# On Locally Repeated Values of Certain Arithmetic Functions, IV

PAUL ERDŐS\*

Mathematical Institute of the Hungarian Academy of Sciences, Reáltanoda u. 13-15, H-1364 Budapest, Hungary

CARL POMERANCE<sup>†</sup>

carl@ada.math.uga.edu

Department of Mathematics, The University of Georgia, Athens, Georgia 30602

ANDRÁS SÁRKÖZY<sup>†</sup>

sarkozy@cs.elte.hu

Mathematical Institute of the Hungarian Academy of Sciences, Reáltanoda u. 13-15, H-1364 Budapest, Hungary

Received March 15, 1996; Accepted June 5, 1996

**Abstract.** Let  $\omega(n)$  denote the number of prime divisors of n and let  $\Omega(n)$  denote the number of prime power divisors of n. We obtain upper bounds for the lengths of the longest intervals below x where  $\omega(n)$ , respectively  $\Omega(n)$ , remains constant. Similarly we consider the corresponding problems where the numbers  $\omega(n)$ , respectively  $\Omega(n)$ , are required to be all different on an interval. We show that the number of solutions g(n) to the equation  $m + \omega(m) = n$  is an unbounded function of n, thus answering a question posed in an earlier paper in this series. A principal tool is a Turán-Kubilius type inequality for additive functions on arithmetic progressions with a large modulus.

Key words: Turán-Kubilius inequality, additive functions, prime divisors

1991 Mathematics Subject Classification: Primary—11N64; Secondary—11A25

## 1. Introduction

Let  $\omega(n)$  denote the number of distinct prime factors of n and let  $\Omega(n)$  denote the number of prime factors of n counted with multiplicity.

Let g(n) denote the number of integers m with  $m + \omega(m) = n$ . In [3] we proved that  $g(n) \ge 2$  infinitely often, and in [3], [4] and [5] we extended this result in various directions. However, as we wrote at the end of [5]: "Probably g(n) is unbounded, but this ... seems difficult. The best we can do in this direction is that  $g(n) \ge 2$  infinitely often—this is of course the main result of the first paper in this series."

In this paper we will first prove that

$$g(n) \gg (\log n)^{1/2} (\log \log n)^{-1}$$

infinitely often. More precisely we show the following result.

<sup>\*</sup>Paul Erdős passed away on September 20, 1996.

<sup>&</sup>lt;sup>†</sup>The research of the second author is supported partially by a National Science Foundation grant. The research of the third author is partially supported by Hungarian National Foundation for Scientific Research, grant No. T017433.

**Theorem 1.** There are absolute constants  $c_1 > 0$  and  $x_0$  such that for all  $x > x_0$  there is an integer n with  $n \le x$  and

$$g(n) > c_1(\log x)^{1/2}(\log\log x)^{-1}.$$

For any arithmetic function f(n) and x > 1, let F(f, x) denote the greatest positive integer F such that there is a positive integer n with the properties that  $n + F \le x$  and the values f(n + 1), f(n + 2), ..., f(n + F) are all different. We can prove the following result on the localization of the repeated values of  $h(n) := n + \omega(n)$ .

**Theorem 2.** There are absolute constants  $c_2$  and  $x_0$  such that for all  $x > x_0$  we have

$$F(h, x) < \exp(c_2(\log x)(\log\log x)^{-1/2}).$$
 (1.1)

In the opposite direction we can show that

$$F(h, x) \gg (\log x)^{1/2} (\log \log x)^{-1}$$
.

Indeed, this follows trivially from the following theorem.

**Theorem 3.** For x sufficiently large there are positive integers n and k such that

$$n + k \le x,\tag{1.2}$$

$$k > \frac{1}{11} (\log x)^{1/2} (\log \log x)^{-1}$$
 (1.3)

and

$$\omega(n+1) < \omega(n+2) < \dots < \omega(n+k). \tag{1.4}$$

By Theorem 3 we have

$$F(\omega, x) \gg (\log x)^{1/2} (\log \log x)^{-1}.$$

It can be shown by a similar argument that

$$F(\Omega, x) \gg (\log x)^{1/2} (\log \log x)^{-1}.$$

Trivially, for each  $\epsilon > 0$ ,

$$F(\omega, x) < (1 + \epsilon) \frac{\log x}{\log \log x} \text{ (for } x > x_0(\epsilon))$$

and

$$F(\Omega, x) \le \frac{\log x}{\log 2}$$
 (for all  $x > 1$ ),

since for any  $n \le x$ ,  $\omega(n) < (1 + \epsilon) \log x / \log \log x$  and  $\Omega(n) \le \log x / \log 2$ . We conjecture that both  $F(\omega, x)$  and  $F(\Omega, x)$  are  $o(\frac{\log x}{\log \log x})$ . However, we do not have any

reasonable upper bound for  $F(\omega, x)$  and, indeed, we have not been able to prove even that there is some fixed  $\epsilon > 0$  with

$$F(\omega, x) < (1 - \epsilon) \frac{\log x}{\log \log x}$$

for all sufficiently large x.

On the other hand, it follows from Theorem 6 in [6] that

$$F(\Omega, x) = o(\log x).$$

We will improve on this by proving

**Theorem 4.** For all  $\epsilon > 0$  there is a number  $x_0 = x_0(\epsilon)$  such that for  $x > x_0$  we have

$$F(\Omega, x) < (1 + \epsilon) \frac{\log x}{\log \log x}.$$

For any arithmetic function f(n) and x > 1, let G(f, x) denote the greatest positive integer G such that there is a positive integer n with the properties that  $n + G \le x$  and  $f(n + 1) = f(n + 2) = \cdots = f(n + G)$ . Erdős and Mirsky [2] proposed the study of the function G(d, x), and later Heath-Brown [7] proved that d(n) = d(n + 1) (where d is the divisor function) and  $\Omega(n) = \Omega(n + 1)$  infinitely often, but no non-trivial upper bound has been given for G(d, x) and  $G(\Omega, x)$ . On the other hand, it is not known whether  $\omega(n) = \omega(n + 1)$  holds infinitely often. We will prove

**Theorem 5.** For all  $\epsilon > 0$  there is a number  $x_0 = x_0(\epsilon)$  such that for  $x > x_0(\epsilon)$  we have

$$G(\omega, x) < \exp((1/\sqrt{2} + \epsilon)(\log x \log \log x)^{1/2})$$
(1.5)

and

$$G(\Omega, x) < \exp((\sqrt{\log 2} + \epsilon)(\log x)^{1/2}). \tag{1.6}$$

## 2. Lemmas

In this section we shall prove several lemmas needed in the proofs of the theorems. First we shall prove a Turán-Kubilius type inequality on arithmetic progressions:

**Lemma 1.** Assume that  $x \ge 1$ ,  $m \in \mathbb{N}$ ,

$$m \le x^{1/2},\tag{2.1}$$

 $h \in \mathbb{Z}$ , and f(n) is a non-negative additive arithmetic function such that

$$f(p^{\alpha}) = 0 \text{ for } p \mid m, \ \alpha \in \mathbb{N}.$$
 (2.2)

Let

$$K = \max\{f(p^{\alpha}) : p^{\alpha} \le x\}, \qquad A = \sum_{p \le x} \frac{f(p)}{p}.$$
 (2.3)

Then we have

$$\sum_{\substack{n \le x \\ \equiv h \pmod{m}}} (f(n) - A)^2 < c_3 \frac{x}{m} (KA + K^2)$$

(where  $c_3$  is an absolute constant independent of x, m, h and f).

Note that results of similar nature appear in [1] and [8], however, neither of these results is stated in the form needed by us. In particular, in both cases the modulus m must be much smaller than in (2.1) (it must be fixed or it may grow at most as fast as a power of  $\log \log x$ ). We are able to cover the case  $m > x^c$  at the expense of the appearance of the quantity K in the upper bound.

We might have applied Lemma 1 in [3], but we prefer to give the proof of the more general result above for possible future applications.

The assumption (2.1) can be replaced by  $m \le x^{1-\delta}$  for any fixed  $\delta$ ,  $0 < \delta < 1$ , however, in this case the value of the constant  $c_3$  in the last inequality depends on  $\delta$ .

We remark that when f is completely additive we may change the definition of K in (2.3) to be the maximum of f(p) for  $p \le x$ , at the expense of enlarging the absolute constant  $c_3$  in the last inequality.

Note moreover that one can get rid of the assumption  $f(n) \ge 0$  by writing a general real valued additive arithmetic function as the sum of a non-negative and a non-positive additive function, and similarly, the complex case can be handled by separating real and imaginary parts. (Of course, in these cases  $f(p^{\alpha})$  in (2.3) must be replaced with  $|f(p^{\alpha})|$ .)

**Proof of Lemma 1:** Define the additive arithmetic function  $f_1(n)$  by

$$f_1(p^{\alpha}) = \begin{cases} f(p^{\alpha}) & \text{for } p^{\alpha} \le x^{1/4}, \\ 0 & \text{for } p^{\alpha} > x^{1/4}. \end{cases}$$
 (2.4)

Clearly, for  $n \le x$  there are at most 3 different prime powers  $p^{\alpha}$  with  $p^{\alpha} > x^{1/4}$ ,  $p^{\alpha} \parallel n$ . By (2.3), it follows that

$$|f(n) - f_1(n)| = \sum_{\substack{p^{\alpha} > x^{1/4} \\ n^{\alpha} || n}} f(p^{\alpha}) \le 3K \text{ for all } n \le x.$$
 (2.5)

Moreover, writing

$$A_1 = \sum_{p^{\alpha} < x} \frac{f_1(p^{\alpha})}{p^{\alpha}},$$

clearly we have

$$|A - A_{1}| \leq \sum_{x^{1/4} 1} \frac{f(p^{\alpha})}{p^{\alpha}}$$

$$\leq K \sum_{x^{1/4} 1} \frac{1}{p^{\alpha}} = O(K). \tag{2.6}$$

(Here and throughout the proof of Lemma 1 the constants implied in the O(...) terms are independent of f(n) and the parameters x, m, h.)

Write

$$U = \sum_{\substack{n \le x \\ n \equiv h \pmod{m}}} f_1(n)$$

and

$$V = \sum_{\substack{n \le x \\ n = h \pmod{m}}} f_1^2(n).$$

By (2.2) we have

$$U = \sum_{\substack{n \le x \\ n \equiv h \pmod{m}}} \sum_{p^{\alpha} \parallel n} f_1(p^{\alpha}) = \sum_{\substack{p^{\alpha} \le x^{1/4} \\ (p,m) = 1}} f_1(p^{\alpha}) \sum_{\substack{n \le x, p^{\alpha} \parallel n \\ n \equiv h \pmod{m}}} 1.$$
 (2.7)

By (p, m) = 1,  $p^{\alpha} \le x^{1/4}$  and (2.1), the innermost sum is

$$\sum_{\substack{n \le x, p^{\alpha} || n \\ n \equiv h \pmod{m}}} 1 = \sum_{\substack{k \le x/p^{\alpha}, (k, p) = 1 \\ p^{\alpha}k \equiv h \pmod{m}}} 1 = \sum_{\substack{k \le x/p^{\alpha} \\ p^{\alpha}k \equiv h \pmod{m}}} 1 - \sum_{\substack{k \le x/p^{\alpha}, p | k \\ p^{\alpha}k \equiv h \pmod{m}}} 1$$

$$= \frac{x}{mp^{\alpha}} + O\left(\frac{x}{mp^{\alpha+1}}\right). \tag{2.8}$$

Thus by using (2.3) and (2.4), it follows from (2.7) that

$$U = \frac{x}{m} \sum_{\substack{p^{\alpha} \le x^{1/4} \\ (p,m)=1}} \frac{f_1(p^{\alpha})}{p^{\alpha}} + O\left(\frac{x}{m} \sum_{p^{\alpha} \le x^{1/4}} \frac{f_1(p^{\alpha})}{p^{\alpha+1}}\right) = \frac{x}{m} (A_1 + O(K)). \tag{2.9}$$

By (2.2) we have

$$V = \sum_{\substack{n \le x \\ n \equiv h \pmod{m}}} \left( \sum_{p^{\alpha} \parallel n} f_{1}(p^{\alpha}) \right)^{2} = \sum_{\substack{n \le x \\ n \equiv h \pmod{m}}} \sum_{p^{\alpha} \parallel n} \sum_{q^{\beta} \parallel n} f_{1}(p^{\alpha}) f_{1}(q^{\beta})$$

$$= \sum_{\substack{n \le x \\ n \equiv h \pmod{m}}} \left( \sum_{p^{\alpha} \parallel n} f_{1}^{2}(p^{\alpha}) + \sum_{\substack{p^{\alpha} \parallel n \\ p \neq q}} \sum_{q^{\beta} \parallel n} f_{1}(p^{\alpha}) f_{1}(q^{\beta}) \right)$$

$$= \sum_{\substack{p^{\alpha} \le x^{1/4} \\ (p,m)=1}} f_{1}^{2}(p^{\alpha}) \sum_{\substack{n \le x, p^{\alpha} \parallel n \\ n \equiv h \pmod{m}}} 1 + \sum_{\substack{p^{\alpha}, q^{\beta} \le x^{1/4} \\ p \neq q, (pq,m)=1}} f_{1}(p^{\alpha}) f_{1}(q^{\beta}) \sum_{\substack{n \le x, p^{\alpha} \parallel n, q^{\beta} \parallel n \\ n \equiv h \pmod{m}}} 1$$

$$= S_{1} + S_{2}, \text{ say}.$$

$$(2.10)$$

By (2.3), the first term is

$$S_1 \le \sum_{p^{\alpha} < x^{1/4}} f_1^2(p^{\alpha}) \left( \frac{x}{mp^{\alpha}} + 1 \right) = O\left( \frac{x}{m} K A_1 + K^2 x^{1/4} \right). \tag{2.11}$$

The second term in (2.10) is

$$S_2 \le \sum_{p^{\alpha}, q^{\beta} \le x^{1/4}} f_1(p^{\alpha}) f_1(q^{\beta}) \left( \frac{x}{mp^{\alpha}q^{\beta}} + 1 \right) = \frac{x}{m} A_1^2 + O(K^2 x^{1/2}). \tag{2.12}$$

It follows from (2.10), (2.11) and (2.12) that

$$V \le \frac{x}{m} \left( A_1^2 + O(KA_1) \right) + O(K^2 x^{1/2}). \tag{2.13}$$

By  $f(n) \ge 0$  and (2.3) clearly we have

$$A_1 = \sum_{p^{\alpha} \le x} \frac{f_1(p^{\alpha})}{p^{\alpha}} \le K \sum_{p^{\alpha} < x^{1/4}} 1 \le K x^{1/4}.$$
 (2.14)

It follows from (2.1), (2.9), (2.13), (2.14) that

$$\sum_{\substack{n \le x \\ n \equiv h \pmod{m}}} (f_1(n) - A_1)^2 = V - 2A_1U + A_1^2 \left(\frac{x}{m} + O(1)\right)$$

$$\ll \frac{x}{m} K A_1 + K^2 x^{1/2} + A_1^2 \ll \frac{x}{m} (K A_1 + K^2). \tag{2.15}$$

Finally, by (2.5), (2.6) and the inequality

$$(a+b)^2 \le 2(a^2+b^2)$$

we have

$$(f(n) - A)^{2} = ((f_{1}(n) - A_{1}) + (f(n) - f_{1}(n)) + (A_{1} - A))^{2}$$
  

$$\leq 2(f_{1}(n) - A_{1})^{2} + O(K^{2})$$
(2.16)

(uniformly in n). It follows from (2.6), (2.15) and (2.16) that

$$\sum_{\substack{n \le x \\ n \equiv h \pmod{m}}} (f(n) - A)^2 \le 2 \sum_{\substack{n \le x \\ n \equiv h \pmod{m}}} (f_1(n) - A_1)^2 + O\left(K^2 \sum_{\substack{n \le x \\ n \equiv h \pmod{m}}} 1\right)$$

$$= O\left(\frac{x}{m}(KA + K^2)\right)$$

which completes the proof of Lemma 1.

#### Lemma 2. Let

$$\omega_m(n) = |\{p : p \text{ prime }, p \nmid m, p \mid n\}| \tag{2.17}$$

and

 $S(m, h, z, x) = \{n : n \le x, \ n \equiv h \pmod{m}, \ |\omega_m(n) - \log\log x| < z(\log\log x)^{1/2}\}.$ 

There exist absolute constants  $c_4$ ,  $x_0$  such that if  $x > x_0$ ,  $m \in \mathbb{N}$ ,

$$m \le x^{1/2} \tag{2.18}$$

and  $h \in \mathbb{Z}$ , then

$$|S(m, h, c_4, x)| > \frac{1}{2} \frac{x}{m}.$$
 (2.19)

**Proof of Lemma 2:** We apply Lemma 1 with  $\omega_m(n)$  in place of f(n). Note that the number K in Lemma 1 is 1 and A, by (2.18), satisfies

$$A = \sum_{p \le x} -\sum_{p \mid m} \frac{1}{p} = \log \log x + O(\log \log \log x).$$

If  $c_4$  is chosen large enough in terms of the constant  $c_3$  in Lemma 1, our lemma now follows from a routine calculation.

Write

$$D(x, m, h) = \sum_{\substack{n \le x \\ n \equiv h \pmod{m}}} d(n). \tag{2.20}$$

**Lemma 3.** If  $x \ge e^4$ ,  $m \in \mathbb{N}$ ,

$$m \le x^{1/2},\tag{2.21}$$

 $h \in \mathbb{Z}$  and (h, m) = 1, then

$$D(x, m, h) < 2\frac{x \log x}{m}. (2.22)$$

(Note that a similar, even sharper result is proved in [9], however, it is stated in a form slightly different from the one needed by us.)

**Proof of Lemma 3:** By (2.21) we have

$$\begin{split} D(x,m,h) &= \sum_{\substack{n \leq x \\ n \equiv h (\text{mod } m)}} \sum_{d \mid n} 1 \leq 2 \sum_{\substack{n \leq x \\ n \equiv h (\text{mod } m)}} \sum_{\substack{d \mid n \\ d \leq \sqrt{n}}} 1 \leq 2 \sum_{\substack{d \leq \sqrt{x} \\ (d,m) = 1}} \sum_{\substack{n \leq x, d \mid n \\ n \equiv h (\text{mod } m)}} 1 \\ &\leq 2 \sum_{\substack{d \leq \sqrt{x} \\ (d,m) = 1}} \left(\frac{x}{dm} + 1\right) \leq 2 \frac{x}{m} (1 + \log \sqrt{x}) + 2 \sqrt{x} \\ &\leq 2 \frac{x}{m} \left(2 + \frac{1}{2} \log x\right) < 2 \frac{x \log x}{m}. \end{split}$$

**Lemma 4.** There is a number  $x_0$  such that if  $x > x_0$ ,  $m \in \mathbb{N}$ ,

$$m \le x^{1/2} \tag{2.23}$$

and  $h \in \mathbb{Z}$ , then, writing

$$\mathcal{F} = \mathcal{F}(m, h, x) = \{n : n \le x, n \equiv h \pmod{m}, \omega_m(n) > 3 \log \log x \}$$

(where  $\omega_m(n)$  is defined by (2.17)), we have

$$|\mathcal{F}(m,h,x)| < \frac{x}{m\log x}.$$
 (2.24)

**Proof of Lemma 4:** Write  $(h, m) = g, h = gh_1, m = gm_1$ . Then

$$\mathcal{F} = \{gn_1: n_1 \le x/g, \ n_1 \equiv h_1 \pmod{m_1}, \ \omega_m(n_1) > 3 \log \log x\}.$$

Clearly, for  $gn_1 \in \mathcal{F}$  we have

$$d(n_1) \ge 2^{\omega(n_1)} \ge 2^{\omega_m(n_1)} > 2^{3\log\log x} = (\log x)^{\log 8}.$$
 (2.25)

We apply Lemma 3 with x/g in place of x,  $m_1$  in place of m, and  $h_1$  in place of h. From (2.23), we have  $m_1 \le x^{1/2}/g$ , so the inequality (2.21) is satisfied with our new parameters. Lemma 4 now follows from (2.25), the fact that  $\log 8 > 2$ , and a simple calculation.

#### 3. Proofs of the theorems

**Proof of Theorem 1:** Let x be a large enough number, write

$$t_x = \left[ \frac{1}{5} \left( \frac{\log x}{\log \log x} \right)^{1/2} \right] \text{ and } u_i = t_x - i \text{ for } i = 0, 1, \dots, t_x,$$
 (3.1)

so that

$$v_x := \sum_{i=0}^{l_x} u_i = \left(\frac{1}{50} + o(1)\right) \frac{\log x}{\log \log x}$$
 (3.2)

(as  $x \to +\infty$ ). Let  $\mathcal{P}_0$  denote the set of the first  $u_0$  primes greater than  $t_x$ , and if  $\mathcal{P}_{j-1}$  has been defined for some  $1 \le j \le t_x$ , then let  $\mathcal{P}_j$  denote the set of the first  $u_j$  primes greater than the greatest prime in  $\mathcal{P}_{j-1}$ . Let  $P = \prod_{j=0}^{t_x} \prod_{p \in \mathcal{P}_j} p$  so that, by (3.2), we have

$$\omega(P) = \sum_{j=0}^{t_x} |\mathcal{P}_j| = v_x = \left(\frac{1}{50} + o(1)\right) \frac{\log x}{\log \log x}.$$
 (3.3)

By the prime number theorem, it follows from (3.1) and (3.3) that

$$P = x^{(1/50) + o(1)}. (3.4)$$

Let r denote the least positive integer with

$$r+i \equiv 0 \left( \text{mod } \prod_{p \in \mathcal{P}_i} p \right) \text{ for } i = 0, 1, \dots, t_x.$$

Clearly p|(P, r + i) if and only if  $p \in \mathcal{P}_i$  whence

$$\omega((r+i, P)) = u_i \text{ for } i = 0, 1, \dots, t_x.$$
 (3.5)

By (3.4), (2.18) in Lemma 2 holds with P in place of m. Thus using Lemma 2 with m = P we obtain

$$\begin{split} \sum_{\substack{n \leq x \\ n \equiv r \pmod{P}}} \sum_{\substack{0 \leq i \leq t_x \\ n+i \in \mathcal{S}(P,r+i,c_4,x)}} 1 &= \sum_{0 \leq i \leq t_x} \sum_{n+i \in \mathcal{S}(P,r+i,c_4,x)} 1 \\ &= \sum_{0 < i < t_x} |\mathcal{S}(P,r+i,c_4,x)| > \sum_{0 < i < t_x} \frac{1}{2} \frac{x}{P} > \frac{1}{2} \frac{x}{P} t_x. \end{split}$$

The summation  $\sum_{n \le x, n \equiv r \pmod{P}}$  has at most  $\frac{x}{P} + 1 < 2\frac{x}{P}$  terms, thus it follows that there is an integer n with

$$\sum_{\substack{0 \le i \le t_x \\ n+i \in \mathcal{S}(P,r+i,c_4,x)}} 1 > \left(\frac{1}{2} \frac{x}{P} t_x\right) \left(2 \frac{x}{P}\right)^{-1} = \frac{1}{4} t_x.$$

Let W denote the set of the integers i with  $0 \le i \le t_x$ ,  $n + i \in S(P, r + i, c_4, x)$  so that

$$|\mathcal{W}| > \frac{1}{4}t_x$$
.

Then for all  $i \in \mathcal{W}$  we have

$$|h(n+i) - (n+t_x + \log\log x)| = |i + \omega(n+i) - t_x - \log\log x|$$

$$= |i + \omega((n+i, P)) + \omega_P(n+i) - t_x - \log\log x|$$

$$= |i + u_i + \omega_P(n+i) - t_x - \log\log x|$$

$$= |\omega_P(n+i) - \log\log x| < c_4(\log\log x)^{1/2}.$$

Thus for each of the  $|\mathcal{W}|$  numbers  $i \in \mathcal{W}$ , the value of h(n+i) belongs to the interval

$$(n + t_x + \log \log x - c_4(\log \log x)^{1/2}, \ n + t_x + \log \log x + c_4(\log \log x)^{1/2})$$

which contains at most  $2c_4(\log \log x)^{1/2} + 1$  integers. Thus by (3.1), for  $x > x_0$  at least one of these integers, say k, has at least

$$\frac{|\mathcal{W}|}{2c_4(\log\log x)^{1/2}+1} > \frac{t_x/4}{3c_4(\log\log x)^{1/2}} > c_5(\log x)^{1/2}(\log\log x)^{-1}$$

representations in the form h(n+i) (with  $i \in \mathcal{W}$ ) so that

$$g(k) > c_5 (\log x)^{1/2} (\log \log x)^{-1}.$$

This completes the proof of Theorem 1.

**Proof of Theorem 2:** We have to prove that for all  $x > x_0$  there are  $m, n \in \mathbb{N}$  such that  $x < m < n < x + \exp(c_2(\log x)(\log\log x)^{-1/2})$  and  $m + \omega(m) = n + \omega(n)$ . The proof of this is similar to the proof of Theorem 1. This time we choose  $t_x = c_6(\log\log x)^{1/2}$  where  $c_6$  is a large positive constant. We also need a short interval version of Lemma 1 (short: of the type  $(x, x + \exp(c_2(\log x)(\log\log x)^{-1/2}))$ . Apart from these changes, the proof is nearly the same, thus we leave the details to the reader.

**Proof of Theorem 3:** Let x be a large enough number, write

$$t_x = \left[ \frac{1}{10} (\log x)^{1/2} (\log \log x)^{-1} \right],$$
  
$$u_i = i [10 \log \log x] \text{ for } i = 1, 2, \dots, t_x$$

and

$$v_x = \sum_{i=1}^{t_x} u_i$$

so that

$$v_x = \left(\frac{1}{20} + o(1)\right) \frac{\log x}{\log \log x} \tag{3.6}$$

(as  $x \to +\infty$ ). Let  $\mathcal{P}_1$  denote the first  $u_1$  primes greater than  $t_x$ , and if  $\mathcal{P}_{i-1}$  has been defined, then let  $\mathcal{P}_i$  denote the set of the first  $u_i$  primes greater than the greatest prime in  $\mathcal{P}_{i-1}$ . Let  $P_i$  denote the product of the primes in  $\mathcal{P}_i$  and let  $P = P_1 P_2 \cdots P_{t_x}$ , so that, by (3.6), we have

$$\omega(P) = v_x = \left(\frac{1}{20} + o(1)\right) \frac{\log x}{\log \log x}.$$
(3.7)

By the prime number theorem, it follows that

$$P = x^{(1/20) + o(1)}. (3.8)$$

Let r denote the least positive integer with

$$r + i \equiv 0 \pmod{P_i}$$
 for  $i = 1, 2, \dots, t_x$ .

Clearly

$$\omega((r+i, P)) = \omega(P_i) = u_i \text{ for } i = 1, 2, \dots, t_r.$$
 (3.9)

By (3.8), (2.23) in Lemma 4 holds with P in place of m. Thus using Lemma 4 with m = P we obtain

$$\sum_{\substack{n \le x - t_x \\ n \equiv r \pmod{P}}} \sum_{\substack{1 \le i \le t_x \\ n \neq r \in P(P, r + i, x)}} 1 \le \sum_{i=1}^{t_x} \sum_{n+i \in \mathcal{F}(P, r + i, x)} 1 < \sum_{i=1}^{t_x} \frac{x}{P \log x} = \frac{x t_x}{P \log x} < \frac{x}{3P}$$

for x large enough. Here the outer sum has at least  $\frac{x}{p} - 2 > \frac{x}{2P}$  terms, thus at least one of the inner sums is <1. Since these sums are non-negative integers, it follows that at least one of them is 0, i.e., there is an integer n such that

$$n + t_x < x, \tag{3.10}$$

 $n \equiv r \pmod{P}$  and  $n + i \notin \mathcal{F}(P, r + i, x)$  for  $1 \le i \le t_x$  so that

$$\omega_P(n+i) \le 3 \log \log x \text{ for } i = 1, 2, \dots, t_x.$$
 (3.11)

By (3.9), for this n we have

$$\omega(n+i) = \omega((n+i, P)) + \omega_P(n+i) = \omega((r+i, P)) + \omega_P(n+i)$$
  
=  $u_i + \omega_P(n+i) = i[10 \log \log x] + \omega_P(n+i)$ 

whence, by (3.11),

$$i[10 \log \log x] \le \omega(n+i) \le i[10 \log \log x] + 3 \log \log x$$
 for  $i = 1, 2, ..., t_x$ .

Clearly, this implies (1.4) with  $t_x$  in place of k. Also (1.2) and (1.3) also hold by (3.10) and the definition of  $t_x$ . This completes the proof of Theorem 3.

**Proof of Theorem 4:** We have to show that if  $x > x_0(\epsilon)$ ,  $n, k \in \mathbb{N}$ ,

$$n + k \le x \tag{3.12}$$

and

$$\Omega(n+i) \neq \Omega(n+j) \text{ for } 1 < i < j < k, \tag{3.13}$$

then

$$k < (1 + \epsilon) \frac{\log x}{\log \log x}. (3.14)$$

We may assume that k is large since otherwise there is nothing to be proved. Write  $t = \lfloor k/\log k \rfloor$ , and let  $p_i$  denote the ith prime. For each  $i \in \{1, 2, ..., t\}$  remove that number from  $\{n+1, n+2, ..., n+k\}$  which is divisible by the highest power of  $p_i$  (if there are several numbers divisible by the highest power, then remove the smallest of them). Denote the remaining set by  $\mathcal{Y}$  so that

$$|\mathcal{Y}| = k - t = (1 + o(1))k.$$
 (3.15)

Each positive integer y may be written in the form

$$y = \prod_{i=1}^{\infty} p_i^{\alpha(i,y)}.$$

If  $y \in \mathcal{Y}$  and  $i \leq t$ , then we have  $p_i^{\alpha(i,y)} \leq k$ , for there is at most one number from  $\{n+1, n+2, \ldots, n+k\}$  divisible by a power of  $p_i$  bigger than k, and if this number exists, it is not in  $\mathcal{Y}$ . Note too that

$$\prod_{i>t} p_i^{\alpha(i,y)} \le y \le n+k \le x,$$

so that

$$\sum_{i>t} \alpha(i, y) \le \frac{\log x}{\log p_t}.$$

It follows that if  $y \in \mathcal{Y}$ , then

$$\begin{split} \Omega(y) &= \sum_{i=1}^{\infty} \alpha(i, y) = \sum_{i=1}^{t} \alpha(i, y) + \sum_{i>t} \alpha(i, y) \leq \sum_{i=1}^{t} \frac{\log k}{\log p_i} + \frac{\log x}{\log p_t} \\ &= (1 + o(1)) \frac{k}{\log k} + (1 + o(1)) \frac{\log x}{\log k}. \end{split}$$

Since all the values of  $\Omega(y)$  are distinct for  $y \in \mathcal{Y}$ , we have by (3.15) that

$$k \le (1 + o(1)) \frac{k}{\log k} + (1 + o(1)) \frac{\log x}{\log k}.$$

This implies (3.14), and completes the proof of Theorem 4.

**Proof of Theorem 5:** First we will prove (1.5). We have to show that if

$$n + k < x \tag{3.16}$$

and

$$\omega(n+1) = \omega(n+2) = \dots = \omega(n+k), \tag{3.17}$$

then

$$k < \exp\left(\left(\frac{1}{\sqrt{2}} + \epsilon\right) (\log x \log \log x)^{1/2}\right). \tag{3.18}$$

We may assume that k is large since otherwise there is nothing to be proved. Let y denote the greatest positive integer with

$$P := \prod_{p \le y} p \le k$$

so that, by the prime number theorem,

$$y = (1 + o(1)) \log k$$

(as  $k \to +\infty$ ) and

$$\pi(y) = (1 + o(1)) \frac{\log k}{\log \log k}.$$
(3.19)

Clearly there is an m with  $n + 1 \le m \le n + k$  and  $P \mid m$ . Then by (3.19) we have

$$\omega(m) \ge \omega(P) = \pi(y) = (1 + o(1)) \frac{\log k}{\log \log k}.$$
 (3.20)

It follows from (3.17) and (3.20) that

$$\sum_{i=1}^{k} \omega(n+i) = k\omega(m) \ge (1+o(1)) \frac{k \log k}{\log \log k}.$$
 (3.21)

On the other hand, we have

$$\sum_{i=1}^{k} \omega(n+i) = \sum_{i=1}^{k} \sum_{p|n+i} 1 = \sum_{p \le k} \sum_{\substack{1 \le i \le k \\ p|n+i}} 1 + \sum_{p > k} \sum_{\substack{1 \le i \le k \\ p|n+i}} 1.$$
 (3.22)

Here the first term is

$$\sum_{\substack{p \le k \\ p \mid p = k \\ p \mid k}} 1 \le \sum_{\substack{p \le k \\ p \mid p = k \\ p}} \left(\frac{k}{p} + 1\right) = k \sum_{\substack{p \le k \\ p}} \frac{1}{p} + \pi(k) = (1 + o(1))k \log \log k. \tag{3.23}$$

It follows from (3.21), (3.22) and (3.23) that

$$\sum_{\substack{p>k \\ p|n+i}} \sum_{\substack{1 \le i \le k \\ p|n+i}} 1 \ge (1+o(1)) \frac{k \log k}{\log \log k} - (1+o(1))k \log \log k = (1+o(1)) \frac{k \log k}{\log \log k}.$$

For every p > k the innermost sum is 0 or 1. Thus

$$\left| \left\{ p \colon p > k, \ p \ \middle| \ \prod_{i=1}^{k} (n+i) \right\} \right| \ge (1+o(1)) \frac{k \log k}{\log \log k}.$$

It follows that there is an integer t and primes  $p_{i_1}, p_{i_2}, \ldots, p_{i_t}$  with

$$t = (1 + o(1)) \frac{k \log k}{\log \log k},\tag{3.24}$$

$$k < p_{i_1} < p_{i_2} < \dots < p_{i_t} \tag{3.25}$$

and

$$p_{i_1}p_{i_2}\dots p_{i_t} \left| \prod_{i=1}^k (n+i). \right|$$
 (3.26)

(Here  $p_i$  denotes the *i*th prime.) Define u by

$$p_u \le k < p_{u+1}. (3.27)$$

By the prime number theorem, it follows from (3.16), (3.24), (3.25), (3.26) and (3.27) that

$$x^{k} \ge \prod_{i=1}^{k} (n+i) \ge p_{i_{1}} p_{i_{2}} \cdots p_{i_{t}} \ge p_{u+1} p_{u+2} \cdots p_{u+t}$$
$$= \exp((1+o(1)) p_{u+t}) = \exp\left((1+o(1)) \frac{k \log^{2} k}{\log \log k}\right),$$

whence

$$\log x \ge (1 + o(1)) \frac{\log^2 k}{\log \log k}.$$

This implies (3.18) which completes the proof of (1.5). In order to prove (1.6), observe that assuming

$$\Omega(n+1) = \Omega(n+2) = \cdots = \Omega(n+k)$$

and writing  $\ell = \lfloor \frac{\log k}{\log 2} \rfloor$ , there is an integer m with  $n+1 \le m \le n+k$  and  $2^{\ell} \mid m$  so that

$$\Omega(n+1) = \dots = \Omega(n+k) > \ell. \tag{3.28}$$

For every  $p \le k$ , remove the (least) number in  $\{n+1, n+2, \dots, n+k\}$  divisible by the highest power of p, and denote the remaining set by  $\mathcal{Y}$  so that

$$|\mathcal{Y}| = (1 + o(1))k$$

and

$$\sum_{n+i\in\mathcal{V}} \Omega(n+i) \ge \ell|\mathcal{Y}| = \left(\frac{1}{\log 2} + o(1)\right) k \log k. \tag{3.29}$$

On the other hand, we have

$$\sum_{n+i\in\mathcal{Y}} \Omega(n+i) = \sum_{p\le k} \sum_{\substack{n+i\in\mathcal{Y}\\p^{\alpha}\parallel n+i}} \alpha + \sum_{p>k} \sum_{\substack{n+i\in\mathcal{Y}\\p^{\alpha}\parallel n+i}} \alpha.$$
 (3.30)

By the definition of  $\mathcal{Y}$ , for every prime  $p \leq k$  and any positive integer  $\alpha$ , there are at most  $\lfloor k/p^{\alpha} \rfloor$  members of  $\mathcal{Y}$  divisible by  $p^{\alpha}$ . Thus, the first term on the right of (3.30) is

$$\leq \sum_{p\leq k}\sum_{\alpha=1}^{\infty}\left[\frac{k}{p^{\alpha}}\right] < k\sum_{p\leq k}\sum_{\alpha=1}^{\infty}\frac{1}{p^{\alpha}} = \sum_{p\leq k}\frac{k}{p-1} = (1+o(1))k\log\log k.$$

Thus we obtain from (3.29) and (3.30) that

$$\sum_{p>k} \sum_{\substack{n+i \in \mathcal{Y} \\ p^{\alpha} || n+i}} \alpha \ge \left(\frac{1}{\log 2} + o(1)\right) k \log k.$$

The rest of the proof is similar to the proof of (1.5); we leave the details to the reader.  $\Box$ 

#### Note

This paper was written while A. Sárközy was visiting the University of Georgia.

### References

- K. Alladi, "A study of the moments of additive functions using Laplace transforms and sieve methods," *Number Theory Proceedings* (K. Alladi, ed.), Ootacamund, India, 1984, Lecture Notes in Mathematics, Springer Verlag, 1985, vol. 1122, 1–37.
- 2. P. Erdős and L. Mirsky, "The distribution of values of the divisor function d(n)," *Proc. London Math Soc.* **3**(2) (1952), 257–271.
- 3. P. Erdős, C. Pomerance, and A. Sárközy, "On locally repeated values of certain arithmetic functions, I," *J. Number Theory* **21** (1985), 319–332.
- P. Erdős, C. Pomerance, and A Sárközy, "On locally repeated values of certain arithmetic functions, II" Acta Math. Hungar. 49 (1987), 251–259.
- P. Erdős, C. Pomerance, and A Sárközy, "On locally repeated values of certain arithmetic functions, III" Proc. Amer. Math. Soc. 101 (1987), 1–7.
- P. Erdős and A. Sárközy, "On isolated, respectively consecutive large values of arithmetic functions," Acta Arithmetica 66 (1994), 269–295.
- 7. D.R. Heath-Brown, "The divisor function at consecutive integers," Mathematika 31 (1984), 141-149.
- J. Kubilius, "Probablistic methods in the theory of numbers," *Translation of Math. Monographs*, AMS, Providence, Rhode Island 11 (1964).
- Yu.V. Linnik and A.I. Vinogradov, "Estimate of the number of divisors in a short segment of an arithmetic progression," *Uspekhi Math. Nauk* (N.S.) 12(4) (1957), 277–280.