On Locally Repeated Values of Certain Arithmetic Functions, IV

PAUL ERDŐS*
Mathematical Institute of the Hungarian Academy of Sciences, Reáltanoda u. 13-15, H-1364 Budapest, Hungary

CARL POMERANCE ${ }^{\dagger}$ carl@ada.math.uga.edu
Department of Mathematics, The University of Georgia, Athens, Georgia 30602

ANDRÁS SÁRKÖZY ${ }^{\dagger}$
sarkozy@cs.elte.hu

Mathematical Institute of the Hungarian Academy of Sciences, Reáltanoda u. 13-15, H-1364 Budapest, Hungary
Received March 15, 1996; Accepted June 5, 1996

Abstract

Let $\omega(n)$ denote the number of prime divisors of n and let $\Omega(n)$ denote the number of prime power divisors of n. We obtain upper bounds for the lengths of the longest intervals below x where $\omega(n)$, respectively $\Omega(n)$, remains constant. Similarly we consider the corresponding problems where the numbers $\omega(n)$, respectively $\Omega(n)$, are required to be all different on an interval. We show that the number of solutions $g(n)$ to the equation $m+\omega(m)=$ n is an unbounded function of n, thus answering a question posed in an earlier paper in this series. A principal tool is a Turán-Kubilius type inequality for additive functions on arithmetic progressions with a large modulus.

Key words: Turán-Kubilius inequality, additive functions, prime divisors
1991 Mathematics Subject Classification: Primary—11N64; Secondary—11A25

1. Introduction

Let $\omega(n)$ denote the number of distinct prime factors of n and let $\Omega(n)$ denote the number of prime factors of n counted with multiplicity.

Let $g(n)$ denote the number of integers m with $m+\omega(m)=n$. In [3] we proved that $g(n) \geq 2$ infinitely often, and in [3], [4] and [5] we extended this result in various directions. However, as we wrote at the end of [5]: "Probably $g(n)$ is unbounded, but this ... seems difficult. The best we can do in this direction is that $g(n) \geq 2$ infinitely often-this is of course the main result of the first paper in this series."

In this paper we will first prove that

$$
g(n) \gg(\log n)^{1 / 2}(\log \log n)^{-1}
$$

infinitely often. More precisely we show the following result.

[^0]Theorem 1. There are absolute constants $c_{1}>0$ and x_{0} such that for all $x>x_{0}$ there is an integer n with $n \leq x$ and

$$
g(n)>c_{1}(\log x)^{1 / 2}(\log \log x)^{-1} .
$$

For any arithmetic function $f(n)$ and $x>1$, let $F(f, x)$ denote the greatest positive integer F such that there is a positive integer n with the properties that $n+F \leq x$ and the values $f(n+1), f(n+2), \ldots, f(n+F)$ are all different. We can prove the following result on the localization of the repeated values of $h(n):=n+\omega(n)$.

Theorem 2. There are absolute constants c_{2} and x_{0} such that for all $x>x_{0}$ we have

$$
\begin{equation*}
F(h, x)<\exp \left(c_{2}(\log x)(\log \log x)^{-1 / 2}\right) . \tag{1.1}
\end{equation*}
$$

In the opposite direction we can show that

$$
F(h, x) \gg(\log x)^{1 / 2}(\log \log x)^{-1} .
$$

Indeed, this follows trivially from the following theorem.
Theorem 3. For x sufficiently large there are positive integers n and k such that

$$
\begin{gather*}
n+k \leq x, \tag{1.2}\\
k>\frac{1}{11}(\log x)^{1 / 2}(\log \log x)^{-1} \tag{1.3}
\end{gather*}
$$

and

$$
\begin{equation*}
\omega(n+1)<\omega(n+2)<\cdots<\omega(n+k) . \tag{1.4}
\end{equation*}
$$

By Theorem 3 we have

$$
F(\omega, x) \gg(\log x)^{1 / 2}(\log \log x)^{-1}
$$

It can be shown by a similar argument that

$$
F(\Omega, x) \gg(\log x)^{1 / 2}(\log \log x)^{-1}
$$

Trivially, for each $\epsilon>0$,

$$
F(\omega, x)<(1+\epsilon) \frac{\log x}{\log \log x}\left(\text { for } x>x_{0}(\epsilon)\right)
$$

and

$$
F(\Omega, x) \leq \frac{\log x}{\log 2}(\text { for all } x>1)
$$

since for any $n \leq x, \omega(n)<(1+\epsilon) \log x / \log \log x$ and $\Omega(n) \leq \log x / \log 2$. We conjecture that both $F(\omega, x)$ and $F(\Omega, x)$ are $o\left(\frac{\log x}{\log \log x}\right)$. However, we do not have any
reasonable upper bound for $F(\omega, x)$ and, indeed, we have not been able to prove even that there is some fixed $\epsilon>0$ with

$$
F(\omega, x)<(1-\epsilon) \frac{\log x}{\log \log x}
$$

for all sufficiently large x.
On the other hand, it follows from Theorem 6 in [6] that

$$
F(\Omega, x)=o(\log x)
$$

We will improve on this by proving
Theorem 4. For all $\epsilon>0$ there is a number $x_{0}=x_{0}(\epsilon)$ such that for $x>x_{0}$ we have

$$
F(\Omega, x)<(1+\epsilon) \frac{\log x}{\log \log x}
$$

For any arithmetic function $f(n)$ and $x>1$, let $G(f, x)$ denote the greatest positive integer G such that there is a positive integer n with the properties that $n+G \leq x$ and $f(n+1)=f(n+2)=\cdots=f(n+G)$. Erdős and Mirsky [2] proposed the study of the function $G(d, x)$, and later Heath-Brown [7] proved that $d(n)=d(n+1)$ (where d is the divisor function) and $\Omega(n)=\Omega(n+1)$ infinitely often, but no non-trivial upper bound has been given for $G(d, x)$ and $G(\Omega, x)$. On the other hand, it is not known whether $\omega(n)=\omega(n+1)$ holds infinitely often. We will prove

Theorem 5. For all $\epsilon>0$ there is a number $x_{0}=x_{0}(\epsilon)$ such that for $x>x_{0}(\epsilon)$ we have

$$
\begin{equation*}
G(\omega, x)<\exp \left((1 / \sqrt{2}+\epsilon)(\log x \log \log x)^{1 / 2}\right) \tag{1.5}
\end{equation*}
$$

and

$$
\begin{equation*}
G(\Omega, x)<\exp \left((\sqrt{\log 2}+\epsilon)(\log x)^{1 / 2}\right) \tag{1.6}
\end{equation*}
$$

2. Lemmas

In this section we shall prove several lemmas needed in the proofs of the theorems. First we shall prove a Turán-Kubilius type inequality on arithmetic progressions:

Lemma 1. Assume that $x \geq 1, m \in \mathbb{N}$,

$$
\begin{equation*}
m \leq x^{1 / 2} \tag{2.1}
\end{equation*}
$$

$h \in \mathbb{Z}$, and $f(n)$ is a non-negative additive arithmetic function such that

$$
\begin{equation*}
f\left(p^{\alpha}\right)=0 \text { for } p \mid m, \alpha \in \mathbb{N} . \tag{2.2}
\end{equation*}
$$

Let

$$
\begin{equation*}
K=\max \left\{f\left(p^{\alpha}\right): p^{\alpha} \leq x\right\}, \quad A=\sum_{p \leq x} \frac{f(p)}{p} \tag{2.3}
\end{equation*}
$$

Then we have

$$
\sum_{\substack{n \leq x \\ n \equiv h(\bmod m)}}(f(n)-A)^{2}<c_{3} \frac{x}{m}\left(K A+K^{2}\right)
$$

(where c_{3} is an absolute constant independent of x, m, h and f).
Note that results of similar nature appear in [1] and [8], however, neither of these results is stated in the form needed by us. In particular, in both cases the modulus m must be much smaller than in (2.1) (it must be fixed or it may grow at most as fast as a power of $\log \log x$). We are able to cover the case $m>x^{c}$ at the expense of the appearance of the quantity K in the upper bound.

We might have applied Lemma 1 in [3], but we prefer to give the proof of the more general result above for possible future applications.

The assumption (2.1) can be replaced by $m \leq x^{1-\delta}$ for any fixed $\delta, 0<\delta<1$, however, in this case the value of the constant c_{3} in the last inequality depends on δ.

We remark that when f is completely additive we may change the definition of K in (2.3) to be the maximum of $f(p)$ for $p \leq x$, at the expense of enlarging the absolute constant c_{3} in the last inequality.

Note moreover that one can get rid of the assumption $f(n) \geq 0$ by writing a general real valued additive arithmetic function as the sum of a non-negative and a non-positive additive function, and similarly, the complex case can be handled by separating real and imaginary parts. (Of course, in these cases $f\left(p^{\alpha}\right)$ in (2.3) must be replaced with $\left|f\left(p^{\alpha}\right)\right|$.)

Proof of Lemma 1: Define the additive arithmetic function $f_{1}(n)$ by

$$
f_{1}\left(p^{\alpha}\right)= \begin{cases}f\left(p^{\alpha}\right) & \text { for } p^{\alpha} \leq x^{1 / 4} \tag{2.4}\\ 0 & \text { for } p^{\alpha}>x^{1 / 4}\end{cases}
$$

Clearly, for $n \leq x$ there are at most 3 different prime powers p^{α} with $p^{\alpha}>x^{1 / 4}, p^{\alpha} \| n$. By (2.3), it follows that

$$
\begin{equation*}
\left|f(n)-f_{1}(n)\right|=\sum_{\substack{p^{\alpha} \times x^{1 / 4} \\ p^{\alpha} \| n}} f\left(p^{\alpha}\right) \leq 3 K \text { for all } n \leq x \tag{2.5}
\end{equation*}
$$

Moreover, writing

$$
A_{1}=\sum_{p^{\alpha} \leq x} \frac{f_{1}\left(p^{\alpha}\right)}{p^{\alpha}}
$$

clearly we have

$$
\begin{align*}
\left|A-A_{1}\right| & \leq \sum_{x^{1 / 4}<p \leq x} \frac{f(p)}{p}+\sum_{p^{\alpha} \leq x^{1 / 4}, \alpha>1} \frac{f\left(p^{\alpha}\right)}{p^{\alpha}} \\
& \leq K \sum_{x^{1 / 4}<p \leq x} \frac{1}{p}+K \sum_{p^{\alpha} \leq x^{1 / 4}, \alpha>1} \frac{1}{p^{\alpha}}=O(K) . \tag{2.6}
\end{align*}
$$

(Here and throughout the proof of Lemma 1 the constants implied in the $O(\ldots)$ terms are independent of $f(n)$ and the parameters x, m, h.)

Write

$$
U=\sum_{\substack{n \leq x \\ n \equiv h(\bmod m)}} f_{1}(n)
$$

and

$$
V=\sum_{\substack{n \leq x \\ n \equiv h(\bmod m)}} f_{1}^{2}(n)
$$

By (2.2) we have

$$
\begin{equation*}
U=\sum_{\substack{n \leq x \\ n \equiv h(\bmod m)}} \sum_{p^{\alpha} \| n} f_{1}\left(p^{\alpha}\right)=\sum_{\substack{p^{\alpha} \leq x^{1 / 4} \\(p, m)=1}} f_{1}\left(p^{\alpha}\right) \sum_{\substack{n \leq x, p^{\alpha} \| n \\ n \equiv h(\bmod m)}} 1 . \tag{2.7}
\end{equation*}
$$

By $(p, m)=1, p^{\alpha} \leq x^{1 / 4}$ and (2.1), the innermost sum is

$$
\begin{align*}
\sum_{\substack{n \leq x, p^{\alpha} \| n \\
n \equiv h(\bmod m)}} 1 & =\sum_{\substack{k \leq x / p^{\alpha},(k, p)=1 \\
p^{\alpha} k=h(\bmod m)}} 1=\sum_{\substack{k \leq x / p^{\alpha} \\
p^{\alpha} k \equiv h(\bmod m)}} 1-\sum_{\substack{k \leq x / p^{\alpha}, p \mid k \\
p^{\alpha} k=h(\bmod m)}} 1 \\
& =\frac{x}{m p^{\alpha}}+O\left(\frac{x}{m p^{\alpha+1}}\right) \tag{2.8}
\end{align*}
$$

Thus by using (2.3) and (2.4), it follows from (2.7) that

$$
\begin{equation*}
U=\frac{x}{m} \sum_{\substack{p^{\alpha} \leq x^{1 / 4} \\(p, m)=1}} \frac{f_{1}\left(p^{\alpha}\right)}{p^{\alpha}}+O\left(\frac{x}{m} \sum_{p^{\alpha} \leq x^{1 / 4}} \frac{f_{1}\left(p^{\alpha}\right)}{p^{\alpha+1}}\right)=\frac{x}{m}\left(A_{1}+O(K)\right) . \tag{2.9}
\end{equation*}
$$

By (2.2) we have

$$
\begin{align*}
V & =\sum_{\substack{n \leq x \\
n \equiv h(\bmod m)}}\left(\sum_{p^{\alpha} \| n} f_{1}\left(p^{\alpha}\right)\right)^{2}=\sum_{\substack{n \leq x \\
n \equiv h(\bmod m)}} \sum_{p^{\alpha} \| n} \sum_{q^{\beta} \| n} f_{1}\left(p^{\alpha}\right) f_{1}\left(q^{\beta}\right) \\
& =\sum_{\substack{n \leq x \\
n \equiv h(\bmod m)}}\left(\sum_{p^{\alpha} \| n} f_{1}^{2}\left(p^{\alpha}\right)+\sum_{p^{\alpha} \| n} \sum_{\substack{\beta \\
q^{\beta} \| n}} f_{1}\left(p^{\alpha}\right) f_{1}\left(q^{\beta}\right)\right) \\
& =\sum_{\substack{p^{\alpha} \leq x^{1 / 4} \\
(, m)=1}} f_{1}^{2}\left(p^{\alpha}\right) \sum_{\substack{n \leq x, p^{\alpha} \| n \\
n \equiv h(\bmod m)}} 1+\sum_{\substack{p^{\alpha}, q^{\beta} \leq x^{1 / 4} \\
p \neq q,(p q, m)=1}} f_{1}\left(p^{\alpha}\right) f_{1}\left(q^{\beta}\right) \sum_{\substack{n \leq x, p^{\alpha}\left\|n, q^{\beta}\right\| n \\
n \equiv h(\bmod m)}} 1 \\
& =S_{1}+S_{2}, \text { say. } \tag{2.10}
\end{align*}
$$

By (2.3), the first term is

$$
\begin{equation*}
S_{1} \leq \sum_{p^{\alpha} \leq x^{1 / 4}} f_{1}^{2}\left(p^{\alpha}\right)\left(\frac{x}{m p^{\alpha}}+1\right)=O\left(\frac{x}{m} K A_{1}+K^{2} x^{1 / 4}\right) . \tag{2.11}
\end{equation*}
$$

The second term in (2.10) is

$$
\begin{equation*}
S_{2} \leq \sum_{p^{\alpha}, q^{\beta} \leq x^{1 / 4}} \sum_{1}\left(p^{\alpha}\right) f_{1}\left(q^{\beta}\right)\left(\frac{x}{m p^{\alpha} q^{\beta}}+1\right)=\frac{x}{m} A_{1}^{2}+O\left(K^{2} x^{1 / 2}\right) . \tag{2.12}
\end{equation*}
$$

It follows from (2.10), (2.11) and (2.12) that

$$
\begin{equation*}
V \leq \frac{x}{m}\left(A_{1}^{2}+O\left(K A_{1}\right)\right)+O\left(K^{2} x^{1 / 2}\right) . \tag{2.13}
\end{equation*}
$$

By $f(n) \geq 0$ and (2.3) clearly we have

$$
\begin{equation*}
A_{1}=\sum_{p^{\alpha} \leq x} \frac{f_{1}\left(p^{\alpha}\right)}{p^{\alpha}} \leq K \sum_{p^{\alpha} \leq x^{1 / 4}} 1 \leq K x^{1 / 4} \tag{2.14}
\end{equation*}
$$

It follows from (2.1), (2.9), (2.13), (2.14) that

$$
\begin{align*}
\sum_{\substack{n \leq x \\
n \equiv h(\bmod m)}}\left(f_{1}(n)-A_{1}\right)^{2} & =V-2 A_{1} U+A_{1}^{2}\left(\frac{x}{m}+O(1)\right) \\
& \ll \frac{x}{m} K A_{1}+K^{2} x^{1 / 2}+A_{1}^{2} \ll \frac{x}{m}\left(K A_{1}+K^{2}\right) . \tag{2.15}
\end{align*}
$$

Finally, by (2.5), (2.6) and the inequality

$$
(a+b)^{2} \leq 2\left(a^{2}+b^{2}\right)
$$

we have

$$
\begin{align*}
(f(n)-A)^{2} & =\left(\left(f_{1}(n)-A_{1}\right)+\left(f(n)-f_{1}(n)\right)+\left(A_{1}-A\right)\right)^{2} \\
& \leq 2\left(f_{1}(n)-A_{1}\right)^{2}+O\left(K^{2}\right) \tag{2.16}
\end{align*}
$$

(uniformly in n). It follows from (2.6), (2.15) and (2.16) that

$$
\begin{aligned}
\sum_{\substack{n \leq x \\
n \equiv h(\bmod m)}}(f(n)-A)^{2} & \leq 2 \sum_{\substack{n \leq x \\
n \equiv h(\bmod m)}}\left(f_{1}(n)-A_{1}\right)^{2}+O\left(K^{2} \sum_{\substack{n \leq x \\
n \equiv h(\bmod m)}} 1\right) \\
& =O\left(\frac{x}{m}\left(K A+K^{2}\right)\right)
\end{aligned}
$$

which completes the proof of Lemma 1.

Lemma 2. Let

$$
\begin{equation*}
\omega_{m}(n)=\mid\{p: p \text { prime }, p \nmid m, p \mid n\} \mid \tag{2.17}
\end{equation*}
$$

and

$$
\mathcal{S}(m, h, z, x)=\left\{n: n \leq x, n \equiv h(\bmod m),\left|\omega_{m}(n)-\log \log x\right|<z(\log \log x)^{1 / 2}\right\} .
$$

There exist absolute constants c_{4}, x_{0} such that if $x>x_{0}, m \in \mathbb{N}$,

$$
\begin{equation*}
m \leq x^{1 / 2} \tag{2.18}
\end{equation*}
$$

and $h \in \mathbb{Z}$, then

$$
\begin{equation*}
\left|\mathcal{S}\left(m, h, c_{4}, x\right)\right|>\frac{1}{2} \frac{x}{m} . \tag{2.19}
\end{equation*}
$$

Proof of Lemma 2: We apply Lemma 1 with $\omega_{m}(n)$ in place of $f(n)$. Note that the number K in Lemma 1 is 1 and A, by (2.18), satisfies

$$
A=\sum_{p \leq x}-\sum_{p \mid m} \frac{1}{p}=\log \log x+O(\log \log \log x)
$$

If c_{4} is chosen large enough in terms of the constant c_{3} in Lemma 1 , our lemma now follows from a routine calculation.

Write

$$
\begin{equation*}
D(x, m, h)=\sum_{\substack{n \leq x \\ n \equiv h(\bmod m)}} d(n) . \tag{2.20}
\end{equation*}
$$

Lemma 3. If $x \geq e^{4}, m \in \mathbb{N}$,

$$
\begin{equation*}
m \leq x^{1 / 2} \tag{2.21}
\end{equation*}
$$

$h \in \mathbb{Z}$ and $(h, m)=1$, then

$$
\begin{equation*}
D(x, m, h)<2 \frac{x \log x}{m} \tag{2.22}
\end{equation*}
$$

(Note that a similar, even sharper result is proved in [9], however, it is stated in a form slightly different from the one needed by us.)

Proof of Lemma 3: By (2.21) we have

$$
\begin{aligned}
D(x, m, h) & =\sum_{\substack{n \leq x \\
n \equiv h(\bmod m)}} \sum_{d \mid n} 1 \leq 2 \sum_{\substack{n \leq x \\
n \equiv h(\bmod m)}} \sum_{\substack{d \mid n \\
d \leq \sqrt{n}}} 1 \leq 2 \sum_{\substack{d \leq \sqrt{x} \\
(d, m)=1}} \sum_{\substack{n \leq x, d \mid n \\
n \equiv h(\bmod m)}} 1 \\
& \leq 2 \sum_{\substack{d \leq \sqrt{x} \\
(d, m)=1}}\left(\frac{x}{d m}+1\right) \leq 2 \frac{x}{m}(1+\log \sqrt{x})+2 \sqrt{x} \\
& \leq 2 \frac{x}{m}\left(2+\frac{1}{2} \log x\right)<2 \frac{x \log x}{m} .
\end{aligned}
$$

Lemma 4. There is a number x_{0} such that if $x>x_{0}, m \in \mathbb{N}$,

$$
\begin{equation*}
m \leq x^{1 / 2} \tag{2.23}
\end{equation*}
$$

and $h \in \mathbb{Z}$, then, writing

$$
\mathcal{F}=\mathcal{F}(m, h, x)=\left\{n: n \leq x, n \equiv h(\bmod m), \omega_{m}(n)>3 \log \log x\right\}
$$

(where $\omega_{m}(n)$ is defined by (2.17)), we have

$$
\begin{equation*}
|\mathcal{F}(m, h, x)|<\frac{x}{m \log x} \tag{2.24}
\end{equation*}
$$

Proof of Lemma 4: Write $(h, m)=g, h=g h_{1}, m=g m_{1}$. Then

$$
\mathcal{F}=\left\{g n_{1}: n_{1} \leq x / g, n_{1} \equiv h_{1}\left(\bmod m_{1}\right), \omega_{m}\left(n_{1}\right)>3 \log \log x\right\} .
$$

Clearly, for $g n_{1} \in \mathcal{F}$ we have

$$
\begin{equation*}
d\left(n_{1}\right) \geq 2^{\omega\left(n_{1}\right)} \geq 2^{\omega_{m}\left(n_{1}\right)}>2^{3 \log \log x}=(\log x)^{\log 8} \tag{2.25}
\end{equation*}
$$

We apply Lemma 3 with x / g in place of x, m_{1} in place of m, and h_{1} in place of h. From (2.23), we have $m_{1} \leq x^{1 / 2} / g$, so the inequality (2.21) is satisfied with our new parameters. Lemma 4 now follows from (2.25), the fact that $\log 8>2$, and a simple calculation.

3. Proofs of the theorems

Proof of Theorem 1: Let x be a large enough number, write

$$
\begin{equation*}
t_{x}=\left[\frac{1}{5}\left(\frac{\log x}{\log \log x}\right)^{1 / 2}\right] \text { and } u_{i}=t_{x}-i \text { for } i=0,1, \ldots, t_{x} \tag{3.1}
\end{equation*}
$$

so that

$$
\begin{equation*}
v_{x}:=\sum_{i=0}^{t_{x}} u_{i}=\left(\frac{1}{50}+o(1)\right) \frac{\log x}{\log \log x} \tag{3.2}
\end{equation*}
$$

(as $x \rightarrow+\infty$). Let \mathcal{P}_{0} denote the set of the first u_{0} primes greater than t_{x}, and if \mathcal{P}_{j-1} has been defined for some $1 \leq j \leq t_{x}$, then let \mathcal{P}_{j} denote the set of the first u_{j} primes greater than the greatest prime in \mathcal{P}_{j-1}. Let $P=\prod_{j=0}^{t_{x}} \prod_{p \in \mathcal{P}_{j}} p$ so that, by (3.2), we have

$$
\begin{equation*}
\omega(P)=\sum_{j=0}^{t_{x}}\left|\mathcal{P}_{j}\right|=v_{x}=\left(\frac{1}{50}+o(1)\right) \frac{\log x}{\log \log x} . \tag{3.3}
\end{equation*}
$$

By the prime number theorem, it follows from (3.1) and (3.3) that

$$
\begin{equation*}
P=x^{(1 / 50)+o(1)} . \tag{3.4}
\end{equation*}
$$

Let r denote the least positive integer with

$$
r+i \equiv 0\left(\bmod \prod_{p \in \mathcal{P}_{i}} p\right) \text { for } i=0,1, \ldots, t_{x}
$$

Clearly $p \mid(P, r+i)$ if and only if $p \in \mathcal{P}_{i}$ whence

$$
\begin{equation*}
\omega((r+i, P))=u_{i} \text { for } i=0,1, \ldots, t_{x} \tag{3.5}
\end{equation*}
$$

By (3.4), (2.18) in Lemma 2 holds with P in place of m. Thus using Lemma 2 with $m=P$ we obtain

$$
\begin{aligned}
& \sum_{\substack{n \leq x \\
n \equiv r(\bmod }} \sum_{\substack{0 \leq i \leq t_{x} \\
n+i \in \mathcal{S}\left(P, r+i, c_{4}, x\right)}} 1=\sum_{0 \leq i \leq t_{x}} \sum_{n+i \in \mathcal{S}\left(P, r+i, c_{4}, x\right)} 1 \\
& \quad=\sum_{0 \leq i \leq t_{x}}\left|\mathcal{S}\left(P, r+i, c_{4}, x\right)\right|>\sum_{0 \leq i \leq t_{x}} \frac{1}{2} \frac{x}{P}>\frac{1}{2} \frac{x}{P} t_{x} .
\end{aligned}
$$

The summation $\sum_{n \leq x, n \equiv r(\bmod P)}$ has at most $\frac{x}{P}+1<2 \frac{x}{P}$ terms, thus it follows that there is an integer n with

$$
\sum_{\substack{0 \leq i \leq t_{x} \\ n+i \in \mathcal{S}\left(P, r+i, c_{4}, x\right)}} 1>\left(\frac{1}{2} \frac{x}{P} t_{x}\right)\left(2 \frac{x}{P}\right)^{-1}=\frac{1}{4} t_{x}
$$

Let \mathcal{W} denote the set of the integers i with $0 \leq i \leq t_{x}, n+i \in \mathcal{S}\left(P, r+i, c_{4}, x\right)$ so that

$$
|\mathcal{W}|>\frac{1}{4} t_{x}
$$

Then for all $i \in \mathcal{W}$ we have

$$
\begin{aligned}
\left|h(n+i)-\left(n+t_{x}+\log \log x\right)\right| & =\left|i+\omega(n+i)-t_{x}-\log \log x\right| \\
& =\left|i+\omega((n+i, P))+\omega_{P}(n+i)-t_{x}-\log \log x\right| \\
& =\left|i+u_{i}+\omega_{P}(n+i)-t_{x}-\log \log x\right| \\
& =\left|\omega_{P}(n+i)-\log \log x\right|<c_{4}(\log \log x)^{1 / 2} .
\end{aligned}
$$

Thus for each of the $|\mathcal{W}|$ numbers $i \in \mathcal{W}$, the value of $h(n+i)$ belongs to the interval

$$
\left(n+t_{x}+\log \log x-c_{4}(\log \log x)^{1 / 2}, n+t_{x}+\log \log x+c_{4}(\log \log x)^{1 / 2}\right)
$$

which contains at most $2 c_{4}(\log \log x)^{1 / 2}+1$ integers. Thus by (3.1), for $x>x_{0}$ at least one of these integers, say k, has at least

$$
\frac{|\mathcal{W}|}{2 c_{4}(\log \log x)^{1 / 2}+1}>\frac{t_{x} / 4}{3 c_{4}(\log \log x)^{1 / 2}}>c_{5}(\log x)^{1 / 2}(\log \log x)^{-1}
$$

representations in the form $h(n+i)$ (with $i \in \mathcal{W}$) so that

$$
g(k)>c_{5}(\log x)^{1 / 2}(\log \log x)^{-1}
$$

This completes the proof of Theorem 1.
Proof of Theorem 2: We have to prove that for all $x>x_{0}$ there are $m, n \in \mathbb{N}$ such that $x<m<n<x+\exp \left(c_{2}(\log x)(\log \log x)^{-1 / 2}\right)$ and $m+\omega(m)=n+\omega(n)$. The proof of this is similar to the proof of Theorem 1 . This time we choose $t_{x}=c_{6}(\log \log x)^{1 / 2}$ where c_{6} is a large positive constant. We also need a short interval version of Lemma 1 (short: of the type $\left(x, x+\exp \left(c_{2}(\log x)(\log \log x)^{-1 / 2}\right)\right)$. Apart from these changes, the proof is nearly the same, thus we leave the details to the reader.

Proof of Theorem 3: Let x be a large enough number, write

$$
\begin{aligned}
t_{x} & =\left[\frac{1}{10}(\log x)^{1 / 2}(\log \log x)^{-1}\right] \\
u_{i} & =i[10 \log \log x] \text { for } i=1,2, \ldots, t_{x}
\end{aligned}
$$

and

$$
v_{x}=\sum_{i=1}^{t_{x}} u_{i}
$$

so that

$$
\begin{equation*}
v_{x}=\left(\frac{1}{20}+o(1)\right) \frac{\log x}{\log \log x} \tag{3.6}
\end{equation*}
$$

(as $x \rightarrow+\infty$). Let \mathcal{P}_{1} denote the first u_{1} primes greater than t_{x}, and if \mathcal{P}_{i-1} has been defined, then let \mathcal{P}_{i} denote the set of the first u_{i} primes greater than the greatest prime in \mathcal{P}_{i-1}. Let P_{i} denote the product of the primes in \mathcal{P}_{i} and let $P=P_{1} P_{2} \cdots P_{t_{x}}$, so that, by (3.6), we have

$$
\begin{equation*}
\omega(P)=v_{x}=\left(\frac{1}{20}+o(1)\right) \frac{\log x}{\log \log x} . \tag{3.7}
\end{equation*}
$$

By the prime number theorem, it follows that

$$
\begin{equation*}
P=x^{(1 / 20)+o(1)} \tag{3.8}
\end{equation*}
$$

Let r denote the least positive integer with

$$
r+i \equiv 0\left(\bmod P_{i}\right) \text { for } i=1,2, \ldots, t_{x}
$$

Clearly

$$
\begin{equation*}
\omega((r+i, P))=\omega\left(P_{i}\right)=u_{i} \text { for } i=1,2, \ldots, t_{x} . \tag{3.9}
\end{equation*}
$$

By (3.8), (2.23) in Lemma 4 holds with P in place of m. Thus using Lemma 4 with $m=P$ we obtain

$$
\sum_{\substack{n \leq x-t_{x} \\ n \equiv r(\bmod P)}} \sum_{\substack{1 \leq i \leq t_{x} \\ n+i \in \mathcal{F}(P, r+i, x)}} 1 \leq \sum_{i=1}^{t_{x}} \sum_{n+i \in \mathcal{F}(P, r+i, x)} 1<\sum_{i=1}^{t_{x}} \frac{x}{P \log x}=\frac{x t_{x}}{P \log x}<\frac{x}{3 P}
$$

for x large enough. Here the outer sum has at least $\frac{x}{P}-2>\frac{x}{2 P}$ terms, thus at least one of the inner sums is <1. Since these sums are non-negative integers, it follows that at least one of them is 0 , i.e., there is an integer n such that

$$
\begin{equation*}
n+t_{x} \leq x \tag{3.10}
\end{equation*}
$$

$n \equiv r(\bmod P)$ and $n+i \notin \mathcal{F}(P, r+i, x)$ for $1 \leq i \leq t_{x}$ so that

$$
\begin{equation*}
\omega_{P}(n+i) \leq 3 \log \log x \text { for } i=1,2, \ldots, t_{x} \tag{3.11}
\end{equation*}
$$

By (3.9), for this n we have

$$
\begin{aligned}
\omega(n+i) & =\omega((n+i, P))+\omega_{P}(n+i)=\omega((r+i, P))+\omega_{P}(n+i) \\
& =u_{i}+\omega_{P}(n+i)=i[10 \log \log x]+\omega_{P}(n+i)
\end{aligned}
$$

whence, by (3.11),

$$
i[10 \log \log x] \leq \omega(n+i) \leq i[10 \log \log x]+3 \log \log x \text { for } i=1,2, \ldots, t_{x}
$$

Clearly, this implies (1.4) with t_{x} in place of k. Also (1.2) and (1.3) also hold by (3.10) and the definition of t_{x}. This completes the proof of Theorem 3.

Proof of Theorem 4: We have to show that if $x>x_{0}(\epsilon), n, k \in \mathbb{N}$,

$$
\begin{equation*}
n+k \leq x \tag{3.12}
\end{equation*}
$$

and

$$
\begin{equation*}
\Omega(n+i) \neq \Omega(n+j) \text { for } 1 \leq i<j \leq k, \tag{3.13}
\end{equation*}
$$

then

$$
\begin{equation*}
k<(1+\epsilon) \frac{\log x}{\log \log x} \tag{3.14}
\end{equation*}
$$

We may assume that k is large since otherwise there is nothing to be proved. Write $t=[k / \log k]$, and let p_{i} denote the i th prime. For each $i \in\{1,2, \ldots, t\}$ remove that number from $\{n+1, n+2, \ldots, n+k\}$ which is divisible by the highest power of p_{i} (if there are several numbers divisible by the highest power, then remove the smallest of them). Denote the remaining set by \mathcal{Y} so that

$$
\begin{equation*}
|\mathcal{Y}|=k-t=(1+o(1)) k \tag{3.15}
\end{equation*}
$$

Each positive integer y may be written in the form

$$
y=\prod_{i=1}^{\infty} p_{i}^{\alpha(i, y)}
$$

If $y \in \mathcal{Y}$ and $i \leq t$, then we have $p_{i}^{\alpha(i, y)} \leq k$, for there is at most one number from $\{n+1, n+2, \ldots, n+k\}$ divisible by a power of p_{i} bigger than k, and if this number exists, it is not in \mathcal{Y}. Note too that

$$
\prod_{i>t} p_{i}^{\alpha(i, y)} \leq y \leq n+k \leq x,
$$

so that

$$
\sum_{i>t} \alpha(i, y) \leq \frac{\log x}{\log p_{t}}
$$

It follows that if $y \in \mathcal{Y}$, then

$$
\begin{aligned}
\Omega(y) & =\sum_{i=1}^{\infty} \alpha(i, y)=\sum_{i=1}^{t} \alpha(i, y)+\sum_{i>t} \alpha(i, y) \leq \sum_{i=1}^{t} \frac{\log k}{\log p_{i}}+\frac{\log x}{\log p_{t}} \\
& =(1+o(1)) \frac{k}{\log k}+(1+o(1)) \frac{\log x}{\log k} .
\end{aligned}
$$

Since all the values of $\Omega(y)$ are distinct for $y \in \mathcal{Y}$, we have by (3.15) that

$$
k \leq(1+o(1)) \frac{k}{\log k}+(1+o(1)) \frac{\log x}{\log k} .
$$

This implies (3.14), and completes the proof of Theorem 4.
Proof of Theorem 5: First we will prove (1.5). We have to show that if

$$
\begin{equation*}
n+k \leq x \tag{3.16}
\end{equation*}
$$

and

$$
\begin{equation*}
\omega(n+1)=\omega(n+2)=\cdots=\omega(n+k) \tag{3.17}
\end{equation*}
$$

then

$$
\begin{equation*}
k<\exp \left(\left(\frac{1}{\sqrt{2}}+\epsilon\right)(\log x \log \log x)^{1 / 2}\right) \tag{3.18}
\end{equation*}
$$

We may assume that k is large since otherwise there is nothing to be proved. Let y denote the greatest positive integer with

$$
P:=\prod_{p \leq y} p \leq k
$$

so that, by the prime number theorem,

$$
y=(1+o(1)) \log k
$$

(as $k \rightarrow+\infty$) and

$$
\begin{equation*}
\pi(y)=(1+o(1)) \frac{\log k}{\log \log k} \tag{3.19}
\end{equation*}
$$

Clearly there is an m with $n+1 \leq m \leq n+k$ and $P \mid m$. Then by (3.19) we have

$$
\begin{equation*}
\omega(m) \geq \omega(P)=\pi(y)=(1+o(1)) \frac{\log k}{\log \log k} . \tag{3.20}
\end{equation*}
$$

It follows from (3.17) and (3.20) that

$$
\begin{equation*}
\sum_{i=1}^{k} \omega(n+i)=k \omega(m) \geq(1+o(1)) \frac{k \log k}{\log \log k} \tag{3.21}
\end{equation*}
$$

On the other hand, we have

$$
\begin{equation*}
\sum_{i=1}^{k} \omega(n+i)=\sum_{i=1}^{k} \sum_{p \mid n+i} 1=\sum_{p \leq k} \sum_{\substack{1 \leq i \leq k \\ p \mid n+i}} 1+\sum_{p>k} \sum_{\substack{1 \leq i \leq k \\ p \mid n+i}} 1 . \tag{3.22}
\end{equation*}
$$

Here the first term is

$$
\begin{equation*}
\sum_{\substack{p \leq k}} \sum_{\substack{1 \leq i \leq k \\ p \mid n+i}} 1 \leq \sum_{p \leq k}\left(\frac{k}{p}+1\right)=k \sum_{p \leq k} \frac{1}{p}+\pi(k)=(1+o(1)) k \log \log k . \tag{3.23}
\end{equation*}
$$

It follows from (3.21), (3.22) and (3.23) that

$$
\sum_{p>k} \sum_{\substack{1 \leq i \leq k \\ p \backslash n+i}} 1 \geq(1+o(1)) \frac{k \log k}{\log \log k}-(1+o(1)) k \log \log k=(1+o(1)) \frac{k \log k}{\log \log k}
$$

For every $p>k$ the innermost sum is 0 or 1 . Thus

$$
\left|\left\{p: p>k, p \mid \prod_{i=1}^{k}(n+i)\right\}\right| \geq(1+o(1)) \frac{k \log k}{\log \log k} .
$$

It follows that there is an integer t and primes $p_{i_{1}}, p_{i_{2}}, \ldots, p_{i_{t}}$ with

$$
\begin{align*}
& t=(1+o(1)) \frac{k \log k}{\log \log k} \tag{3.24}\\
& k<p_{i_{1}}<p_{i_{2}}<\cdots<p_{i_{t}} \tag{3.25}
\end{align*}
$$

and

$$
\begin{equation*}
p_{i_{1}} p_{i_{2}} \ldots p_{i_{t}} \mid \prod_{i=1}^{k}(n+i) . \tag{3.26}
\end{equation*}
$$

(Here p_{i} denotes the i th prime.) Define u by

$$
\begin{equation*}
p_{u} \leq k<p_{u+1} . \tag{3.27}
\end{equation*}
$$

By the prime number theorem, it follows from (3.16), (3.24), (3.25), (3.26) and (3.27) that

$$
\begin{aligned}
x^{k} & \geq \prod_{i=1}^{k}(n+i) \geq p_{i_{1}} p_{i_{2}} \cdots p_{i_{t}} \geq p_{u+1} p_{u+2} \cdots p_{u+t} \\
& =\exp \left((1+o(1)) p_{u+t}\right)=\exp \left((1+o(1)) \frac{k \log ^{2} k}{\log \log k}\right)
\end{aligned}
$$

whence

$$
\log x \geq(1+o(1)) \frac{\log ^{2} k}{\log \log k}
$$

This implies (3.18) which completes the proof of (1.5).
In order to prove (1.6), observe that assuming

$$
\Omega(n+1)=\Omega(n+2)=\cdots=\Omega(n+k)
$$

and writing $\ell=\left[\frac{\log k}{\log 2}\right]$, there is an integer m with $n+1 \leq m \leq n+k$ and $2^{\ell} \mid m$ so that

$$
\begin{equation*}
\Omega(n+1)=\cdots=\Omega(n+k) \geq \ell . \tag{3.28}
\end{equation*}
$$

For every $p \leq k$, remove the (least) number in $\{n+1, n+2, \ldots, n+k\}$ divisible by the highest power of p, and denote the remaining set by \mathcal{Y} so that

$$
|\mathcal{Y}|=(1+o(1)) k
$$

and

$$
\begin{equation*}
\sum_{n+i \in \mathcal{Y}} \Omega(n+i) \geq \ell|\mathcal{Y}|=\left(\frac{1}{\log 2}+o(1)\right) k \log k \tag{3.29}
\end{equation*}
$$

On the other hand, we have

$$
\begin{equation*}
\sum_{n+i \in \mathcal{Y}} \Omega(n+i)=\sum_{p \leq k} \sum_{\substack{n+i \in \mathcal{Y} \\ p^{\alpha} \| n+i}} \alpha+\sum_{p>k} \sum_{\substack{n+i \in \mathcal{Y} \\ p^{\alpha} \| n+i}} \alpha . \tag{3.30}
\end{equation*}
$$

By the definition of \mathcal{Y}, for every prime $p \leq k$ and any positive integer α, there are at most $\left[k / p^{\alpha}\right]$ members of \mathcal{Y} divisible by p^{α}. Thus, the first term on the right of (3.30) is

$$
\leq \sum_{p \leq k} \sum_{\alpha=1}^{\infty}\left[\frac{k}{p^{\alpha}}\right]<k \sum_{p \leq k} \sum_{\alpha=1}^{\infty} \frac{1}{p^{\alpha}}=\sum_{p \leq k} \frac{k}{p-1}=(1+o(1)) k \log \log k
$$

Thus we obtain from (3.29) and (3.30) that

$$
\sum_{p>k} \sum_{\substack{n+i \in \mathcal{Y} \\ p^{\alpha} \| n+i}} \alpha \geq\left(\frac{1}{\log 2}+o(1)\right) k \log k .
$$

The rest of the proof is similar to the proof of (1.5); we leave the details to the reader.

Note

This paper was written while A. Sárközy was visiting the University of Georgia.

References

1. K. Alladi, "A study of the moments of additive functions using Laplace transforms and sieve methods," Number Theory Proceedings (K. Alladi, ed.), Ootacamund, India, 1984, Lecture Notes in Mathematics, Springer Verlag, 1985, vol. 1122, 1-37.
2. P. Erdős and L. Mirsky, "The distribution of values of the divisor function d(n)," Proc. London Math Soc. 3(2) (1952), 257-271.
3. P. Erdős, C. Pomerance, and A. Sárközy, "On locally repeated values of certain arithmetic functions, I," J. Number Theory 21 (1985), 319-332.
4. P. Erdős, C. Pomerance, and A Sárközy, "On locally repeated values of certain arithmetic functions, II" Acta Math. Hungar. 49 (1987), 251-259.
5. P. Erdős, C. Pomerance, and A Sárközy, "On locally repeated values of certain arithmetic functions, III" Proc. Amer. Math. Soc. 101 (1987), 1-7.
6. P. Erdős and A. Sárközy, "On isolated, respectively consecutive large values of arithmetic functions," Acta Arithmetica 66 (1994), 269-295.
7. D.R. Heath-Brown, "The divisor function at consecutive integers," Mathematika 31 (1984), 141-149.
8. J. Kubilius, "Probablistic methods in the theory of numbers," Translation of Math. Monographs, AMS, Providence, Rhode Island 11 (1964).
9. Yu.V. Linnik and A.I. Vinogradov, "Estimate of the number of divisors in a short segment of an arithmetic progression," Uspekhi Math. Nauk (N.S.) 12(4) (1957), 277-280.

[^0]: *Paul Erdős passed away on September 20, 1996.
 ${ }^{\dagger}$ The research of the second author is supported partially by a National Science Foundation grant. The research of the third author is partially supported by Hungarian National Foundation for Scientific Research, grant No. T017433.

