AMS/IP Studies in Advanced Mathematics
Volume 7, 1998

Rigorous discrete logarithm computations in finite
fields via smooth polynomials

Renet Lovorn Bender and Carl Pomerance!

For Oliver Atkin on his retirement

1 Introduction

Given a group G and elements g and ¢ in G, the discrete logarithm problem is to
determine if an integer [exists with g! = ¢, and if { exists, to find it.

In addition to being a fundamental computational problem, there are cryptographic
systems based on our inability to quickly solve it. Thus it is also of practical interest
to study the computation of discrete logarithms.

In this paper we are going to analyze an essentially well-known algorithm, the
index calculus method, for computing discrete logarithms in the multiplicative group
of a finite field, and prove some new theorems about it. In particular, we show that
discrete logarithms in the multiplicative group F; of the finite field F,, where ¢ = p™,
can be computed in expected time subexponential in loggq (that is, the time bound is
g°1)) so long as ¢ = oo in such a way that n — oo.

But before properly describing our results, we first review what is already known.
There are two different divisions of discrete logarithm algorithms (as well as with
algorithms in many other fields): practical and theoretical, rigorous and heuristic.
Of course some theoretical methods can end up being practical and some heuristic
methods can end up being rigorously analyzed, but at a given point in time we can
usually classify an algorithm. There also seems to be some correlation with the two
divisions, with the practical methods often being heuristic. Since a discrete logarithm
can be checked very quickly for correctness, it is perhaps not so important in practice
for a method to have a rigorous analysis. Nevertheless, as mathematicians we seek to
prove our conjectures, especially concerning problems of fundamental importance.

This paper falls into the theoretical /rigorous camp, though it is not impossible that
for some finite fields the method we analyze could be practical. However, we do not
discuss any issues of practice.

The index calculus method was developed by A. E. Western and J. C. P. Miller for
the group G = (Z/pZ)* where p is prime. The idea is that elements of this group are
represented by integers, and integers can be factored into primes. If the prime fac-
torizations of the integers representing several group elements reveal a multiplicative
relation between the integers, then the same multiplicative relation holds for the corre-
sponding group elements. If g is a primitive root mod p (so that it is a cyclic generator
for G), then random integers r may be chosen (in the interval [1,p — 1]), the residues
g" mod p computed, and those that happen to factor into small primes reserved. Such
congruences give linear relations for the discrete logarithms of the small primes, and if
enough such relations are found, a linear algebra calculation might be used to actually

lSupported in part by an NSF grant.

© 1998 American Mathematical Society
and International Press

221

222 R. L. BENDER AND C. POMERANCE

solve for these discrete logarithms. If we are trying to compute the discrete logarithm
of t to the base g, then we again choose random numbers r until one is found where the
residue g”t mod p also factors into small primes. Taking the logarithm of both sides of
this congruence then expresses the logarithm of ¢ in terms of known quantities.

We say an integer is “smooth” if it factors into small primes. The notion of smooth-
ness may be carried over to other rings than Z so that the index calculus method may
be used for other groups than (Z/pZ)*.

There are two standard ways of representing the finite field F,, where ¢ = p™. The
first is to find an algebraic number field K of degree n over Q such that the prime p
remains inert in the ring O of integers in K. Then O/(p) is isomorphic to F,. Though
O need not be a unique factorization domain, it is a Dedekind domain, and prime ideals
can stand in for primes in the index calculus method. Further, a sense of size can be
given by the norm. So a member of O is considered smooth if its norm is a smooth
rational integer. This idea was first exploited by ElGamal [E1], [E2] in the case n fixed,
later by the first author [L1], [L2] in the case n = 2, and more recently by Adleman
and DeMarrais [AD] in the general case (with n < p). The papers [E1], [E2] and [AD]
are heuristic, while [L1], [L2] are rigorous.

The finite field F, is also isomorphic to Fy(z]/(f(x)), where f(z) is an irreducible
polynomial in Fp,[z] of degree n. Note that Fy[z] is a unique factorization domain and,
in fact, a Euclidean domain, so that we have a concept of size (given by the degree).
We may call a nonzero member of Fy[z] smooth if all of its irreducible factors have
small degree. The index calculus method using this representation of F, was discussed
in the papers [O], [P1], [L1] and [AD)]. In particular, it was rigorously analyzed in all
of these papers, but in [L1] the range of validity was the greatest: all ¢ = p™ with
p < exp(n-%8).

In this paper we study the discrete logarithm problem for F; solely via the repre-
sentation F,[z]/(f(z)), but we extend its validity to all finite fields. However, when
n is bounded, the complexity bound for our algorithm is exponential, and when n is
smaller than 7 or equal to 8, 10 or 12, the complexity bound is either worse than or
equal to the time bound of the Silver—Pohlig-Hellman method (see [O]). This method
may be used to compute discrete logarithms in any group for which certain basics, such
as being able to do the group operation, are at hand.

The true value of our analysis is seen in the case that n — oo. If n tends to
infinity arbitrarily slowly, our method is subexponential. So for example, the method
is subexponential for the set of finite fields of order g = p™ where n = [logloglogp].

Let L(q) = exp(vIoggloglogg). If p < n°(™ the complexity estimate for our
method is L(g)Y2+°(®). This is the same estimate as holds in the papers [O], [P1], and
[L1], but as stated above, in those papers the region of validity was not as large. In
[AD], the region of validity is smaller and the complexity estimate is not optimized (so
that it is somewhat larger).

In the range p < n*™/%, our complexity estimate is L(q)\/éﬁ“(l). And for p > n*"/3
our complexity ‘estimate is g(2to(1)/n = p2+e(l),

Important for our analysis is the distribution of smooth polynomials. We say a
nonzero polynomial h(z) in F,[z] is m-smooth if all the irreducible factors of h(z)
in this ring have degrees at most m. Let Np(n,m) denote the number of monic m-
smooth polynomials of degree n. Of course the total number of monic polynomials of

RIGOROUS DISCRETE LOGARITHM COMPUTATIONS IN FINITE FIELDS 223

degree n is exactly p", and so it is interesting to view the ratio Np(n,m)/p™ as the
probability that a random degree n polynomial is m-smooth. It is known from work
of [So] and predecessors that this probability is often approximated by the ratio v ™%,
where © = n/m. One range where this approximation is either unproved or untrue
is when m is very small compared to n. We show, by an elementary argument, that
whenever 1 < m < nl/2, we have Np(n,m) > p™/n*. It is this result that allows us to
prove our results in such a large range.

We finally remark that there are heuristic versions of the index calculus algorithm
that are analogous to the number field sieve factorization algorithm and which allow the
computation of discrete logarithms in F} in time bounded by exp(c(log g)/3(log log ¢)>/3)
for “most” prime powers g: see [Co], [G], [A], [S1] and [S2]. It remains a challenge to
provide rigorous analyses for algorithms in this family.

2 The distribution of smooth polynomials

For each prime power ¢ and non-negative integers m, n, let Ng(n, m) denote the number
of monic polynomials in F,[z] of degree n and with each irreducible factor of degree
at most m. Note that if m > n, then Ny(n,m) = ¢™. In [Ca] and [Wa] asymptotic
estimates are obtained for N,(n,m) when m > (1 + €)nloglogn/logn, uniformly for
all g. In [L1] the first author obtained an asymptotic formula for Ny(n,m) that is
valid with m in the range n!/1%° < m < n99/190 yniformly for all primes p. This was
previously shown in [O] for the same range of m, but with p restricted to the value 2.
In [M1] and [M2] a useful asymptotic formula for N,(n,m) is obtained in the range
m/+v/nlogn — oo, uniformly for all g. Recently in [So], a still wider range of validity
for the asymptotic formula is attained. We cite the following result which follows from
Theorem 1.4 in [So] and an approximate formula for the Dickman~—de Bruijn function.

Theorem 2.1. Let u = n/m and assume that 1 < m < n. Uniformly for all
prime powers q > (n log® n)l/'", we have

No(n,m) = g fult+o)e
as m — oo and u — oo.

We supplement this asymptotic result, which holds for most of the range for ¢, n
and m, with the following lower bound. Note that n% = u{l+°(1))% when m < n°M,

Theorem 2.2. Let u = n/m. For all prime powers q and all positive integers
m, n with m < n'/2, we have Ny(n,m) > ¢ /n*.

Proof Let I(k) denote the number of monic degree k irreducibles in F[z]. Let
v = [u] and let w be such that n = mv + w, so that 0 < w < m. Any product of
v (not necessarily distinct) monic irreducible polynomials of degree m times a monic
irreducible polynomial of degree w gives an m-smooth polynomial of degree n. Thus,

I(m)*
v!

(2.1) Ng(n,m) > I{w).

224 R. L. BENDER AND C. POMERANCE

Note that for k£ at least 1,
Kl
V2k
Indeed, as is well-known, we have kI(k) = 3, u(d)g*/?, so that
KI(R) 20~ (L+ g+ + ") = ¢* - (¥ —1)/(g-1)
>g* — g* /A1 /(g - 1) > ¢* — 2¢*/2) > ¢* - 2¢*/% > ¢4/ V2,

with the last inequality holding when ¢* > 47. The remaining cases are easily checked
individually. Thus, we have (2.2).

The theorem holds in the case m = 1, since I(1) = g, so that (2.1) implies that
Ng(n,1) > ¢ /n™ = ¢"/n*. In the sequel we thus assume that m > 2. Note that the
theorem is trivial in the case ¢ = m = 2, so that if ¢ = 2, we may assume m # 2.

By hypothesis v > m, so that v > 2. Assume first that v = u, so that w = 0. Then
from (2.1) and (2.2) we have

(2.2) I(k) > , except when ¢ = k = 2.

v mv mv .n
Nq(n)m)> (m) z 2 1 =g'_:

ol = (ampol = Gmo) v
using v! < (v/v/2)" for all integers v > 2. So we may assume v < u, so that w > 0.
Assume for now that if ¢ = 2, then w # 2. Then from (2.1) and (2.2) we have
amq” q
——1 = .
w) 2 (V2m)*o! - v2w (V2m)vu! - V2w

Since n* = n?+%/™ the inequality in our theorem will follow from (2.3) if we show

(2.4) YU < <7 f) (= (w/VD").

The function log(v2w) — (w/m)logn of the variable w reaches its maximum at w =
m/logn and this maximum value is log(v/2m) — loglogn — 1. Since 2 < m < nl/2, it
follows that n > 4. So

V2w \/_ 2m <

n“’/"‘ = elogn < 266 = 2.66°

As v > 2, we have (v/2.66)v! < (v/v2)? < (u/Vv2)?, so that (2.4) holds.
‘It remains to consider the case ¢ = w = 2. In this case m > 3. From (2.1) and (2.2)
we have

n

23) Ny(n,m)> ().,

mv 211,

Na(mm) 2 eyl = A(am)vol

Now for v > 5 we have 4(v/2)?v! < v?, so that Na(n,m) > 2"/(v?m?) > 27/n? >
2" /n*, which proves the theorem in this case. Since v > m > 3, there are only three
remaining cases: m = 3, v = 3, 4 and m = v = 4. In each case n and u are determined
and we may check directly that 4(v/2m)?v! < n*. Thus we have the theorem in all
cases.

a

We remark that in [AD], page 7, there is a similar result.

RIGOROUS DISCRETE LOGARITHM COMPUTATIONS IN FINITE FIELDS 225

3 An algorithm for computing discrete logarithms in

g

Suppose that g = p", where p is prime. We represent F; as Fy[z]/(f(z)), where f(z) is
a monic irreducible polynomial in Fy [z] of degree n. We assume we are given f(z), and
a generator g of F;, which is represented by a monic polynomial g(z) in Fy,[z] of degree
< n. Finally, we are given an element t of F;, which is represented by a polynomial
t(z) in Fp[z] of degree < n. Our problem is to compute an integer ! such that g' = t,
that is, g(z)! = t(z) mod f(z). Thus, the integer ! is defined only up to a multiple of
q-—-1.

We now describe a probabilistic algorithm for the computation of log,t. By the
method of [P1], say, we already know how to compute discrete logarithms in the group
Fp. Thus, we may assume that n > 1. But the group F, is a subgroup of ;. We may
exploit this as follows. Suppose we have computed an integer [, such that g = ct,

where c € ;. Let
Q=(-1)/p-1).

Note that ¢g@ is a cyclic generator of the subgroup F;. By the method of [P1], we
solve the discrete logarithm problem (g®)"2 = c for an integer l;. Then the integer

=1, — l,Q satisfies g' = t. Thus, in the sequel we will just discuss the calculation of
the integer [;.

A few complications in the following algorithm deserve some warning and explana-
tion. In step 2 we will use an algorithm of Wiedemann [Wi] to solve a sparse matrix
equation. The arithmetic is mod n for a possibly composite number n, while in [Wi] one
needs a prime modulus. We can potentially accomodate composite moduli by factoring
them, working with separate prime powers, and Chinese remaindering the solutions.
This is fine if one can work with prime power moduli. Again, [Wi] can be used for this
provided the rank of the matrix is nearly the size of the matrix. However there is no
guarantee made in the following method that we will have matrices of nearly full rank.
This problem might be solved by using the method of [P1], but we prefer to take the
more natural approach here based on Lemma 3.1 below. To solve the problem of prime
powers, we solve for the discrete logarithm in stages, at each stage working in a sub-
group of squarefree order. This introduces a new problem, namely it is difficult to say
something about smoothness probabilities when working in a possibly small subgroup.
We solve this problem by choosing a random, smooth group element at the start of
Step 1, and use the coset of the particular subgroup we are interested in that contains
our smooth element. There is a good chance that this coset will have a fair share of
smooth elements.

Algorithm 3.1. We are given a prime power ¢ = p" with n > 1, a monic irreducible

polynomial f(z) in Fp[z] of degree n, and elements g and t of Iy (represented by
polynomials in F, [z]- of degrees < n) such that g is a generator of IFj. The following
probabilistic algorithm attempts to find an integer [/, such that g'* = ct for some c in
F,.
Step 0. Preparation. Factor @ into primes by the method of [LP], and then write
Q = Q1Q2...Qs, where each Q; is squarefree, > 1, and Qs|Qs-1].-.1Q1- (The Qi’s

226 R. L. BENDER AND C. POMERANCE

are uniquely determined.) Let G = g9/@1. Select an integer m with 1 < m < n. We
shall later discuss how to choose m as a function of g so as to optimize the performance
of the algorithm. The number m is the smoothness bound.

Step 1. Collecting relations. In this step we gather relations that can be used to
solve the discrete logarithm problem in the group F /F;. If an element h of F is
represented by an m-smooth polynomial h(x), we may create an “exponent vector”
for h. That is, if h(z) = c[] fi(x)*¢, where ¢ € F,, the f;(z) run over all of the
monic irreducible polynomials in F,[z] of positive degree at most m, and the «; are
non-negative integers, then the exponent vector for h is the sequence of numbers «;. If
hi, hs are both represented by m-smooth polynomials, then we may create an exponent
vector for h;/hs, which we obtain by subtracting the exponent vector for hys from
the exponent vector for h;. Choose random integers p in the range 1 < p < qg-1
with the uniform distribution, and compute the polynomial representing g”. Factor
this polynomial with the random polynomial time algorithm of [B]. Continue until a
value of p is found such that g” is represented by an m-smooth polynomial. Choose
random integers r in the range 1 < r < @; with the uniform distribution, and compute
the polynomial representing G"g”. Factor this polynomial with the algorithm of [B].
Continue until a value of r is found such that the polynomial representing G"g” is
m-smooth. Compute the exponent vector for G"g?/g” = G". Continue this procedure
until & := 2p™Q(Q;) numbers r;,72,...,7rr are found for which we have exponent
vectors corresponding to G™,G",...,G™. (By Q(w) we mean the number of prime
factors of the integer w, counted with multiplicity. Since), is squarefree, we have
Q1) = O(log Q1/loglog @Q1).) Create a matrix M using the exponent vectors found
as columns.

Step 2. Calculation of l;. In this step we attempt to calculate an integer {; such that
g" = ct for some c in the subgroup F;,. We do this in stages, sequentially calculating
integers ay,...,a;. We will have

lh=a1+aQ2+---+a;Q2...Q;.

Choose random integers R in the range 1 < R < (); until some R,; is found with
the representation of GF1t2/Q1 g# being m-smooth, and let V; be the corresponding
exponent vector for GR1¢Q/Q1 g# /g# written as a column. Attempt to solve the matrix
equation M X = V] mod @, for a column vector X;. To do this we use the method
of [Wi], which is expected to succeed if a solution exists. (This method solves sparse
matrix equations over finite fields. Our arithmetic is in the ring Z /Q,Z. We may reduce
the problem to working over prime finite fields since we have the prime factorization
of the squarefree number (); and we may glue solutions mod prime factors of @; via
the Chinese remainder theorem.) Suppose a solution X; exists and the coordinates of
X, are z11,%21,...,%Tk1- Let a3 be —R; + > r;x;1. If no solution exists, repeat with
more random choices for R; until one is found which works. Suppose a4,...,a;-1 have
been found. To find a; begin by choosing random integers R in the range 0 < R < ¢
until some R; is found with the representation of

GFEi (tg"'a’ —a2Q2——a;—1Q2...Q; -1) Q/Q1...Q; o

an m-smooth polynomial. Let V; be the corresponding exponent vector (for this divided
by g”) written as a column. With the method of [Wi] attempt to solve the equation

RIGOROUS DISCRETE LOGARITHM COMPUTATIONS IN FINITE FIELDS 227

MX = V; for a column vector X; with coordinates z;j,...,Zx;. Let aj = —R; +
Y- riz;ij. If no solutions exists, repeat until a choice for R; is found which works.

The following lemma is relevant to the issue of whether a solution X exists to the
congruence M X =V mod Q. It is based on section 2 of [L2].

Lemma 3.1 Let G be a group of order n and suppose g1,92,... iS a sequence
of elements from G where the g;’s are chosen randomly with an identical distribution
(but not necessarily the uniform distribution). Then for each k > 2Q(n) the probability
that gi is in the subgroup generated by g1,92,...,9k—1 is at least 1/2.

Proof Let us denote by p(k) the probability that gi is not in the subgroup generated
by g1,92,---,9k—1- Then clearly p(1) > p(2) > --- > p(k). Thus, it suffices to show
that p(2Q(n)) < 1/2. Let N(k) be the expected number of distinct subgroups in the
sequence

<1)1 <gl)’ (glag2>7 RRK} <gl,g27 <. ,gk)'
Then N(k) = 1+ p(1) +p(2) + --- + p(k) > 1 + kp(k). But the length of the longest
chain of distinct subgroups for G is bounded by Q(n) + 1. Thus, N(k) < Q(n) + 1 for
all k so that kp(k) < §2(n) for all k. In particular

PO < zak = 3.

This completes the proof of the lemma.
O

We apply the lemma to the group G = (Z/Q1Z)N, where N is the number of
distinct, monic, non-constant, irreducible polynomials in F, [x] of degree at most m (so
that N < p™). The exponent vectors in the algorithm are elements of G and in both
Steps 1 and 2, we choose these vectors with the identical distribution. Let p(B) denote
the probability we have chosen M so that with probability > 3 a choice for V' will be
such that MX = V mod Q; is solvable for X. The assertion that MX = V mod @
is solvable for X is equivalent to the assertion that the corresponding exponent vector
found in Step 2 is in the subgroup of G generated by the 2p™Q(Q,) exponent vectors
found in Step 1. Since Q(|G|) = NQ(Q1), it follows from the lemma that p(3) > ﬂg
In particular, p(1/3) > 1/4. So with probability at least 1/4, the expected number of
times we attempt to find a solution to a matrix equation in Step 2 is < 3s.

The next lemma may help to explain the role of g° in the algorithm.

Lemma 3.2 Let G be a finite group and let ‘H be a subgroup. Let S be an
arbitrary subset of G. Suppose g is chosen from S with the uniform distribution. The

probability that
|Hy N S| S’I 1|5|
CH| T %3 4

is greater than 1/2. .

Proof If the displayed inequality fails, then |H, N S| < 3|S||H|/|G|. But there are
|G|/IH| cosets of H in G. Thus, the total number of elements of S that are in a coset
where the displayed inequality falls is < 5 11S], which is the assertion of the lemma.

228 R. L. BENDER AND C. POMERANCE

4 The complexity of the algorithm

In this section we shall discuss the complexity of Algorithm 3.1. We first note that
Algorithm 3.1 does not actually compute a discrete logarithm in the group Fy, but
instead reduces the computation to the construction of a discrete logarithm in the
smaller group F;. The method of [P1], say, can be used to complete the calculation.
The expected running time of this method is bounded by L(p)VZ+°()) as p —+ oo and
so is < L(g)V2+°M), If p is bounded, then the time to compute a discrete logarithm in

F, is also bounded and so is < L(g)V2+°() as ¢ - co in this case as well.
To estimate the complexity of Steps 1 and 2, it is necessary to specify the parameter
m in Step 0.

The case when logp = o(nlogn) as n — oo.

_ nloglogg| _ loglog g
m= [v 2logp]— [nv 2logg |~

Let u = (n — 1)/m, so that

/ 2logq 1 \/1
PO it - S | ~ = ~af=
u Toglogq’ ogu 2 logloggq, wulogu 5 log qlogloggq,

as n — 00. Thus, from Theorem 2.1, the expected time E(q) to find one random
number r in Step 1, such that the polynomial in F,[z] representing G” is m-smooth,
is at most exp((1 + o(1))/(1/2) loggloglogq) = L(q)}/¥2+°()), By Lemma 3.2, with
probability > 1/2, the expected time to find a random number r with the polynomial
representing G"g” being m-smooth is at most 2E(g). We are instructed in Step 1 to
find 2p™$(Q;) of these integers r. We have

In this case we choose

1
mlogp ~ \/Enloglogqlogp = \/-;- log gloglogg,

so that 2p™Q(Q;) = L(q)!/V2+°(1), Thus the expected time to gather the relations in

Step 1 is at most L(g)VZ+e(D),
The complexity of the linear algebra of Step 2 is essentially the number of columns
of the matrix M times the number of nonzero entries of M. This is p?™+°(1) which

is equal to L(q) VZ+0(1) | Qo this expression stands for the full complexity of Algorithm
3.1, in the case that logp = o(nlogn).
The case when nlogn/logp is bounded from above.

Let o = nlogn/logp and assume that a is bounded from above. We choose m as that
positive integer such that

(4.1) m? —m < a<m?+m.

Thus, m = O(1). From Theorem 2.2, the expected time to find one relation in Step 1
is at most (n — 1)(*~1/m < p*/™_ Since mlogp = mn(logn)/a, the expected time to

RIGOROUS DISCRETE LOGARITHM COMPUTATIONS IN FINITE FIELDS 229

gather the p+te(1)™ relations in Step 1 is at most,

m 1
4. — 4+ — .
(4.2) exp ((1 + 0(1)) (a + m) nlogn)
For a > 1/2, it follows from (4.1) that the ratio
m,Ll.2
a m Ja

is at most 3\/5/4. This value is attained at @ = 1/2 and 2. As o grows larger, this
ratio tends to 1. Thus, for a > 1/2, an upper bound for the expected time to gather
the relations in Step 1 is

exp ((1 + 0(1))3%4-/—5%n10gn) = exp ((g + o(l)) \/m)
= oxp (($+0)) v2Tognoea)

But when a is bounded from 0 and co we have loglogg = logn + loglogp ~ 2logn,
so that our upper bound for the expected time is in fact L(g)3/2*°("). The exponent
3/2 is attained in our estimate when o = 1/2 and 2, and it tends to V2 when o gets
large. It is interesting, that the exponent V2 is attained whenever a is the square of
an integer.

The time to process the matrix in Step 2 can be more than the time to gather the
relations, in the case that a = O(1). This time is

exp((1 + o(1))2mlog p) = exp((1 + o(1))(2m/c)nlogn).

The ratio m/a : 1/y/a is at most v/2 for a > 1/2. It attains this value at = 1/2 and
2, and for other values of a > 1/2 it is smaller, approaching 1 as a gets large. Thus the
time for the matrix is at most exp((2 + o(1))v/2/anlogn). But for a bounded from 0
and oo, we have /2/anlogn ~ /loggloglogg. Thus the matrix time is bounded by
L(g)>*°®) when a > 1/2 and a = O(1). The exponent 2 is attained in our estimate
when a = 1/2 and 2, and tends to V2 as a gets large. As above, the exponent is V2
when a is the square of an integer.

Since the matrix time is often larger than the time for the gathering of relations, it
can be better to de-optimize the gathering time so as to reduce the matrix time. For
example, if we choose m = 1 when 2 < a < 3, rather than m = 2 as suggested above,

the gathering time is increased to L(q)\/m""’(l), and the matrix time is negligible in
comparison. If we then only start using m = 2 at o = 3, then the matrix time is
at most L(q)\/s_/g""’(l), and the gathering time is negligible in comparison until « is
somewhat larger. Thus with this de-optimization of the gathering time, we can attain
L(q)\/g/_‘”"(l) as an upper bound for the time for Algorithm 3.1, whenever o > 3/4.
However, if we stick with the range a > 1/2, then the above estimate of L(g)**+°() is
not improved, since we cannot take m smaller than 1.

We now discuss the case when a < 1/2. We always choose m = 1 in this case (as we
do for a somewhat larger). Suppose first that o is bounded from 0. Then loglogp ~

230 R. L. BENDER AND C. POMERANCE

logn, so that loglogq ~ 2logn. Then loggloglogq ~ 2nlogplogn = (2/a)n?log?n,

so that
[a
nlogn ~ Ey/logqloglogq.

It follows from (4.2) that an upper bound for the expected time to gather the relations
in Step 1 is L(q)(e+1)/V2a+o(1) The corresponding matrix time is p?*°(!) and this
expression can be alternatively expressed (under our assumption that o is bounded
from 0) as L(q)V?/o+o(),

Finally, if o = o(1), it is no longer appropriate to measure the running time as a
power of L(g). We still take m = 1. An upper bound of the expected time to find the
relations in Step 1 is p!*+o(t) = g(1+o(1))/n 3nd the bound to process the matrix in Step
2 is p?*+o(l) = ¢(2+o(1))/n Thus the running time is subexponential so long as n — oco.

In summary, we have the following theorem.

Theorem 4.1. With probability at least 1/8 we have the following upper bounds
for the expected run time for Algorithm 8.1 (with the value of m chosen in Step 0 as
specified above): If ¢ = oo in such a way that p < n°"™, then the run time is at most
L(g)VZ+eM), If ¢ - oo so that p < nO™, then the run time is at most L(q)°W). If
q — 00 so that p > n™, the the run time is at most ¢(2+t°)/n_ In particular, whenever
n — oo we have that the run time is g°(V).

We finally remark that it is likely that the method of [P2] can be used to show that

the upper bound expressions we have given for the complexity in the above discussion
and theorem are also lower bounds for the expected running time of the algorithm, at
least for the case when Q) is large. (If @, is small, or, more generally, if all the prime
factors of @), are small, there are well-known discrete logarithm algorithms that are
better.)
Acknowledgments. We wish to thank Andrew Odlyzko for bringing the papers [M1],
[M2] to our attention. We also wish to thank Michele Mosca for pointing out some
difficulties in earlier versions of the paper, and for suggesting a partial solution (which
led us to the @ = Q; ... Qs construction in Algorithm 3.1).

References .

[A] L.M. Adleman, The function field sieve, Algorithmic number theory, Proceedings
first international symposium, ANTS-I, Ithaca, NY, USA, May 1994 (L. M. Adleman
and M.-D. Huang, eds.), Lecture Notes in Computer Science, 877, Springer Verlag,
Berlin, (1994), 108-121.

[AD] L.M. Adleman and J. DeMarrais, A subezponential algorithm for discrete loga-
rithms over all finite fields, Math. Comp., 161 (1993), 1-15.

[B] E. Berlekamp, Factoring polynomials over large finite fields, Math. Comp., 124
(1970), 713-735.

RIGOROUS DISCRETE LOGARITHM COMPUTATIONS IN FINITE FIELDS 231

[Ca] M. Car, Théorémes de densité dans Fy[z], Acta Arith., 148 (1987), 145-165.

[Co] D. Coppersmith, Fast evaluation of discrete logarithms in fields of characteristic
two, IEEE Trans. Information Theory, IT-30 (1984), 587-594.

[E1] T. ElGamal, A subezponential-time algorithm for computing discrete logarithms
over GF(p?), IEEE Trans. Information Theory, IT-31 (1985), 473-481.

[E2] T. ElGamal, On computing logarithms over finite fields, Advances in Cryptology
— CRYPTO 85, Lecture Notes in Computer Science, 218, Springer-Verlag, Berlin,
(1986), 396-402.

[G] D.M. Gordon, Discrete logarithms in GF(p) using the number field sieve, SIAM J.
Discrete Math., 16 (1993), 124-138.

[LP] H.W. Lenstra, Jr. and C. Pomerance, A rigorous time bound for factoring integers,
J. Amer. Math. Soc., 15 (1992), 483-516.

[L1] R. Lovorn, Rigorous, subezponential algorithms for discrete logarithms over finite
fields, Ph. D. Thesis, University of Georgia, June, 1992.

[L2] R. Lovorn, Rigorous, subezponential algorithms for discrete logarithms in GF(p?),
SIAM J. Discrete Math., to appear.

[M1] E. Manstavicius, Semigroup elements free of large prime factors, Analytic and
probabilistic methods in number theory, Proceedings of the international conference
on analytic and probabilistic methods in number theory in honor of Professor Jonas
Kubilius held in Palanga September 24-28, 1991 (F. Schweiger and E. Manstaviéius,
eds.), VSP, Utrecht, (1992), 135-153.

[M2] E. Manstavigius, Remarks on elements of semigroups that are free of large prime
factors, Lithuanian Math. J., 132 (1993), 400-409.

[O] A.M. Odlyzko, Discrete logarithms in finite fields and their cryptographic signif-
icance, Advances in cryptology, Proc. Eurocrypt 84 (T. Beth, N. Cot and I. Inge-
marsson, eds.), Lecture Notes in Computer Science, 209, Springer-Verlag, Berlin,
(1985), 224-314.

[P1] C. Pomerance, Fast, rigorous factorization and discrete logarithm algorithms, Dis-
crete algorithms and complexity, (D. S. Johnson, T. Nishizeki, A. Nozaki and H. Wilf,
eds.), Academic Press, Orlando, Florida, (1987), 119-143.

[P2] C. Pomerance, Multiplicative independence for random integers, Analytic number
theory, Proceedings of the Illinois conference in honor of Heini Halberstam, vol 2, (B.
Berndt, H. Diamond and A. Hildebrand, eds.), Birkhduser, Boston, (1996), 703-711.

[S1] O. Schirokauer, -Discrete logarithms and local units, Theory and applications of
numbers without large prime factors (R. C. Vaughan, ed.), 345 special issue of
Philosophical Transactions of the Royal Society, Series A, (1993), 409-423.

[S2] O. Schirokauer, Using number fields to compute logarithms in finite fields, to ap-
pear.

232 R. L. BENDER AND C. POMERANCE

[So] K. Soundararajan, Asymptotic formulae for the counting function of smooth poly-
nomials, J. London Math. Soc., to appear.

[Wa] R. Warlimont, Arithmetical semigroups II: sieving by large and small prime ele-
ments. Sets of multiples, Manuscripta Math., 171 (1991), 197-221.

[Wi] D. Wiedemann, Solving sparse linear equations over finite fields, IEEE Trans.
Information Theory, IT-32 (1986), 54-62.

address: Renet Lovorn Bender, 1250 Overlook Ridge Rd.
Bishop, GA 30621
e-mail: rbender@teachersworkshop.com

and

Carl Pomerance, Department of Mathematics, University of Georgia
Athens, GA 30602
e-mail: carl@ada.math.uga.edu

