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ANDRÁS SÁRKÖZY† sarkozy@cs.elte.hu
Mathematical Institute of the Hungarian Academy of Sciences, Reáltanoda u. 13-15, H-1364 Budapest, Hungary
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Abstract. Letω(n) denote the number of prime divisors ofn and letÄ(n) denote the number of prime power di-
visors ofn. We obtain upper bounds for the lengths of the longest intervals belowx whereω(n), respectivelyÄ(n),
remains constant. Similarly we consider the corresponding problems where the numbersω(n), respectivelyÄ(n),
are required to be all different on an interval. We show that the number of solutionsg(n) to the equationm+ ω(m) =
n is an unbounded function ofn, thus answering a question posed in an earlier paper in this series. A principal
tool is a Turán-Kubilius type inequality for additive functions on arithmetic progressions with a large modulus.
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1. Introduction

Let ω(n) denote the number of distinct prime factors ofn and letÄ(n) denote the number
of prime factors ofn counted with multiplicity.

Let g(n) denote the number of integersm with m + ω(m) = n. In [3] we proved that
g(n) ≥ 2 infinitely often, and in [3], [4] and [5] we extended this result in various directions.
However, as we wrote at the end of [5]: “Probablyg(n) is unbounded, but this ... seems
difficult. The best we can do in this direction is thatg(n) ≥ 2 infinitely often—this is of
course the main result of the first paper in this series.”

In this paper we will first prove that

g(n) À (logn)1/2(log logn)−1

infinitely often. More precisely we show the following result.

∗Paul Erdős passed away on September 20, 1996.
†The research of the second author is supported partially by a National Science Foundation grant. The research
of the third author is partially supported by Hungarian National Foundation for Scientific Research, grant No.
T017433.
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Theorem 1. There are absolute constants c1 > 0 and x0 such that for all x> x0 there is
an integer n with n≤ x and

g(n) > c1(logx)1/2(log logx)−1.

For any arithmetic functionf (n) and x > 1, let F( f, x) denote the greatest positive
integerF such that there is a positive integern with the properties thatn + F ≤ x and the
values f (n + 1), f (n + 2), . . . , f (n + F) are all different. We can prove the following
result on the localization of the repeated values ofh(n) := n + ω(n).

Theorem 2. There are absolute constants c2 and x0 such that for all x> x0 we have

F(h, x) < exp(c2(logx)(log logx)−1/2). (1.1)

In the opposite direction we can show that

F(h, x) À (logx)1/2(log logx)−1.

Indeed, this follows trivially from the following theorem.

Theorem 3. For x sufficiently large there are positive integers n and k such that

n + k ≤ x, (1.2)

k >
1

11
(logx)1/2(log logx)−1 (1.3)

and

ω(n + 1) < ω(n + 2) < · · · < ω(n + k). (1.4)

By Theorem 3 we have

F(ω, x) À (logx)1/2(log logx)−1.

It can be shown by a similar argument that

F(Ä, x) À (logx)1/2(log logx)−1.

Trivially, for eachε > 0,

F(ω, x) < (1 + ε)
logx

log logx
(for x > x0(ε))

and

F(Ä, x) ≤ logx

log 2
(for all x > 1),

since for anyn ≤ x, ω(n) < (1 + ε) logx/ log logx and Ä(n) ≤ logx/ log 2. We
conjecture that bothF(ω, x) and F(Ä, x) areo(

logx
log logx ). However, we do not have any
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reasonable upper bound forF(ω, x) and, indeed, we have not been able to prove even that
there is some fixedε > 0 with

F(ω, x) < (1 − ε)
logx

log logx

for all sufficiently largex.
On the other hand, it follows from Theorem 6 in [6] that

F(Ä, x) = o(logx).

We will improve on this by proving

Theorem 4. For all ε > 0 there is a number x0 = x0(ε) such that for x> x0 we have

F(Ä, x) < (1 + ε)
logx

log logx
.

For any arithmetic functionf (n) and x > 1, let G( f, x) denote the greatest positive
integerG such that there is a positive integern with the properties thatn + G ≤ x and
f (n + 1) = f (n + 2) = · · · = f (n + G). Erdős and Mirsky [2] proposed the study of
the functionG(d, x), and later Heath-Brown [7] proved thatd(n) = d(n + 1) (whered
is the divisor function) andÄ(n) = Ä(n + 1) infinitely often, but no non-trivial upper
bound has been given forG(d, x) andG(Ä, x). On the other hand, it is not known whether
ω(n) = ω(n + 1) holds infinitely often. We will prove

Theorem 5. For all ε > 0 there is a number x0 = x0(ε) such that for x> x0(ε) we have

G(ω, x) < exp((1/
√

2 + ε)(logx log logx)1/2) (1.5)

and

G(Ä, x) < exp((
√

log 2+ ε)(logx)1/2). (1.6)

2. Lemmas

In this section we shall prove several lemmas needed in the proofs of the theorems. First
we shall prove a Tur´an-Kubilius type inequality on arithmetic progressions:

Lemma 1. Assume that x≥ 1, m ∈ N,

m ≤ x1/2, (2.1)

h ∈ Z, and f(n) is a non-negative additive arithmetic function such that

f (pα) = 0 for p | m, α ∈ N. (2.2)

Let

K = max{ f (pα) : pα ≤ x}, A =
∑
p≤x

f (p)

p
. (2.3)
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Then we have ∑
n≤x

n≡h(mod m)

( f (n) − A)2 < c3
x

m
(K A + K 2)

(where c3 is an absolute constant independent of x, m, h and f).

Note that results of similar nature appear in [1] and [8], however, neither of these results
is stated in the form needed by us. In particular, in both cases the modulusm must be much
smaller than in (2.1) (it must be fixed or it may grow at most as fast as a power of log logx).
We are able to cover the casem > xc at the expense of the appearance of the quantityK in
the upper bound.

We might have applied Lemma 1 in [3], but we prefer to give the proof of the more
general result above for possible future applications.

The assumption (2.1) can be replaced bym ≤ x1−δ for any fixedδ, 0 < δ < 1, however,
in this case the value of the constantc3 in the last inequality depends onδ.

We remark that whenf is completely additive we may change the definition ofK in (2.3)
to be the maximum off (p) for p ≤ x, at the expense of enlarging the absolute constantc3

in the last inequality.
Note moreover that one can get rid of the assumptionf (n) ≥ 0 by writing a general real

valued additive arithmetic function as the sum of a non-negative and a non-positive additive
function, and similarly, the complex case can be handled by separating real and imaginary
parts. (Of course, in these casesf (pα) in (2.3) must be replaced with| f (pα)|.)

Proof of Lemma 1: Define the additive arithmetic functionf1(n) by

f1(pα) =
{

f (pα) for pα ≤ x1/4,

0 for pα > x1/4.
(2.4)

Clearly, forn ≤ x there are at most 3 different prime powerspα with pα > x1/4, pα ‖ n.
By (2.3), it follows that

| f (n) − f1(n)| =
∑

pα>x1/4

pα‖n

f (pα) ≤ 3K for all n ≤ x. (2.5)

Moreover, writing

A1 =
∑
pα≤x

f1(pα)

pα
,

clearly we have

|A − A1| ≤
∑

x1/4<p≤x

f (p)

p
+

∑
pα≤x1/4,α>1

f (pα)

pα

≤ K
∑

x1/4<p≤x

1

p
+ K

∑
pα≤x1/4,α>1

1

pα
= O(K ). (2.6)
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(Here and throughout the proof of Lemma 1 the constants implied in theO(. . .) terms are
independent off (n) and the parametersx, m, h.)

Write

U =
∑
n≤x

n≡h(mod m)

f1(n)

and

V =
∑
n≤x

n≡h(mod m)

f 2
1 (n).

By (2.2) we have

U =
∑
n≤x

n≡h(mod m)

∑
pα‖n

f1(pα) =
∑

pα≤x1/4

(p,m)=1

f1(pα)
∑

n≤x,pα‖n
n≡h(mod m)

1. (2.7)

By (p, m) = 1, pα ≤ x1/4 and (2.1), the innermost sum is∑
n≤x,pα‖n

n≡h(mod m)

1 =
∑

k≤x/pα,(k,p)=1
pαk≡h(mod m)

1 =
∑

k≤x/pα

pαk≡h(mod m)

1 −
∑

k≤x/pα,p|k
pαk≡h(mod m)

1

= x

mpα
+ O

(
x

mpα+1

)
. (2.8)

Thus by using (2.3) and (2.4), it follows from (2.7) that

U = x

m

∑
pα≤x1/4

(p,m)=1

f1(pα)

pα
+ O

(
x

m

∑
pα≤x1/4

f1(pα)

pα+1

)
= x

m
(A1 + O(K )). (2.9)

By (2.2) we have

V =
∑
n≤x

n≡h(mod m)

( ∑
pα‖n

f1(pα)

)2

=
∑
n≤x

n≡h(mod m)

∑
pα‖n

∑
qβ‖n

f1(pα) f1(q
β)

=
∑
n≤x

n≡h(mod m)

∑
pα‖n

f 2
1 (pα) +

∑ ∑
pα‖n qβ‖n

p6=q

f1(pα) f1(q
β)


=

∑
pα≤x1/4

(p,m)=1

f 2
1 (pα)

∑
n≤x,pα‖n

n≡h(mod m)

1 +
∑ ∑
pα,qβ≤x1/4

p6=q,(pq,m)=1

f1(pα) f1(q
β)

∑
n≤x,pα‖n,qβ‖n

n≡h(mod m)

1

= S1 + S2, say. (2.10)
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By (2.3), the first term is

S1 ≤
∑

pα≤x1/4

f 2
1 (pα)

(
x

mpα
+ 1

)
= O

(
x

m
K A1 + K 2x1/4

)
. (2.11)

The second term in (2.10) is

S2 ≤
∑ ∑
pα,qβ≤x1/4

f1(pα) f1(q
β)

(
x

mpαqβ
+ 1

)
= x

m
A2

1 + O(K 2x1/2). (2.12)

It follows from (2.10), (2.11) and (2.12) that

V ≤ x

m

(
A2

1 + O(K A1)
) + O(K 2x1/2). (2.13)

By f (n) ≥ 0 and (2.3) clearly we have

A1 =
∑
pα≤x

f1(pα)

pα
≤ K

∑
pα≤x1/4

1 ≤ K x1/4. (2.14)

It follows from (2.1), (2.9), (2.13), (2.14) that∑
n≤x

n≡h(mod m)

( f1(n) − A1)
2 = V − 2A1U + A2

1

(
x

m
+ O(1)

)

¿ x

m
K A1 + K 2x1/2 + A2

1 ¿ x

m
(K A1 + K 2). (2.15)

Finally, by (2.5), (2.6) and the inequality

(a + b)2 ≤ 2(a2 + b2)

we have

( f (n) − A)2 = (( f1(n) − A1) + ( f (n) − f1(n)) + (A1 − A))2

≤ 2( f1(n) − A1)
2 + O(K 2) (2.16)

(uniformly in n). It follows from (2.6), (2.15) and (2.16) that

∑
n≤x

n≡h(mod m)

( f (n) − A)2 ≤ 2
∑
n≤x

n≡h(mod m)

( f1(n) − A1)
2 + O

K 2
∑
n≤x

n≡h(mod m)

1


= O

(
x

m
(K A + K 2)

)
which completes the proof of Lemma 1. 2
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Lemma 2. Let

ωm(n) = |{p : p prime, p - m, p | n}| (2.17)

and

S(m, h, z, x) = {n: n ≤ x, n ≡ h (modm), |ωm(n) − log logx| < z(log logx)1/2}.
There exist absolute constants c4, x0 such that if x> x0, m ∈ N,

m ≤ x1/2 (2.18)

and h∈ Z, then

|S(m, h, c4, x)| >
1

2

x

m
. (2.19)

Proof of Lemma 2: We apply Lemma 1 withωm(n) in place of f (n). Note that the
numberK in Lemma 1 is 1 andA, by (2.18), satisfies

A =
∑
p≤x

−
∑
p|m

1

p
= log logx + O(log log logx).

If c4 is chosen large enough in terms of the constantc3 in Lemma 1, our lemma now follows
from a routine calculation.

Write

D(x, m, h) =
∑
n≤x

n≡h(mod m)

d(n). (2.20)

2

Lemma 3. If x ≥ e4, m ∈ N,

m ≤ x1/2, (2.21)

h ∈ Z and(h, m) = 1, then

D(x, m, h) < 2
x logx

m
. (2.22)

(Note that a similar, even sharper result is proved in [9], however, it is stated in a form
slightly different from the one needed by us.)

Proof of Lemma 3: By (2.21) we have

D(x, m, h) =
∑
n≤x

n≡h(mod m)

∑
d|n

1 ≤ 2
∑
n≤x

n≡h(mod m)

∑
d|n

d≤√
n

1 ≤ 2
∑

d≤√
x

(d,m)=1

∑
n≤x,d|n

n≡h(mod m)

1

≤ 2
∑

d≤√
x

(d,m)=1

(
x

dm
+ 1

)
≤ 2

x

m
(1 + log

√
x) + 2

√
x

≤ 2
x

m

(
2 + 1

2
logx

)
< 2

x logx

m
. 2
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Lemma 4. There is a number x0 such that if x> x0, m ∈ N,

m ≤ x1/2 (2.23)

and h∈ Z, then, writing

F = F(m, h, x) = {n: n ≤ x, n ≡ h (modm), ωm(n) > 3 log logx}
(whereωm(n) is defined by(2.17)), we have

|F(m, h, x)| <
x

m logx
. (2.24)

Proof of Lemma 4: Write (h, m) = g, h = gh1, m = gm1. Then

F = {gn1: n1 ≤ x/g, n1 ≡ h1(modm1), ωm(n1) > 3 log logx}.
Clearly, forgn1 ∈ F we have

d(n1) ≥ 2ω(n1) ≥ 2ωm(n1) > 23 log logx = (logx)log 8. (2.25)

We apply Lemma 3 withx/g in place ofx, m1 in place ofm, andh1 in place ofh. From
(2.23), we havem1 ≤ x1/2/g, so the inequality (2.21) is satisfied with our new parameters.
Lemma 4 now follows from (2.25), the fact that log 8> 2, and a simple calculation. 2

3. Proofs of the theorems

Proof of Theorem 1: Let x be a large enough number, write

tx =
[

1

5

(
logx

log logx

)1/2
]

andui = tx − i for i = 0, 1, . . . , tx, (3.1)

so that

vx :=
tx∑

i =0

ui =
(

1

50
+ o(1)

)
logx

log logx
(3.2)

(asx → +∞). LetP0 denote the set of the firstu0 primes greater thantx, and ifP j −1 has
been defined for some 1≤ j ≤ tx, then letP j denote the set of the firstu j primes greater
than the greatest prime inP j −1. Let P = ∏tx

j =0

∏
p∈P j

p so that, by (3.2), we have

ω(P) =
tx∑

j =0

|P j | = vx =
(

1

50
+ o(1)

)
logx

log logx
. (3.3)

By the prime number theorem, it follows from (3.1) and (3.3) that

P = x(1/50)+o(1). (3.4)
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Let r denote the least positive integer with

r + i ≡ 0

(
mod

∏
p∈Pi

p

)
for i = 0, 1, . . . , tx.

Clearly p|(P, r + i ) if and only if p ∈ Pi whence

ω((r + i, P)) = ui for i = 0, 1, . . . , tx. (3.5)

By (3.4), (2.18) in Lemma 2 holds withP in place ofm. Thus using Lemma 2 withm = P
we obtain ∑

n≤x
n≡r (mod P)

∑
0≤i ≤tx

n+i ∈S(P,r +i,c4,x)

1 =
∑

0≤i ≤tx

∑
n+i ∈S(P,r +i,c4,x)

1

=
∑

0≤i ≤tx

|S(P, r + i, c4, x)| >
∑

0≤i ≤tx

1

2

x

P
>

1

2

x

P
tx.

The summation
∑

n≤x,n≡r (modP) has at mostxP + 1 < 2 x
P terms, thus it follows that there is

an integern with

∑
0≤i ≤tx

n+i ∈S(P,r +i,c4,x)

1 >

(
1

2

x

P
tx

)(
2

x

P

)−1

= 1

4
tx.

LetW denote the set of the integersi with 0 ≤ i ≤ tx, n + i ∈ S(P, r + i, c4, x) so that

|W| >
1

4
tx.

Then for alli ∈W we have

|h(n + i ) − (n + tx + log logx)| = |i + ω(n + i ) − tx − log logx|
= |i + ω((n + i, P)) + ωP(n + i ) − tx − log logx|
= |i + ui + ωP(n + i ) − tx − log logx|
= |ωP(n + i ) − log logx| < c4(log logx)1/2.

Thus for each of the|W| numbersi ∈W, the value ofh(n + i ) belongs to the interval

(n + tx + log logx − c4(log logx)1/2, n + tx + log logx + c4(log logx)1/2)

which contains at most 2c4(log logx)1/2 + 1 integers. Thus by (3.1), forx > x0 at least
one of these integers, sayk, has at least

|W|
2c4(log logx)1/2 + 1

>
tx/4

3c4(log logx)1/2
> c5(logx)1/2(log logx)−1
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representations in the formh(n + i ) (with i ∈W) so that

g(k) > c5(logx)1/2(log logx)−1.

This completes the proof of Theorem 1. 2

Proof of Theorem 2: We have to prove that for allx > x0 there arem, n ∈ N such that
x < m < n < x + exp(c2(logx)(log logx)−1/2) andm+ ω(m) = n + ω(n). The proof of
this is similar to the proof of Theorem 1. This time we choosetx = c6(log logx)1/2 where
c6 is a large positive constant. We also need a short interval version of Lemma 1 (short:
of the type(x, x + exp(c2(logx)(log logx)−1/2)). Apart from these changes, the proof is
nearly the same, thus we leave the details to the reader. 2

Proof of Theorem 3: Let x be a large enough number, write

tx =
[

1

10
(logx)1/2(log logx)−1

]
,

ui = i [10 log logx] for i = 1, 2, . . . , tx

and

vx =
tx∑

i =1

ui

so that

vx =
(

1

20
+ o(1)

)
logx

log logx
(3.6)

(as x → +∞). Let P1 denote the firstu1 primes greater thantx, and ifPi −1 has been
defined, then letPi denote the set of the firstui primes greater than the greatest prime in
Pi −1. Let Pi denote the product of the primes inPi and letP = P1P2 · · · Ptx , so that, by
(3.6), we have

ω(P) = vx =
(

1

20
+ o(1)

)
logx

log logx
. (3.7)

By the prime number theorem, it follows that

P = x(1/20)+o(1). (3.8)

Let r denote the least positive integer with

r + i ≡ 0 (mod Pi ) for i = 1, 2, . . . , tx.

Clearly

ω((r + i, P)) = ω(Pi ) = ui for i = 1, 2, . . . , tx. (3.9)
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By (3.8), (2.23) in Lemma 4 holds withP in place ofm. Thus using Lemma 4 with
m = P we obtain∑

n≤x−tx
n≡r (mod P)

∑
1≤i ≤tx

n+i ∈F(P,r +i,x)

1 ≤
tx∑

i =1

∑
n+i ∈F(P,r +i,x)

1 <

tx∑
i =1

x

P logx
= xtx

P logx
<

x

3P

for x large enough. Here the outer sum has at leastx
P − 2 > x

2P terms, thus at least one
of the inner sums is<1. Since these sums are non-negative integers, it follows that at least
one of them is 0, i.e., there is an integern such that

n + tx ≤ x, (3.10)

n ≡ r (mod P) andn + i 6∈ F(P, r + i, x) for 1 ≤ i ≤ tx so that

ωP(n + i ) ≤ 3 log logx for i = 1, 2, . . . , tx. (3.11)

By (3.9), for thisn we have

ω(n + i ) = ω((n + i, P)) + ωP(n + i ) = ω((r + i, P)) + ωP(n + i )

= ui + ωP(n + i ) = i [10 log logx] + ωP(n + i )

whence, by (3.11),

i [10 log logx] ≤ ω(n + i ) ≤ i [10 log logx] + 3 log logx for i = 1, 2, . . . , tx.

Clearly, this implies (1.4) withtx in place ofk. Also (1.2) and (1.3) also hold by (3.10) and
the definition oftx. This completes the proof of Theorem 3. 2

Proof of Theorem 4: We have to show that ifx > x0(ε), n, k ∈ N,

n + k ≤ x (3.12)

and

Ä(n + i ) 6= Ä(n + j ) for 1 ≤ i < j ≤ k, (3.13)

then

k < (1 + ε)
logx

log logx
. (3.14)

We may assume thatk is large since otherwise there is nothing to be proved. Write
t = [k/ logk], and let pi denote thei th prime. For eachi ∈ {1, 2, . . . , t} remove that
number from{n + 1, n + 2, . . . , n + k} which is divisible by the highest power ofpi (if
there are several numbers divisible by the highest power, then remove the smallest of them).
Denote the remaining set byY so that

|Y| = k − t = (1 + o(1))k. (3.15)
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Each positive integery may be written in the form

y =
∞∏

i =1

pα(i,y)

i .

If y ∈ Y and i ≤ t , then we havepα(i,y)

i ≤ k, for there is at most one number from
{n+1, n+2, . . . , n+k} divisible by a power ofpi bigger thank, and if this number exists,
it is not inY. Note too that ∏

i >t

pα(i,y)

i ≤ y ≤ n + k ≤ x,

so that ∑
i >t

α(i, y) ≤ logx

log pt
.

It follows that if y ∈ Y, then

Ä(y) =
∞∑

i =1

α(i, y) =
t∑

i =1

α(i, y) +
∑
i >t

α(i, y) ≤
t∑

i =1

logk

log pi
+ logx

log pt

= (1 + o(1))
k

logk
+ (1 + o(1))

logx

logk
.

Since all the values ofÄ(y) are distinct fory ∈ Y, we have by (3.15) that

k ≤ (1 + o(1))
k

logk
+ (1 + o(1))

logx

logk
.

This implies (3.14), and completes the proof of Theorem 4. 2

Proof of Theorem 5: First we will prove (1.5). We have to show that if

n + k ≤ x (3.16)

and

ω(n + 1) = ω(n + 2) = · · · = ω(n + k), (3.17)

then

k < exp

((
1√
2

+ ε

)
(logx log logx)1/2

)
. (3.18)

We may assume thatk is large since otherwise there is nothing to be proved. Lety denote
the greatest positive integer with

P :=
∏
p≤y

p ≤ k
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so that, by the prime number theorem,

y = (1 + o(1)) logk

(ask → +∞) and

π(y) = (1 + o(1))
logk

log logk
. (3.19)

Clearly there is anm with n + 1 ≤ m ≤ n + k andP | m. Then by (3.19) we have

ω(m) ≥ ω(P) = π(y) = (1 + o(1))
logk

log logk
. (3.20)

It follows from (3.17) and (3.20) that

k∑
i =1

ω(n + i ) = kω(m) ≥ (1 + o(1))
k logk

log logk
. (3.21)

On the other hand, we have

k∑
i =1

ω(n + i ) =
k∑

i =1

∑
p|n+i

1 =
∑
p≤k

∑
1≤i ≤k
p|n+i

1 +
∑
p>k

∑
1≤i ≤k
p|n+i

1. (3.22)

Here the first term is∑
p≤k

∑
1≤i ≤k
p|n+i

1 ≤
∑
p≤k

(
k

p
+ 1

)
= k

∑
p≤k

1

p
+ π(k) = (1 + o(1))k log logk. (3.23)

It follows from (3.21), (3.22) and (3.23) that∑
p>k

∑
1≤i ≤k
p|n+i

1 ≥ (1 + o(1))
k logk

log logk
− (1 + o(1))k log logk = (1 + o(1))

k logk

log logk
.

For everyp > k the innermost sum is 0 or 1. Thus∣∣∣∣∣
{

p: p > k, p

∣∣∣∣ k∏
i =1

(n + i )

}∣∣∣∣∣ ≥ (1 + o(1))
k logk

log logk
.

It follows that there is an integert and primespi1, pi2, . . . , pit with

t = (1 + o(1))
k logk

log logk
, (3.24)

k < pi1 < pi2 < · · · < pit (3.25)
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and

pi1 pi2 . . . pit

∣∣∣∣∣ k∏
i =1

(n + i ). (3.26)

(Here pi denotes thei th prime.) Defineu by

pu ≤ k < pu+1. (3.27)

By the prime number theorem, it follows from (3.16), (3.24), (3.25), (3.26) and (3.27) that

xk ≥
k∏

i =1

(n + i ) ≥ pi1 pi2 · · · pit ≥ pu+1 pu+2 · · · pu+t

= exp((1 + o(1))pu+t ) = exp

(
(1 + o(1))

k log2 k

log logk

)
,

whence

logx ≥ (1 + o(1))
log2 k

log logk
.

This implies (3.18) which completes the proof of (1.5).
In order to prove (1.6), observe that assuming

Ä(n + 1) = Ä(n + 2) = · · · = Ä(n + k)

and writing` = [ logk
log 2], there is an integerm with n + 1 ≤ m ≤ n + k and 2` | m so that

Ä(n + 1) = · · · = Ä(n + k) ≥ `. (3.28)

For everyp ≤ k, remove the (least) number in{n + 1, n + 2, . . . , n + k} divisible by the
highest power ofp, and denote the remaining set byY so that

|Y| = (1 + o(1))k

and ∑
n+i ∈Y

Ä(n + i ) ≥ `|Y| =
(

1

log 2
+ o(1)

)
k logk. (3.29)

On the other hand, we have∑
n+i ∈Y

Ä(n + i ) =
∑
p≤k

∑
n+i ∈Y
pα‖n+i

α +
∑
p>k

∑
n+i ∈Y
pα‖n+i

α. (3.30)
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By the definition ofY, for every primep ≤ k and any positive integerα, there are at most
[k/pα] members ofY divisible by pα. Thus, the first term on the right of (3.30) is

≤
∑
p≤k

∞∑
α=1

[
k

pα

]
< k

∑
p≤k

∞∑
α=1

1

pα
=

∑
p≤k

k

p − 1
= (1 + o(1))k log logk.

Thus we obtain from (3.29) and (3.30) that∑
p>k

∑
n+i ∈Y
pα‖n+i

α ≥
(

1

log 2
+ o(1)

)
k logk.

The rest of the proof is similar to the proof of (1.5); we leave the details to the reader.2

Note

This paper was written while A. S´arközy was visiting the University of Georgia.
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6. P. Erdős and A. S´arközy, “On isolated, respectively consecutive large values of arithmetic functions,”Acta
Arithmetica66 (1994), 269–295.

7. D.R. Heath-Brown, “The divisor function at consecutive integers,”Mathematika31 (1984), 141–149.
8. J. Kubilius, “Probablistic methods in the theory of numbers,”Translation of Math. Monographs, AMS, Provi-

dence, Rhode Island11 (1964).
9. Yu.V. Linnik and A.I. Vinogradov, “Estimate of the number of divisors in a short segment of an arithmetic

progression,”Uspekhi Math. Nauk(N.S.)12(4) (1957), 277–280.


