THE RAMANUJAN JOURNAL 1, 227-241 (1997)
(© 1997 Kluwer Academic Publishers. Manufactured in The Netherlands.

On Locally Repeated Values of Certain
Arithmetic Functions, IV

PAUL ERDOS*
Mathematical Institute of the Hungarian Academy of Sciencedt&®da u. 13-15, H-1364 Budapest, Hungary

CARL POMERANCE carl@ada.math.uga.edu
Department of Mathematics, The University of Georgia, Athens, Georgia 30602

ANDRAS SARKOZY' sarkozy@cs.elte.hu
Mathematical Institute of the Hungarian Academy of Scienced&®da u. 13-15, H-1364 Budapest, Hungary

Received March 15, 1996; Accepted June 5, 1996

Abstract. Letw(n) denote the number of prime divisorsroénd let2 (n) denote the number of prime power di-
visors ofn. We obtain upper bounds for the lengths of the longest intervals belarerew (n), respectively2 (n),
remains constant. Similarly we consider the corresponding problems where the nurthersspectively2 (n),
arerequired to be all different on an interval. We show that the number of solgiion® the equatiom + w(m) =

n is an unbounded function af, thus answering a question posed in an earlier paper in this series. A principal
tool is a Tuein-Kubilius type inequality for additive functions on arithmetic progressions with a large modulus.

Key words: Turan-Kubilius inequality, additive functions, prime divisors

1991 Mathematics Subject Classification: Primary—11N64; Secondary—11A25

1. Introduction

Let w(n) denote the number of distinct prime factorsadind let2 (n) denote the number
of prime factors oh counted with multiplicity.

Let g(n) denote the number of integemswith m + w(m) = n. In [3] we proved that
g(n) > 2infinitely often, and in [3], [4] and [5] we extended this result in various directions.
However, as we wrote at the end of [5]: “Probalglgn) is unbounded, but this ... seems
difficult. The best we can do in this direction is thgih) > 2 infinitely often—this is of
course the main result of the first paper in this series.”

In this paper we will first prove that

g(n) > (logn)*/?(loglogn) ~*
infinitely often. More precisely we show the following result.
*Paul Erdbs passed away on September 20, 1996.
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Theorem 1. There are absolute constants s 0 and x such that for all x> Xxg there is
an integer n with n< x and

g(n) > c;(logx)?(loglogx) 2.

For any arithmetic functiorf (n) andx > 1, let F(f, x) denote the greatest positive
integerF such that there is a positive integewith the properties that + F < x and the
valuesf(n+ 1), f(n+ 2),..., f(n+ F) are all different. We can prove the following
result on the localization of the repeated valueb@f) := n + w(n).

Theorem 2. There are absolute constantsa@nd x such that for all x> xg we have
F(h, x) < exp(ca(logx)(log logx)~Y?). (1.1)
In the opposite direction we can show that
F(h, x) > (logx)Y?(loglogx)~1.

Indeed, this follows trivially from the following theorem.

Theorem 3. For x sufficiently large there are positive integers n and k such that

n+k<x, 1.2)
k > %(Iogx)l/z(log logx)~* (1.3)

and
oM+1) <oM+2) < <oh+Kk). (1.4)

By Theorem 3 we have
F(w, X) > (logx)¥2(loglogx)~1.
It can be shown by a similar argument that
F(Q,x) > (logx)Y2(loglogx) 2.
Trivially, for eache > 0,

99X for x > xo(e))
>
log logx Xole

F(w,X) < (1+¢€)
and
log x
F(Q,x) < log2 (forall x > 1),

since for anyn < x, w(n) < (1 + ¢)logx/loglogx and 2(n) < logx/log2. We

conjecture that botlr (w, X) and F(£2, X) areo(lo'gﬁ;;x). However, we do not have any
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reasonable upper bound fBr(w, X) and, indeed, we have not been able to prove even that
there is some fixed > 0 with

log x

Fw,X) < (1—e)|og oox

for all sufficiently largex.
On the other hand, it follows from Theorem 6 in [6] that

F (22, x) = o(logx).
We will improve on this by proving
Theorem 4. For all ¢ > Othere is a numberx= Xq(¢) such that for x> xg we have

log x
loglogx’

F(2,X) < (14+¢)

For any arithmetic functiorf (n) andx > 1, let G(f, x) denote the greatest positive
integerG such that there is a positive integemith the properties that + G < x and
fm+1) =fn+2) =-.-- = f(n+ G). Erdds and Mirsky [2] proposed the study of
the functionG(d, x), and later Heath-Brown [7] proved thdtn) = d(n + 1) (whered
is the divisor function) and2(n) = Q(n + 1) infinitely often, but no non-trivial upper
bound has been given f@(d, x) andG(£2, x). On the other hand, it is not known whether
o (nN) = w(n + 1) holds infinitely often. We will prove

Theorem 5. For all € > Othere is a numberx= Xg(¢) such that for x> Xg(¢) we have

G(w, X) < exp((1/+/2 + €)(logx log logx)+/?) (1.5)
and
G(2, X) < exp((y/log 2+ €)(logx)¥?). (1.6)

2. Lemmas

In this section we shall prove several lemmas needed in the proofs of the theorems. First
we shall prove a Tum-Kubilius type inequality on arithmetic progressions:

Lemmal. Assumethatx 1, me N,
m < x¥2, (2.1)
h € Z, and f(n) is a non-negative additive arithmetic function such that
f(p*) =0 forp|m, « e N. (2.2)
Let

K=maxf(p"):p*<x}, A=)

p=x

f(p)
—. 2.3
o (2.3)
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Then we have

2 X 2
E (f(n) — A < 3= (KA+ K9
n<x m
n=h(mod m)

(where g is an absolute constant independent ofrx h and f).

Note that results of similar nature appear in [1] and [8], however, neither of these results
is stated in the form needed by us. In particular, in both cases the moduhust be much
smaller thanin (2.1) (it must be fixed or it may grow at most as fast as a power of lay) log
We are able to cover the case> x° at the expense of the appearance of the quaktiiy
the upper bound.

We might have applied Lemma 1 in [3], but we prefer to give the proof of the more
general result above for possible future applications.

The assumption (2.1) can be replacedy x'~? for any fixeds, 0 < § < 1, however,
in this case the value of the constagin the last inequality depends én

We remark that whetfi is completely additive we may change the definitiotkah (2.3)
to be the maximum of (p) for p < x, at the expense of enlarging the absolute constant
in the last inequality.

Note moreover that one can get rid of the assumpfigm > 0 by writing a general real
valued additive arithmetic function as the sum of a non-negative and a non-positive additive
function, and similarly, the complex case can be handled by separating real and imaginary
parts. (Of course, in these cask@®) in (2.3) must be replaced withf (p¥)|.)

Proof of Lemma 1: Define the additive arithmetic functiofi(n) by

" f(pY) for p* < x4,
fi(p*) = {O(FJ ) for Bzx ~ x4 (2.4)

Clearly, forn < x there are at most 3 different prime powgaswith p* > x4, p* || n.
By (2.3), it follows that

1) — fuml= Y f(p) <3K foralln=<x. (2.5)

pe > x4
pelin

Moreover, writing
f o
AL = Z 1(5 )’
p=x P
clearly we have

f f(p®
A-mls ¥ IR > P

x4 <p<x

K Y l+|< > %:O(K). (2.6)

x4 <p<x pe<x¥/4 a>1

pr<x¥4 a>1

IA
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(Here and throughout the proof of Lemma 1 the constants implied i®the.) terms are
independent of (n) and the parametess m, h.)
Write

U= Y  fm

n<x
n=h(mod m)

and

V=Y fin).

n<x
n=h(mod m)

By (2.2) we have

U= > Y famE9H= > f(epH Y L 2.7)

n<x p?n o <x1/4 n=x,p“|n
n=h(mod m) (pp_Fn)zl n=h(mod m)

By (p,m) = 1, p* < x¥4and (2.1), the innermost sum is

1= > 1= > 1- > 1

n=x, p“[In k=x/p*,(k, p=1 k=x/p* k=x/p”, p|k
n=h(mod m) p*k=h(mod m) p*k=h(mod m) p*k=h(mod m)
X X
= +0 . (2.8)
m Fpt m p¥+1

Thus by using (2.3) and (2.4), it follows from (2.7) that

1 (p f(p
u=X ¥ Lﬁ”w(i 3 1§ﬁl)>=5<A1+O<K>). 2.9)
pu§X1/4 p p m
(p,m=1

p* §X1/4

By (2.2) we have

2
v= Y (Z f1<p“>) = Y D) ftp)fuah
n<x p(In n=x plIngf|n
n=h(mod m) n=h(mod m)
= > DD+ ) fap) fauah)
neh(modm \ * 1" P H;#%ﬁ IIn
= Y P Y 1+ Y ) fae9Hhe) ) 1
pe <x¥/4 n=x,p*[n p*.qf <x¥/4 n<x, p*[n.g#|In
(p,m)=1 n=h(mod m) p#£q,(pg,m)=1 n=h(mod m)

S + S say. (2.10)
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By (2.3), the first term is

2 e[ X _ X 2,1/4
S< Y fl(p)<mpa-|-1>_0(mKA1—|—Kx )

p <xl/4

The second term in (2.10) is

X X
SEDDD IR f1<qﬂ)<mp*qﬁ * 1) = — A2+ O(K*XM),
pe,qf <x/4

It follows from (2.10), (2.11) and (2.12) that
V = 2 (A2 + O(KAD) + O(K3X2),

By f(n) > 0 and (2.3) clearly we have

A1=Zm<K Z 1< KxY4,

o
p*<x p p* SX1/4

It follows from (2.1), (2.9), (2.13), (2.14) that

Y (W =AY? =V -2AU + Ai(% + o<1>>
n=h(mod m

< KA KEVZ 4 A < D (KA KD),
Finally, by (2.5), (2.6) and the inequality
(a+b)? < 2@+ b
we have

(f(n) — A? = ((fr(n) — A + (F(n) — F1(M) + (AL — A))?
< 2(f1(n) — Ap? + O(K?)

(uniformly in n). It follows from (2.6), (2.15) and (2.16) that
Yoootm-Ar<2 Y (hm - A)?+0|K?

n<x n<x n<x
n=h(mod m) n=h(mod m) n=h(mod m)

_of* 2
— o(m(KA+ K ))

which completes the proof of Lemma 1.

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)
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Lemma 2. Let
om(M = [{p: p prime, pfm, p|n}| (2.17)
and
S(m,h,z x) ={n:n<x, n=h (modm), |wm(n) —loglogx| < z(loglogx)*/?}.
There exist absolute constantg &g such that if x> Xg, m € N,
m < x¥? (2.18)
and he Z, then

1
|S(m, h, ¢4, X)| > E%. (2.19)

Proof of Lemma 2: We apply Lemma 1 withv,(n) in place of f (n). Note that the
numberK in Lemma 1 is 1 and\, by (2.18), satisfies

A=) - 1_ log logx + O(log log logx).

If c4 is chosen large enough in terms of the constait Lemma 1, our lemma now follows
from a routine calculation.
Write

Dx,mhy= Y dmn. (2.20)

n<x
n=h(mod m) O

Lemma3. Ifx >e* meN,
m < x%?, (2.21)
h e Zand(h,m) = 1, then

I
D(x, m, h) < 2X ng.

(2.22)

(Note that a similar, even sharper result is proved in [9], however, it is stated in a form
slightly different from the one needed by us.)

Proof of Lemma 3: By (2.21) we have

Dx.mh = > >Yi<2 > Zl<22 >oo1

n<x din n<x d n<x,d|n
n=h(mod m) n=h(mod m) d<f « <m«)ﬁl n=h(mod m)
<2 ) (— +1) < 2X (14 10g V%) + 20X
d</X m
(d,m=1

1 I
< 2£<2+—Iogx> <2X ng. O
m 2 m
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Lemma 4. There is a numbergsuch that if x> Xg, m € N,
m < x/? (2.23)
and he Z, then writing
F=Fmh,x)={n:n<Xx, n=h(modm), wn(n) > 3loglogx}
(wherewm(n) is defined by2.17)), we have

|F(m, h,x)| < miogx’ (2.24)
Proof of Lemma 4: Write (h, m) =g, h = gh;, m=gm. Then
F ={gn;: n; < x/g, ny = hy(modmy), wn(ny) > 3loglogx}.
Clearly, forgn; € F we have
d(ny) > 29 > gomhy) - 3loglogx _ (jgg x)1098, (2.25)

We apply Lemma 3 wittx/g in place ofx, m; in place ofm, andh; in place ofh. From
(2.23), we haven; < x/?/g, so the inequality (2.21) is satisfied with our new parameters.
Lemma 4 now follows from (2.25), the fact that log-82, and a simple calculation. O

3. Proofs of the theorems

Proof of Theorem 1: Letx be a large enough number, write

1/ 1 vz
to= | = 29X andu; =ty —ifori =0,1,..., 1, @1
5\ loglogx
so that
log x

(asx — 400). LetPy denote the set of the firsh primes greater thaty, and if ?;_; has
been defined for some4 j < ty, then Ie‘L’PJ denote the set of the first primes greater
than the greatest prime #j_;. Let P = ]_[J OHpeP p so that, by (3.2), we have

|
w(P) = Z|P,|—vx=< + ())m:ﬁ)’éx. 3.3)

By the prime number theorem, it follows from (3.1) and (3.3) that

P — x(1/50+0(1) (3.4)
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Letr denote the least positive integer with
r+i zo(mod 1_[ p) fori =0,1,...,1t.
peP;

Clearly p|(P,r +1) ifand only if p € P; whence
w(r+i,P))=ufori =0,1,..., 1. (3.5)

By (3.4), (2.18) in Lemma 2 holds witR in place ofm. Thus using Lemma 2 witm = P
we obtain

2, 2 1= > 1

n=x 0<i <ty 0<i <ty N+ieS(P,r+i,cs,X)
n=r(mod P) n+ieS(P,r+i,cs,x)

: Ix 1x
= Y ISP +ic 0> Y S5 Sok

0<i <ty 0<i <ty

The summationy ", _, _; mogp) NS at mosg + 1 < 25 terms, thus it follows that there is

an integen with
1x x\1 1

0<i <ty

n+i €S(P,r+i,c4,X)

Let W denote the set of the integaraith 0 <i <t;,n+1i € S(P,r +1, ¢4, X) SO that
1

Then for alli € W we have

lh(n+i) — (n+tx +loglogx)| = |i + w(n+1i) — tx — loglogXx|
=i +o((n+1i, P)) + wp(nN+i) —tx —loglogx|
=i +U + wp(n+i)—ty —loglogx|
= |wp(n+1i) — loglogx| < cs(loglogx)*/2.
Thus for each of th@V| numbers € W, the value oh(n + i) belongs to the interval

(N + ty + loglogx — cs(loglogx)¥2, n + t, + loglogx + c4(log logx)Y/?)

which contains at mostc2(log logx)¥? + 1 integers. Thus by (3.1), for > xg at least
one of these integers, syhas at least

IW| - ty/4
2c4(loglogx)/2 +1 = 3cy(loglogx)L/2

> cs(logx)Y?(loglogx) !
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representations in the forlmn + i) (with i € W) so that
g(k) > cs(logx)¥2(loglogx) L.
This completes the proof of Theorem 1. O

Proof of Theorem 2: We have to prove that for al > xg there aran, n € N such that

X < m < n < x4+ exp(ca(logx) (log logx)~%?) andm + w (M) = n + w(n). The proof of

this is similar to the proof of Theorem 1. This time we chotse: cs(log logx)¥/? where

Cs is a large positive constant. We also need a short interval version of Lemma 1 (short:
of the type(x, x + exp(cz(log x) (log logx)~%/?)). Apart from these changes, the proof is
nearly the same, thus we leave the details to the reader. O

Proof of Theorem 3: Let x be a large enough number, write
t = | =(0g)"2(oglogx) |,
10

ui = i[10loglogx]fori =1,2,..., 1

and
t
Vx = Z U|
i=1
so that
1 log x
=(= 1 .
o (20 ol )) log logx (3.6)

(asx — +00). Let P; denote the firsti; primes greater thaty, and if 7;_; has been
defined, then leP; denote the set of the firsk primes greater than the greatest prime in
Pi_1. Let B denote the product of the primesh and letP = PP, --- P, so that, by
(3.6), we have

1 log x
P)=wvw=[=— 1 . 3.7
0(P) = v = (35400 ) o @7
By the prime number theorem, it follows that
P — x(1/20+0(1) (3.8)

Letr denote the least positive integer with
r+i=0(modP) fori =1,2,... 1.
Clearly

o((r+i,P)=w(P)=ufori=12 ..., 1. 3.9
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By (3.8), (2.23) in Lemma 4 holds witP in place ofm. Thus using Lemma 4 with
m = P we obtain

tx tx

X Xty X
Z Z 152 Z 1<X:Plogx:PIogx<3_P

n<x—ty 1<i <ty i=1 n+ieF(P,r+i,x) i=1
n=r(mod P) n+ieF(P,r+i,x)

for x large enough. Here the outer sum has at Iast2 > 55 terms, thus at least one
of the inner sums is<1. Since these sums are non-negative integers, it follows that at least
one of themis 0, i.e., there is an integesuch that

N+t <X, (3.10)
n=r (modP)andn+i ¢ F(P,r +i,x) forl <i <ty sothat
wp(n+1i) < 3loglogxfori =1,2,..., 1. (3.12)
By (3.9), for thisn we have

oM+i)=w(M+i,P)+wp(n+i)=w(r +1, P)) +wp(n+1i)
= Ui +wp(nN+1i) =i[10loglogx] + wp(N+1i)

whence, by (3.11),
i[10loglogx] < w(n+1i) <i[10loglogx] 4+ 3loglogx fori =1, 2, ..., t.

Clearly, this implies (1.4) witl in place ofk. Also (1.2) and (1.3) also hold by (3.10) and
the definition ofty. This completes the proof of Theorem 3. m|

Proof of Theorem 4: We have to show that ¥ > xg(¢), n,k € N,

n+k<x (3.12)
and
Qn+i)£Qn+ jHforl<i < j <k, (3.13)
then
log x
k < (1+6)Ioglogx' (3.14)

We may assume th#t is large since otherwise there is nothing to be proved. Write
t = [k/logk], and letp; denote thdéth prime. For each € {1, 2,...,t} remove that
number from{n + 1,n + 2, ..., n + k} which is divisible by the highest power g (if
there are several numbers divisible by the highest power, then remove the smallest of them).
Denote the remaining set By so that

YV=k—-t=@A+o0@Q))k. (3.15)
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Each positive integey may be written in the form

y = 1_[ pa(l Y)

If y e Yandi < t, then we havep"’(' Y < k, for there is at most one number from

{(n+1,n+2,...,n+k} divisible by a power ofy; bigger thark, and if this number exists,
itisnotin)y. Note too that

[1r" <y<n+k=x

i>t

so that

log x
> ali,y) < TS

i>t
It follows that if y € ), then

logk |
Q(y) = Za(l y) = Z“(' y)+2a(| y)<ZI;§D |§§;

i>t

=@+ 0(1))  Ta 0(1))

Since all the values a (y) are distinct fory € ), we have by (3.15) that
k log x

k<@1+ o(l))m + @A+ 0(1))@.

This implies (3.14), and completes the proof of Theorem 4. O

Proof of Theorem 5: First we will prove (1.5). We have to show that if

n+k <X (3.16)

and
oM+ =wh+2)=---=awnh+k), (3.17)

then
k < exp((% + e)(logx log Iogx)1/2>. (3.18)

We may assume thétis large since otherwise there is nothing to be proved yldsnote
the greatest positive integer with

P:=l_[p§k

p=y
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so that, by the prime number theorem,
= (1+0o(1)) logk
(ask - +o0) and

logk

loglogk” (3.19)

7(y) = (1+0(1)

Clearly there isamwithn+ 1 <m < n+kandP |m. Then by (3.19) we have

w(m) > o(P) =7r(y) = (1+0(1))Iog logk’ (3.20)
It follows from (3.17) and (3.20) that
K klogk
o +i) =kom) > (1+0(1)) . (3.21)
; log logk

On the other hand, we have

gw(ml—i):ZK:Zl:ZZl—l—ZZl. (3.22)

i=1 p|n+i p<k 1<i<k p>k 1<i<k
pin+i pIn+i

Here the first term is

>3 1<Z( +1> =k p+7r(k) (1 + o(1))k log logk. (3.23)

p<k 1<i<k p<k p=<k
pInFi

It follows from (3.21), (3.22) and (3.23) that

Z Z 1> (1+o(1))

p>k 1<i<k
pin+i

klogk
loglogk”

— (1+ o(1)kloglogk = (1 + 0o(1))

For everyp > k the innermost sumis 0 or 1. Thus

k
Hp: p>Kk, p‘ ]_[(n+i)}
i=1

It follows that there is an integérand primesp;,, Pi,. - - -, Pi, With

klogk

> (1~|—0(1))|Oglogk-

klogk

loglogk’
k< p,<p, < <Bp (3.25)

t = (1+0(1)

(3.24)
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and
k
PP, | [ (4D (3.26)

i=1

(Here p; denotes théth prime.) Defineu by
Pu = K < Pus1. (3.27)

By the prime number theorem, it follows from (3.16), (3.24), (3.25), (3.26) and (3.27) that
k
x> [ +1) = p,pi, - By = PurrPusz - Pust
i=1

klog?k
= eXp((1 + O(1)) Puse) = exp(<1 o) Iogol?)g k>’

whence

log? k
loglogk”

logx > (1+0(1))

This implies (3.18) which completes the proof of (1.5).
In order to prove (1.6), observe that assuming

QN+ =QN+2)=---=Qn+Kk)

logk

,ng], there is an integeamwithn +1 < m < n + k and Z | m so that

and writing?¢ = [
Qn+1) =---=Q(+Kk) > ¢ (3.28)

For everyp < k, remove the (least) numberin+1,n+2,..., n + k} divisible by the
highest power o, and denote the remaining set byso that

VI = (14 o(1)k

and
. 1
n;gyg(mn > (Y| = <@+o(l))klogk. (3.29)

On the other hand, we have

dYoan+i=> > at+d > a (3.30)

n+iey p<k n+iey p>k n+ie)
p*lIn+i p*lIn+i
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By the definition of), for every primep < k and any positive integer, there are at most
[k/p*] members ofy divisible by p*. Thus, the first term on the right of (3.30) is

k

<ZZ[ :| kzz ﬁ—(l—i-o(l))kloglogk
p=<k

p<k a=1 p<k a=1

Thus we obtain from (3.29) and (3.30) that

YY) « (— + 0(1)>klogk

p>k n+iey
peiIn-H

The rest of the proof is similar to the proof of (1.5); we leave the details to the reader.

Note

This paper was written while A.8kdzy was visiting the University of Georgia.
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