for which $a \mid b^k - 1$. If p is a prime and x is a natural number, then $\sigma(p^x) = (p^{x+1} - 1)/(p - 1) < (p/(p - 1))p^x$.

THEOREM 2.1 (Bang [1]). If p is a prime, a is a natural number, and $1 < d \mid a + 1$, then there is a prime $q \mid \sigma(p^a)$ with $\operatorname{ord}_q(p) = d$, unless

(i) p = 2 and d = 6, or

(ii) p is a Mersenne prime and d = 2.

COROLLARY 2.1.

 $\omega(\sigma(p^a)) \ge \begin{cases} \tau(a+1) - 2 \ , & if \ p = 2 \ and \ 6 \ | \ a + 1 \\ \tau(a+1) \ , & if \ p > 2 \ is \ not \ Mersenne \ and \\ 2 \ | \ a + 1 \\ \tau(a+1) - 1 \ , & otherwise \ . \end{cases}$

The following is a weaker from of a lemma from [2].

LEMMA 2.1. Suppose p, q are primes with q > 2 and x, y, b, c are natural numbers with $\sigma(q^x) = p^y$ and $q^b | \sigma(p^c)$. Then $q^{b-1} | c + 1$.

3. The start of the proof. Suppose p, a, n is a solution of (1.1) where p is prime. Then there are integers s, t with

$$\sigma(n) = sp^a$$
, $\sigma(p^a) = tn$.

As we remarked, we have already studied these equations in the case s = 1 (in [2]), so here we assume s > 1. We have

(3.1)
$$st = \frac{\sigma(p^a)}{p^a} \cdot \frac{\sigma(n)}{n},$$

Considering the unique prime factorization of n, we write n_1 for the product of those prime powers q^b for which $\sigma(q^b)$ is divisible by a prime $\neq p$, and we write n_2 for the product of those prime powers q^b for which $\sigma(q^b)$ is a power of p. Then $(n_1, n_2) = 1$, $n_1 n_2 = n$, and $\sigma(n_2)$ is a power of p. Let ω_i be the number of distinct odd prime factors of n_i for i = 1, 2. Let ω_3 be the number of distinct prime factors of t which do not divide n. Hence

(3.2)
$$\omega(\sigma(p^{a})) = \omega(tn) = \begin{cases} \omega_{1} + \omega_{2} + \omega_{3}, & \text{if } n \text{ is odd} \\ 1 + \omega_{1} + \omega_{2} + \omega_{3}, & \text{if } n \text{ is even}. \end{cases}$$

We write

$$n_1 = 2^{k_1} \prod_{i=1}^{\omega_1} p_i^{a_i}$$
 , $n_2 = 2^{k_2} \prod_{i=1}^{\omega_2} q_i^{b_i}$

where $k_1k_2 = 0$ and the p_i and q_i are distinct odd primes.

4. The case p > 2. Since each $\sigma(q_i^{b_i})$ is a power of p, and since p is odd, we have each b_i even. Since also each $q_i^{b_i} | \sigma(p^a)$, Lemma 2.1 implies

$$\prod_{i=1}^{\omega_2} q_i \,|\, a+1 \,.$$

Suppose *n* is even. Then also 2 | a + 1, so that $\tau(a + 1) \ge 2^{\omega_2 + 1}$. It follows from (3.2) and Corollary 2.1 that

$$(4.1) \qquad \qquad \omega_1 + \omega_3 \geq 2^{\omega_2 + 1} - \omega_2 - 2 \,.$$

Suppose $k_1 > 0$. Then $(\sigma(2^{k_1}), s) \ge 3$ and for

$$1 \leq i \leq \omega_{\scriptscriptstyle 1}$$
 , $(\sigma(p_i^{a_i}), s) \geq 2$.

Then $s \ge 3 \cdot 2^{\omega_1}$. Also every prime counted by ω_3 is odd, so $t \ge 3^{\omega_3}$. Hence from (3.1) we have

$$\begin{aligned} 3 \cdot \left(\frac{5}{4}\right)^{\mathfrak{s}_{u_1}+\mathfrak{s}_{w_3}} &< 3 \cdot 2^{\mathfrak{w}_1} \cdot 3^{\mathfrak{w}_3} \\ &\leq st = \frac{\sigma(p^a)}{p^a} \cdot \frac{\sigma(n)}{n} < \frac{p}{p-1} \cdot 2 \cdot \prod_{i=1}^{\omega_1} \frac{p_i}{p_i - 1} \cdot \prod_{i=1}^{\omega_2} \frac{q_i}{q_i - 1} \\ &\leq 3 \cdot \left(\frac{5}{4}\right)^{\mathfrak{w}_1 + \mathfrak{w}_2} \end{aligned}$$

so that

$$\omega_{\scriptscriptstyle 2} > 2\omega_{\scriptscriptstyle 1} + 4\omega_{\scriptscriptstyle 3} \geqq 2(\omega_{\scriptscriptstyle 1} + \omega_{\scriptscriptstyle 3})$$
 .

Hence (4.1) implies that

$$\omega_{\scriptscriptstyle 2} > 2^{\omega_2+2} - 2\omega_{\scriptscriptstyle 2} - 4$$

which fails for all $\omega_2 \ge 0$. This contradiction shows $k_1 = 0$.

Suppose $k_2 > 0$. Then $\sigma(2^{k_2})$ is a power of p, so that $\sigma(2^{k_2}) = p$ (Gerono [3]). Now 2 | a + 1, so $2^{k_2+1} = \sigma(p) | \sigma(p^a)$. Hence 2 | t, so that $t \ge 2 \cdot 3^{\omega_3}$. Also $(\sigma(p_i^{a_i}), s) \ge 2$, so $s \ge 2^{\omega_1}$. Hence

$$igg(rac{5}{4}igg)^{{}^{\mathfrak{s}\omega_1+4\omega_3}} < rac{1}{2}\,st < rac{p}{p-1}\cdot\prodrac{p_i}{p_i-1}\cdot\prodrac{q_i}{q_i-1} \leq rac{3}{2}\Big(rac{5}{4}\Big)^{{}^{\omega_1+\omega_2}} < \Big(rac{5}{4}\Big)^{{}^{\omega_1+\omega_2+2}}$$

so that

$$(4.2) \qquad \qquad \omega_2 > 2\omega_1 + 4\omega_3 - 2 \ge 2(\omega_1 + \omega_3) - 2$$

It follows from (4.1) that

$$\omega_{ ext{2}} > 2^{\omega_{ ext{2}}+ ext{2}} - 2\omega_{ ext{2}} - 6$$
 ,

which implies $\omega_2 \leq 1$. Then (4.2) implies $\omega_1 \leq 1$. Since s > 1 and $2 \mid t$, we have

$$4 \leq st < \frac{\sigma(2^{k_2})}{2^{k_2}} \cdot \frac{p}{p-1} \cdot \frac{p_1}{p_1-1} \cdot \frac{q_1}{q_1-1} < \frac{2pp_1q_1}{(p-1)(p_1-1)(q_1-1)}$$

so that max $\{p, p_1, q_1\} = 13$. But $\sigma(2^{k_2}) = p$, so $k_2 \leq 2$. Then

$$4 < rac{\sigma(2^2)}{2^2} \cdot rac{3}{2} \cdot rac{5}{4} \cdot rac{7}{6} < 4$$
 ,

so $k_2 = 0$.

Thus we have n odd, so $p^a n$ is an odd multiply perfect number. It follows from Hagis [5] and McDaniel [6] that

(4.3)
$$1 + \omega_1 + \omega_2 = 1 + \omega(n) = \omega(p^a n) \ge 8$$
.

514

From (3.2) and Corollary 2.1 we have

$$(4.4) \qquad \qquad \omega_1+\omega_3 \geq 2^{\omega_2}-\omega_2-1.$$

Now $s \ge 2^{\omega_1}$, $t \ge 2^{\omega_3}$ so that

$$\begin{split} \left(\frac{5}{4}\right)^{{}^{_{3\omega_{1}+3\omega_{3}}}} &< st < \frac{p}{p-1} \cdot \prod \frac{p_{i}}{p_{i}-1} \cdot \prod \frac{q_{i}}{q_{i}-1} \\ &\leq \frac{3}{2} \left(\frac{5}{4}\right)^{{}^{\omega_{1}+\omega_{2}}} < \left(\frac{5}{4}\right)^{{}^{\omega_{1}+\omega_{2}+2}} . \end{split}$$

Hence

(4.5)
$$\omega_2 > 2\omega_1 + 3\omega_3 - 2 \ge 2(\omega_1 + \omega_3) - 2$$
,

so that (4.4) implies

$$\omega_{2}>2^{\omega_{2}+1}-2\omega_{2}-4$$
 ,

which implies $\omega_2 \leq 2$. Then (4.5) implies $w_1 \leq 1$, contradicting (4.3).

5. The case p = 2. Since $\sigma(n_2)$ is a power of 2, it follows that n_2 is a product of distinct Mersenne primes (Sierpiński [7]), say

$$n_2 = \prod_{i=1}^{\omega_2} (2^{e_i} - 1)$$

where each c_i and $q_i = 2^{e_i} - 1$ is prime, and $c_1 < c_2 < \cdots < c_{\omega_2}$. Suppose $n_1 = 1$. Then s is a power of 2, say $s = 2^e$. Then

$$2^{\mathfrak{c}+\mathfrak{a}} = \sigma(n) = \sigma(n_2) = 2^{\Sigma^{\mathfrak{c}}\mathfrak{a}}$$

so that $c + a = \sum c_i$. But $2^{c_i} - 1 | \sigma(2^a)$, so $c_i | a + 1$. Since c_1, c_2 , ..., c_2 are distinct primes, $\prod c_i | a + 1$. Since $1 < s = 2^c$, we have $c \ge 1$. Hence $\prod c_i \le a + 1 \le \sum c_i$, so

$$\prod_{i=1}^{\omega_2} c_i - \sum_{i=1}^{\omega_2} c_i \leq 0$$
.

Is only for $\omega_2 = 1$, which gives solution (1.3).

We now assume $n_1 > 1$. Then s is divisible by an odd prime; in fact, $s \ge 3^{\omega_1} \ge 3$. Also t is odd, so $t \ge 3^{\omega_3}$. As above, $\prod c_i | a + 1$, so $\tau(a + 1) \ge 2^{\omega_2}$. Hence from (3.2) and Corollary 2.1 we have

(5.1)
$$\omega_1 + \omega_3 \geq 2^{\omega_2} - \omega_2 - 2.$$

Also from (3.1) we have

$$egin{split} \left(rac{5}{4}
ight)^{{}^{4\omega_1+4\omega_3-4}} &< 3^{\omega_1-1}\cdot 3^{\omega_3} \leqq rac{1}{3}\,st = rac{1}{3}\,\cdot rac{\sigma(2^a)}{2^a}\,\cdot rac{\sigma(n)}{n} \ &< rac{1}{3}\cdot 2\cdot \prod rac{p_i}{p_i-1}\cdot \prod rac{q_i}{q_i-1} \leqq \left(rac{5}{4}
ight)^{\!\omega_1+\omega_2-1}\,, \end{split}$$

so that

(5.2)
$$\omega_2 > 3\omega_1 + 4\omega_3 - 3 \ge 3(\omega_1 + \omega_3) - 3$$
.

Then (5.1) implies

$$\omega_{\scriptscriptstyle 2} > 3 \cdot 2^{\omega_2} - 3\omega_{\scriptscriptstyle 2} - 9$$

so that $\omega_2 \leq 2$. Then from (5.2) and the fact that $\omega_1 \geq 1$, we have $\omega_1 = 1, \omega_3 = 0$, and $\omega_2 > 0$. Hence we have two choices for $\omega_1, \omega_2, \omega_3$: 1, 1, 0 and 1, 2, 0. Also since

$$5>rac{2}{1}\cdotrac{3}{2}\cdotrac{5}{4}\cdotrac{7}{6}>rac{\sigma(2^a)}{2^a}\cdotrac{\sigma(n)}{n}=st$$

and since $s \ge 3$, $s \ne 4$, we have s = 3, t = 1.

Suppose $\omega_2 = 1$. Then $\sigma(2^a) = p_1^{a_1}(2^{c_1} - 1)$. Then c_1 is a proper divisor of a + 1. But $\omega(\sigma(2^a)) = 2$, so Corollary 2.1 implies a + 1 = 6or $a + 1 = c_1^2$. The first choice gives n = 63, but $\sigma(63) \neq 3 \cdot 2^5$. Hence $a + 1 = c_1^2$. Then Theorem 2.1 implies $\operatorname{ord}_{p_1}(2) = c_1^2$, so that $p_1 \equiv 1 \pmod{c_1^2}$. If $c_1 \geq 3$, then $p_1 \geq 19$, $q_1 = 2^{c_1} - 1 \geq 7$, so that

$$3=st<rac{2}{1}\cdotrac{7}{6}\cdotrac{19}{18}<3$$
 ,

a contradiction. Hence $c_1 = 2$, a + 1 = 4, n = 15, and we have solution (1.4).

Our last case is $\omega_2 = 2$. Then $\sigma(2^a) = p_1^{a_1}(2^{c_1} - 1)(2^{c_2} - 1)$, so that $c_1c_2 \mid a + 1$. Now $\omega(\sigma(2^a)) = 3$, so that Corollary 2.1 implies $c_1c_2 = a + 1$, where $c_1c_2 \neq 6$. We also have $\sigma(p_1^{a_1}(2^{c_1} - 1)(2^{c_2} - 1)) = 3 \cdot 2^a$. Then $\sigma(p_1^{a_1})$ is 3 times a power of 2. Now $\sigma(p_1^{a_1}) \neq 3$, so $\sigma(p_1^{a_1})$ is even. Hence $2 \mid a_1 + 1$. Now Theorem 2.1 implies $\operatorname{ord}_{p_1}(2) = c_1c_2$, a composite number. Hence p_1 is not Mersenne. Also, $p_1 \equiv 1 \pmod{c_1c_2}$. From Corollary 2.1 and the fact that $\omega(\sigma(p_1^{a_1})) = 2$ we have $a_1 = 1$. Hence for some d we have $p_1 = 3 \cdot 2^d - 1$. If $c_1 > 2$, then $q_1 = 2^{c_1} - 1 \geq 7$, $q_2 = 2^{c_2} - 1 \geq 31$, $p_1 \geq 2c_1c_2 + 1 \geq 31$. Then

$$3 = st < rac{2}{1} \cdot rac{31}{30} \cdot rac{31}{30} \cdot rac{7}{6} < 3$$
 ,

so that we must have $c_1 = 2$. Then

$$2^{2^{\mathfrak{c}_2}}-1=(3\cdot 2^d-1)(2^{\mathfrak{c}_2}-1)(2^{\mathfrak{c}_2}-1)$$

516

where $c_2 \ge 3$. Looking at this equation mod 8, we obtain $3 \cdot 2^d - 1 \equiv 2^2 - 1 \pmod{8}$. Hence d = 2, $p_1 = 11$. Then $a + 1 = 2c_2 = \operatorname{ord}_{p_1}(2) = 10$. This gives solution (1.6).

References

1. A. S. Bang, Taltheoretiske Undersøgelser, Tidsskrift Math., 5 IV (1886), 70-80, 130-137.

2. G. G. Dandapat, J. L. Hunsucker, and C. Pomerance, Some new results on odd perfect numbers, Pacific J. Math., to appear.

3. C. G. Gerono, Note sur la résolution en nombres entiers et positifs de l'équation $x^m = y^n + 1$, Nouv. Ann. Math., (2) 9 (1870), 469-471; 10 (1871), 204-206.

4. R. K. Guy and J. L. Selfridge, What drives an aliquot sequence?, Math. Comp., 29 (1975), 101-107.

5. P. Hagis, Jr., Every odd perfect number has at least eight prime factors (preliminary report), Not. Amer. Math. Soc. 22 (1975), A-60.

6. W. McDaniel, On odd multiply perfect numbers, Boll. Un. Mat. Ital., (4) 3 (1970), 185-190.

7. W. Sierpiński, Sur les nombres dont la somme des diviseurs est un puissance du nombre 2, The Golden Jubilee Commemoration Volume (1958-9), Calcutta Math. Soc., 7-9.

8. D. Suryanarayana, There is no odd super perfect number of the form $p^{2\alpha}$, Elem. Math., **28** (1973), 148-150.

Received February 7, 1975.

UNIVERSITY OF GEORGIA