ON MULTIPLY PERFECT NUMBERS WITH A SPECIAL PROPERTY

Carl Pomerance

Abstract

If m is a multiply perfect number and $m=p^{a} n$ where p is prime and $n \mid \sigma\left(p^{a}\right)$, then $m=120,672,523776$, or m is an even perfect number.

1. Introduction. Suppose p is a prime a, n are natural numbers, and

$$
\begin{equation*}
p^{a}|\sigma(n), \quad n| \sigma\left(p^{a}\right) \tag{1.1}
\end{equation*}
$$

where σ is the sum of the divisors function. Then $1=\left(p^{a}, \sigma\left(p^{a}\right)\right)=$ (p^{a}, n), so that $p^{a} n \mid \sigma\left(p^{a}\right) \sigma(n)=\sigma\left(p^{a} n\right)$; that is $p^{a} n$ is a multiply perfect number. In this paper we identify all multiply perfect numbers which arise in this fashion.

Let M be the set of Mersenne exponents, that is, $M=\left\{k: 2^{k}-1\right.$ is prime\}. We shall prove

Theorem 1.1. If p, a, n is a solution of (1.1) where p is prime, then either

$$
\begin{array}{llll}
p^{a}=2^{k}-1, & n=2^{k-1} \quad \text { for some } & k \in M \\
p^{a} & =2^{k-1}, & & n=2^{k}-1 \\
\text { for some } & k \in M \\
p^{a}=2^{3}, & & \\
p^{a}=2^{5}, & & n=21 & \tag{1.6}\\
p^{a}=2^{9}, & & n=1023 . &
\end{array}
$$

Corollary 1.1. If m is a multiply perfect number and $m=p^{a} n$ where p is prime and $n \mid \sigma\left(p^{a}\right)$, then $m=120,672,523776$, or m is an even perfect number.

Note that in [2] all solutions of (1.1) with $p^{a}=\sigma(n)$ are enumerated: they are (1.2) and (1.5). Hence in the proof of Theorem 1.1, we may assume $p^{a}<\sigma(n)$.

We recall that a natural number n is said to be super perfect it $\sigma(\sigma(n))=2 n$. In [2] and Suryanarayana [8] it is shown that if n is super perfect and if either n or $\sigma(n)$ is a prime power, then $n=2^{k-1}$ for $k \in M$. Here we will say n is super multiply perfect if $\sigma(\sigma(n)) / n$ is an integer.

Corollary 1.2. If n is super multiply perfect, and if n or $\sigma(n)$ is a prime power, then $n=8,21,512$, or $n=2^{k-1}$ for some $k \in M$.

If p is a prime, denote by $\sigma_{p}(n)$ the sum of all those divisors of n which are powers of p. Then $\sigma_{p}(n) \mid \sigma(n)$.

Corollary 1.3. If $n>1$ and $n \mid \sigma_{p}(\sigma(n))$ for some prime p, then $p=2$ and $n=15,21$, or 1023 or $p=2^{k}-1$ for some $k \in M$ and $n=2^{k-1}$.

We remark that in general the super multiply perfect numbers appear to be quite intractable. Partly complicating matters is that for every $K, \sigma(\sigma(n)) / n \geqq K$ on a set of density 1. Professor David E. Penney of the University of Georgia, in a computer search, found that there are exactly 37 super multiply perfect numbers $\leqq 150000$. Of these, the only odd ones are $1,15,21,1023$, and 29127.

Recently, Guy and Selfridge [4], p. 104, published a proof of a stronger version of Theorem 1.1 for the special case $p=2$.
2. Preliminaries. If n is a natural number, we let $\omega(n)$ be the number of distinct prime factors of n, and we let $\tau(n)$ be the number of natural divisors of n. If a, b are natural numbers with $(a, b)=1$, we let $\operatorname{ord}_{a}(b)$ be the least positive integer k for which $a \mid b^{k}-1$. If p is a prime and x is a natural number, then $\sigma\left(p^{x}\right)=$ $\left(p^{x+1}-1\right) /(p-1)<(p /(p-1)) p^{x}$.

Theorem 2.1 (Bang [1]). If p is a prime, a is a natural number, and $1<d \mid a+1$, then there is a prime $q \mid \sigma\left(p^{a}\right)$ with $\operatorname{ord}_{q}(p)=d$, unless
(i) $p=2$ and $d=6$, or
(ii) p is a Mersenne prime and $d=2$.

Corollary 2.1.

$$
\omega\left(\sigma\left(p^{a}\right)\right) \geqq \begin{cases}\tau(a+1)-2, & \text { if } p=2 \text { and } 6 \mid a+1 \\ \tau(a+1), & \text { if } p>2 \text { is not Mersenne and } \\ & 2 \mid a+1 \\ \tau(a+1)-1, & \text { otherwise } .\end{cases}
$$

The following is a weaker from of a lemma from [2].
Lemma 2.1. Suppose p, q are primes with $q>2$ and x, y, b, c are natural numbers with $\sigma\left(q^{x}\right)=p^{y}$ and $q^{b} \mid \sigma\left(p^{c}\right)$. Then $q^{b-1} \mid c+1$.
3. The start of the proof. Suppose p, a, n is a solution of (1.1) where p is prime. Then there are integers s, t with

$$
\sigma(n)=s p^{a}, \quad \sigma\left(p^{a}\right)=t n
$$

As we remarked, we have already studied these equations in the case $s=1$ (in [2]), so here we assume $s>1$. We have

$$
\begin{equation*}
s t=\frac{\sigma\left(p^{a}\right)}{p^{a}} \cdot \frac{\sigma(n)}{n}, \tag{3.1}
\end{equation*}
$$

Considering the unique prime factorization of n, we write n_{1} for the product of those prime powers q^{b} for which $\sigma\left(q^{b}\right)$ is divisible by a prime $\neq p$, and we write n_{2} for the product of those prime powers q^{b} for which $\sigma\left(q^{b}\right)$ is a power of p. Then $\left(n_{1}, n_{2}\right)=1, n_{1} n_{2}=n$, and $\sigma\left(n_{2}\right)$ is a power of p. Let ω_{i} be the number of distinct odd prime factors of n_{i} for $i=1,2$. Let ω_{3} be the number of distinct prime factors of t which do not divide n. Hence

$$
\omega\left(\sigma\left(p^{a}\right)\right)=\omega(t n)= \begin{cases}\omega_{1}+\omega_{2}+\omega_{3}, & \text { if } n \text { is odd } \tag{3.2}\\ 1+\omega_{1}+\omega_{2}+\omega_{3}, & \text { if } n \text { is even }\end{cases}
$$

We write

$$
n_{1}=2^{k_{1}} \prod_{i=1}^{\omega_{1}} p_{i}^{a_{i}}, \quad n_{2}=2^{k_{2}} \prod_{i=1}^{\omega_{2}} q_{i}^{b_{i}}
$$

where $k_{1} k_{2}=0$ and the p_{i} and q_{i} are distinct odd primes.
4. The case $p>2$. Since each $\sigma\left(q_{i}^{b_{i}}\right)$ is a power of p, and since p is odd, we have each b_{i} even. Since also each $q_{i}^{b_{i}} \mid \sigma\left(p^{a}\right)$, Lemma 2.1 implies

$$
\prod_{i=1}^{\omega_{2}} q_{i} \mid a+1
$$

Suppose n is even. Then also $2 \mid a+1$, so that $\tau(a+1) \geqq 2^{\omega_{2}+1}$. It follows from (3.2) and Corollary 2.1 that

$$
\begin{equation*}
\omega_{1}+\omega_{3} \geqq 2^{\omega_{2}+1}-\omega_{2}-2 \tag{4.1}
\end{equation*}
$$

Suppose $k_{1}>0$. Then $\left(\sigma\left(2^{k_{1}}\right), s\right) \geqq 3$ and for

$$
1 \leqq i \leqq \omega_{1}, \quad\left(\sigma\left(p_{i}^{a_{i}}\right), s\right) \geqq 2
$$

Then $s \geqq 3 \cdot 2^{\omega_{1}}$. Also every prime counted by ω_{3} is odd, so $t \geqq 3^{\omega_{3}}$. Hence from (3.1) we have

$$
\begin{aligned}
& 3 \cdot\left(\frac{5}{4}\right)^{3 \omega_{1}+4 \omega_{3}}<3 \cdot 2^{\omega_{1}} \cdot 3^{\omega_{3}} \\
& \quad \leqq s t=\frac{\sigma\left(p^{a}\right)}{p^{a}} \cdot \frac{\sigma(n)}{n}<\frac{p}{p-1} \cdot 2 \cdot \prod_{i=1}^{\omega_{1}} \frac{p_{i}}{p_{i}-1} \cdot \prod_{i=1}^{\omega_{2}} \frac{q_{i}}{q_{i}-1} \\
& \quad \leqq 3 \cdot\left(\frac{5}{4}\right)^{\omega_{1}+\omega_{2}}
\end{aligned}
$$

so that

$$
\omega_{2}>2 \omega_{1}+4 \omega_{3} \geqq 2\left(\omega_{1}+\omega_{3}\right)
$$

Hence (4.1) implies that

$$
\omega_{2}>2^{\omega_{2}+2}-2 \omega_{2}-4
$$

which fails for all $\omega_{2} \geqq 0$. This contradiction shows $k_{1}=0$.
Suppose $k_{2}>0$. Then $\sigma\left(2^{k_{2}}\right)$ is a power of p, so that $\sigma\left(2^{k_{2}}\right)=p$ (Gerono [3]). Now $2 \mid a+1$, so $2^{k_{2}+1}=\sigma(p) \mid \sigma\left(p^{a}\right)$. Hence $2 \mid t$, so that $t \geqq 2 \cdot 3^{\omega_{3}}$. Also $\left(\sigma\left(p_{i}^{a_{i}}\right), s\right) \geqq 2$, so $s \geqq 2^{\omega_{1}}$. Hence

$$
\begin{aligned}
\left(\frac{5}{4}\right)^{3 \omega_{1}+4 \omega_{3}} & <\frac{1}{2} s t<\frac{p}{p-1} \cdot \Pi \frac{p_{i}}{p_{i}-1} \cdot \Pi \frac{q_{i}}{q_{i}-1} \leqq \frac{3}{2}\left(\frac{5}{4}\right)^{\omega_{1}+\omega_{2}} \\
& <\left(\frac{5}{4}\right)^{\omega_{1}+\omega_{2}+2}
\end{aligned}
$$

so that

$$
\begin{equation*}
\omega_{2}>2 \omega_{1}+4 \omega_{3}-2 \geqq 2\left(\omega_{1}+\omega_{3}\right)-2 \tag{4.2}
\end{equation*}
$$

It follows from (4.1) that

$$
\omega_{2}>2^{\omega_{2}+2}-2 \omega_{2}-6
$$

which implies $\omega_{2} \leqq 1$. Then (4.2) implies $\omega_{1} \leqq 1$. Since $s>1$ and $2 \mid t$, we have

$$
4 \leqq s t<\frac{\sigma\left(2^{k_{2}}\right)}{2^{k_{2}}} \cdot \frac{p}{p-1} \cdot \frac{p_{1}}{p_{1}-1} \cdot \frac{q_{1}}{q_{1}-1}<\frac{2 p p_{1} q_{1}}{(p-1)\left(p_{1}-1\right)\left(q_{1}-1\right)}
$$

so that $\max \left\{p, p_{1}, q_{1}\right\}=13$. But $\sigma\left(2^{k_{2}}\right)=p$, so $k_{2} \leqq 2$. Then

$$
4<\frac{\sigma\left(2^{2}\right)}{2^{2}} \cdot \frac{3}{2} \cdot \frac{5}{4} \cdot \frac{7}{6}<4
$$

so $k_{2}=0$.
Thus we have n odd, so $p^{a} n$ is an odd multiply perfect number. It follows from Hagis [5] and McDaniel [6] that

$$
\begin{equation*}
1+\omega_{1}+\omega_{2}=1+\omega(n)=\omega\left(p^{a} n\right) \geqq 8 \tag{4.3}
\end{equation*}
$$

From (3.2) and Corollary 2.1 we have

$$
\begin{equation*}
\omega_{1}+\omega_{3} \geqq 2^{\omega_{2}}-\omega_{2}-1 . \tag{4.4}
\end{equation*}
$$

Now $s \geqq 2^{\omega_{1}}, t \geqq 2^{\omega_{3}}$ so that

$$
\begin{aligned}
\left(\frac{5}{4}\right)^{3 \omega_{1}+\omega_{3}} & <s t<\frac{p}{p-1} \cdot \Pi \frac{p_{i}}{p_{i}-1} \cdot \Pi \frac{q_{i}}{q_{i}-1} \\
& \leqq \frac{3}{2}\left(\frac{5}{4}\right)^{\omega_{1}+\omega_{2}}<\left(\frac{5}{4}\right)^{\omega_{1}+\omega_{2}+2} .
\end{aligned}
$$

Hence

$$
\begin{equation*}
\omega_{2}>2 \omega_{1}+3 \omega_{3}-2 \geqq 2\left(\omega_{1}+\omega_{3}\right)-2, \tag{4.5}
\end{equation*}
$$

so that (4.4) implies

$$
\omega_{2}>2^{\omega_{2}+1}-2 \omega_{2}-4,
$$

which implies $\omega_{2} \leqq 2$. Then (4.5) implies $w_{1} \leqq 1$, contradicting (4.3).
5. The case $p=2$. Since $\sigma\left(n_{2}\right)$ is a power of 2 , it follows that n_{2} is a product of distinct Mersenne primes (Sierpiński [7]), say

$$
n_{2}=\prod_{i=1}^{\omega_{2}}\left(2^{c_{i}}-1\right)
$$

where each c_{i} and $q_{i}=2^{c_{i}}-1$ is prime, and $c_{1}<c_{2}<\cdots<c_{\omega_{2}}$.
Suppose $n_{1}=1$. Then s is a power of 2 , say $s=2^{\circ}$. Then

$$
2^{c+a}=\sigma(n)=\sigma\left(n_{2}\right)=2^{\Sigma c_{i}}
$$

so that $c+a=\sum c_{i}$. But $2^{c_{i}}-1 \mid \sigma\left(2^{a}\right)$, so $c_{i} \mid a+1$. Since c_{1}, c_{2}, \cdots, c_{2} are distinct primes, $\Pi c_{i} \mid a+1$. Since $1<s=2^{\circ}$, we have $c \geqq 1$. Hence $\Pi c_{i} \leqq a+1 \leqq \sum c_{i}$, so

$$
\prod_{i=1}^{\omega_{2}} c_{i}-\sum_{i=1}^{\omega_{2}} c_{i} \leqq 0
$$

Is only for $\omega_{2}=1$, which gives solution (1.3).
We now assume $n_{1}>1$. Then s is divisible by an odd prime; in fact, $s \geqq 3^{\omega_{1}} \geqq 3$. Also t is odd, so $t \geqq 3^{\omega_{3}}$. As above, $\Pi c_{i} \mid a+1$, so $\tau(a+1) \geqq 2^{\omega_{2}}$. Hence from (3.2) and Corollary 2.1 we have

$$
\begin{equation*}
\omega_{1}+\omega_{3} \geqq 2^{\omega_{2}}-\omega_{2}-2 . \tag{5.1}
\end{equation*}
$$

Also from (3.1) we have

$$
\begin{aligned}
\left(\frac{5}{4}\right)^{4 \omega_{1}+4 \omega_{3}-4} & <3^{\omega_{1}-1} \cdot 3^{\omega_{3}} \leqq \frac{1}{3} s t=\frac{1}{3} \cdot \frac{\sigma\left(2^{a}\right)}{2^{a}} \cdot \frac{\sigma(n)}{n} \\
& <\frac{1}{3} \cdot 2 \cdot \Pi \frac{p_{i}}{p_{i}-1} \cdot \Pi \frac{q_{i}}{q_{i}-1} \leqq\left(\frac{5}{4}\right)^{\omega_{1}+\omega_{2}-1}
\end{aligned}
$$

so that

$$
\begin{equation*}
\omega_{2}>3 \omega_{1}+4 \omega_{3}-3 \geqq 3\left(\omega_{1}+\omega_{3}\right)-3 \tag{5.2}
\end{equation*}
$$

Then (5.1) implies

$$
\omega_{2}>3 \cdot 2^{\omega_{2}}-3 \omega_{2}-9
$$

so that $\omega_{2} \leqq 2$. Then from (5.2) and the fact that $\omega_{1} \geqq 1$, we have $\omega_{1}=1, \omega_{3}=0$, and $\omega_{2}>0$. Hence we have two choices for $\omega_{1}, \omega_{2}, \omega_{3}$: $1,1,0$ and $1,2,0$. Also since

$$
5>\frac{2}{1} \cdot \frac{3}{2} \cdot \frac{5}{4} \cdot \frac{7}{6}>\frac{\sigma\left(2^{a}\right)}{2^{a}} \cdot \frac{\sigma(n)}{n}=s t
$$

and since $s \geqq 3$, $s \neq 4$, we have $s=3, t=1$.
Suppose $\omega_{2}=1$. Then $\sigma\left(2^{a}\right)=p_{1}^{a_{1}}\left(2^{c_{1}}-1\right)$. Then c_{1} is a proper divisor of $a+1$. But $\omega\left(\sigma\left(2^{a}\right)\right)=2$, so Corollary 2.1 implies $a+1=6$ or $a+1=c_{1}^{2}$. The first choice gives $n=63$, but $\sigma(63) \neq 3 \cdot 2^{5}$. Hence $a+1=c_{1}^{2}$. Then Theorem 2.1 implies $\operatorname{ord}_{p_{1}}(2)=c_{1}^{2}$, so that $p_{1} \equiv 1\left(\bmod c_{1}^{2}\right)$. If $c_{1} \geqq 3$, then $p_{1} \geqq 19, q_{1}=2^{c_{1}}-1 \geqq 7$, so that

$$
3=s t<\frac{2}{1} \cdot \frac{7}{6} \cdot \frac{19}{18}<3
$$

a contradiction. Hence $c_{1}=2, a+1=4, n=15$, and we have solution (1.4).

Our last case is $\omega_{2}=2$. Then $\sigma\left(2^{a}\right)=p_{1}^{a_{1}}\left(2^{c_{1}}-1\right)\left(2^{c_{2}}-1\right)$, so that $c_{1} c_{2} \mid a+1$. Now $\omega\left(\sigma\left(2^{a}\right)\right)=3$, so that Corollary 2.1 implies $c_{1} c_{2}=$ $a+1$, where $c_{1} c_{2} \neq 6$. We also have $\sigma\left(p_{1}^{a_{1}}\left(2^{c_{1}}-1\right)\left(2^{c_{2}}-1\right)\right)=3 \cdot 2^{a}$. Then $\sigma\left(p_{1}^{a_{1}}\right)$ is 3 times a power of 2. Now $\sigma\left(p_{1}^{a_{1}}\right) \neq 3$, so $\sigma\left(p_{1}^{a_{1}}\right)$ is even. Hence $2 \mid a_{1}+1$. Now Theorem 2.1 implies $\operatorname{ord}_{p_{1}}(2)=c_{1} c_{2}$, a composite number. Hence p_{1} is not Mersenne. Also, $p_{1} \equiv 1\left(\bmod c_{1} c_{2}\right)$. From Corollary 2.1 and the fact that $\omega\left(\sigma\left(p_{1}^{a_{1}}\right)\right)=2$ we have $a_{1}=1$. Hence for some d we have $p_{1}=3 \cdot 2^{d}-1$. If $c_{1}>2$, then $q_{1}=2^{c_{1}}-$ $1 \geqq 7, q_{2}=2^{c_{2}}-1 \geqq 31, p_{1} \geqq 2 c_{1} c_{2}+1 \geqq 31$. Then

$$
3=s t<\frac{2}{1} \cdot \frac{31}{30} \cdot \frac{31}{30} \cdot \frac{7}{6}<3
$$

so that we must have $c_{1}=2$. Then

$$
2^{2 c_{2}}-1=\left(3 \cdot 2^{d}-1\right)\left(2^{2}-1\right)\left(2^{c_{2}}-1\right)
$$

where $c_{2} \geqq 3$. Looking at this equation $\bmod 8$, we obtain $3 \cdot 2^{d}-1 \equiv$ $2^{2}-1(\bmod 8)$. Hence $d=2, p_{1}=11$. Then $a+1=2 c_{2}=\operatorname{ord}_{p_{1}}(2)=10$. This gives solution (1.6).

References

1. A. S. Bang, Taltheoretiske Undersogelser, Tidsskrift Math., 5 IV (1886), 70-80, 130137.
2. G. G. Dandapat, J. L. Hunsucker, and C. Pomerance, Some new results on odd perfect numbers, Pacific J. Math., to appear.
3. C. G. Gerono, Note sur la résolution en nombres entiers et positifs de l' équation $x^{m}=y^{n}+1$, Nouv. Ann. Math., (2) 9 (1870), 469-471; 10 (1871), 204-206.
4. R. K. Guy and J. L. Selfridge, What drives an aliquot sequence?, Math. Comp., 29 (1975), 101-107.
5. P. Hagis, Jr., Every odd perfect number has at least eight prime factors (preliminary report), Not. Amer. Math. Soc. 22 (1975), A-60.
6. W. McDaniel, On odd multiply perfect numbers, Boll. Un. Mat. Ital., (4) 3 (1970), 185-190.
7. W. Sierpiński, Sur les nombres dont la somme des diviseurs est un puissance du nombre 2, The Golden Jubilee Commemoration Volume (1958-9), Calcutta Math. Soc., 7-9.
8. D. Suryanarayana, There is no odd super perfect number of the form $p^{2 \alpha}$, Elem. Math., 28 (1973), 148-150.

Received February 7, 1975.
University of Georgia

