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On the Distribution of Champs
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Dedicated to the memory of our friend and teacher, Paul Erdds

ABSTRACT. Clearly every divisor of (n — 1)! is also a divisor of n!. Let D(n)
denote the number of divisors of n! that do not divide (n — 1)!. In an earlier
paper by P. Erdds, S. W. Graham, and the authors, the concept of a “champ”
was introduced. This is a number n the property that D(m) < D(n) for
all m < n. Under the assumption of the Riemann Hypothesis it was shown
that the champs have asymptotic density zero. We are able here to remove
this assumption, and use instead a result of G. Harman on the distribution of
almost primes in short intervals. In the earlier paper it was shown that primes
and doubles of primes are champs, and it was asked if there are infinitely many
champs not of this form. This was proved conditionally on the prime k-tuples
conjecture, by showing there are infinitely many champs of the form 3p, with
p prime. We show here, again conditional on the prime k-tuples conjecture,
that for each fixed prime r, there are infinitely many champs of the form rp,
with p prime.

1. Introduction

Let D(n) = d(n!) — d((n — 1)!), where d(k) is the number of positive divisors
of a natural number k. The function D(n) represents then the number of divisors
of n! which are not divisors of (n — 1)!. It was introduced in [3], where several
problems involving d(n!) were studied. In particular it seems interesting to study

the so-called D-champions or simply champs, namely natural numbers n (> 1) for
which

D(m) < D(n) (m=12,...,n—1). (1)
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134 A. IVIC AND C. POMERANCE

The champs are in fact the analogues of highly composite numbers, introduced by
S. Ramanujan (see [7]). These are natural numbers n (> 1) for which

d(m) < d(n) (m=12,...,n—1).

Thus highly composite numbers are d-champions. Their distribution was studied
by several authors, most notably by J.-L. Nicolas (see his comprehensive paper [6}).

The object of this note is to study the distribution of champs, which is quite
different from the distribution of highly composite numbers. It is not difficult to see
that the numbers p, 2p (p henceforth denotes primes) are champs, see [3]. However
it seems difficult to decide whether there are infinitely many champs not of the form
p or 2p. Dr. J.-P. Massias of Université de Limoges kindly provided us with a table
of champs up to 200 000, which he has calculated. It turns out that the champs in
his table, which are not of the form p or 2p, are all of the form 3p, 4p, 5p, 6p or 7p.
Several much larger champs of the latter form were kindly calculated by Prof. J.-M.
De Koninck of Université Laval (Québec), and more numerical evidence would be
welcome to ascertain whether this phenomenon will continue to hold. We wish to
continue here the discussion concerning the distribution of champs begun in [3].
We prove the following result.

THEOREM 1. Assuming the prime k-tuples conjecture, for any prime r there
are infinitely many champs of the form rq, q prime.

The prime k-tuples conjecture is a famous conjecture from prime number theory
(due to L. E. Dickson, see [2]) which generalizes the twin prime conjecture that
there are infinitely many integers z such that both z and z + 2 are prime. To
formulate the prime k-tuples conjecture suppose that we have M linear functions
in the variable z, each with integer coefficients and positive slope, such that there
is no fixed integer m > 1 which divides the product of the M linear functions at
every integer argument. Then there are infinitely many positive integers = at which
the M linear functions are simultaneously prime. For example, for M = 3, the
functions z, 2z + 1, 3z + 2 are “admissible”, while the functions z, 2z + 1, 4x +1
are not.

We also are interested in estimating C(z), the number of champs not exceeding
z. Since the numbers p, 2p are champs, one easily obtains from the prime number

theorem that
T

Clz) > (g + 0(1)) s (2)

As for the upper bound for C(z), a (very strong) classical conjecture of H. Cramér
(1] that

Pn+1 ._ Pn < 10g2 Pn,
where p,, denotes the n-th prime, leads to the bound
zloglogx
Tlogz (3)

280 .

Clr)y <

as shown in [3]. In particular (3) implies that
C(z) = o(x) (z — o0), (4)

or in other words, the asymptotic density of the set of champs equals zero. In [3]
the relation (4) was also shown to be true using a result of A. Selberg that most
short intervals countain a prime. However, Selberg’s theorem is conditional on the
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Riemann Hypothesis. We shall show (4) to be true unconditionally, by using a
result of G. Harman that asserts that most short intervals contain a number which
is the product of two primes. Harman’s theorem was built on earlier results of Y.
Motohashi and D. Wolke. We record the following result.

THEOREM 2. The set of champs has asymptotic density zero.

2. The proof of Theorem 1

Before we give the proof of Theorem 1, we prove the following lemmas.

LEMMA 1. Let k be a fized positive integer and let ¢ be a prime. Then we have
d((kg)") 1 1 log g
VT (142 |14+ = ~1 O [ 22 ).
k-1 -\ TE) (Mg 2 e [ o

Proor. We have

nl= I 7™, wp(n) = [g] +

p<n

E.] + .-
p? '
On replacing [n/p’] by n/p’ in the expression for wy(n) and summing over j, it
follows that

1
'w,r,(n)=p_7f1 +O(IZ§Z)- (5)

On the other hand, if ¢ > k (as we may assume), wp(kq) = a + 'wp(kq - 1) if p%||%,
wq(kq) = 1+ we(kg — 1) = k, and for all other primes p, wy(kq) = wp(kq — 1).

Thus, '
%g% = (” %> ,,Hk(l oD TL)
But by (5), |
. a _ a =(p—1)a+0k(lclg_q).
wp(kg—1)+1  kq/(p— 1)+ Ok(logq) kq ¢
Thus, we have the lemma. O

LEMMA 2. Let F(n) := 3 o ,(p — 1)a. Then F(n) <n—1 for all n.

PrOOF. The assertion follows from the fact that Fi(p) =p —1 for all primes p
and the observation that F' is completely additive. O

LEMMA 3. Let J > 2 be a fized positive integer. There is a number x; such
that if p is a prime with
(i) p==zy,
(ii) p=1 (mod J!),
(iii) g := (2p + 7)/(3 + 2) is prime for each integer j with 0 < j < J — 2,
then for each j with0 < j < J—2 and j +2 prime, (j +2)q; = 2p+j is a champ.
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Proor. For each j with 0 < j < J — 2 define ¢; by the relation
d((2p +4)!) ( 1 ) |
- =14+ —=]1+¢g;).
d((2p+j—1)1) j+2 ( 3)

By Lemma 1 we have

F(j+2 1
;= (J+_)+O<ng>,
2p+j p?
where F is as in Lemma 2. If j + 2 is a prime and ¢ < 7, then
E.__7-{—1_*_0(logp)=z-{-l (2p— 1)(j — 1)
7 2p+j P 2p+i (2p+5)(2p +19)

+
(2p— 1)(j 1)
Z8t oy HEp i) (

)
%)

by Lemma 2. Since
’ (2p-1)(@ -3 _1
p+5)2p+i) " p
it follows that if p is sufficiently large then €; > ;. In other words, the champions
for the sequence &g, €1, -+ ,E -2 include those &; with j + 2 prime.

We have that 2gg = 2p is a champ. For 0 < i < J — 2 we have

D(@2p+1) = ((1 + %)(1 +e) — 1)d((2p+i ~ 1))

= (B2 5 )dip+i -1,

142 L+ 2
Suppose 0 < j < J —2 and j + 2 is prime. Then, for 0 <1 < j,

DG+ ) = (Figes + 75 )dl@p+5 = 1Y
()
xd((2p+i-1)!)

2 (9o * v3) Trgd@ i1
- (Fe s phgcs i
(P + gl +i-1
> (:g £+ - i2) d(2p+i— 1)) = D(2p+1).

Thus D(2p + j) > D(2p + i) and since 2p is a champ, so too is 2p + j a champ, as
asserted. O

PROOF OF THEOREM 1. Let r be a prime and let J = r + 2. Consider the
linear functions

@=L et1 <j<JI-2

They are “admissible” for the prime k-tuples conjecture since each has the value 1
when = = 0. So by the prime k-tuples conjecture there are infinitely many positive
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integers x so that ¢;(x) is a prime for each j, 0 < j < J — 2. If we let p = qo(x),
then 2p+j = 2J'z+j+2 = (j+2)g;(x) for each j with 0 < j < J—2. Thus all the
hypotheses of Lemma 3 are satisfied when z is sufficiently large. So (j + 2)g;(z) is
a champ when 0 < j < J -2, j+ 2 prime. Say we let J = r. By what we have just
said there are infinitely many integers x with g;(z) prime for each 7,0 < j < J-2.
Thus there are infinitely many = with ¢ = gy_2(z) prime and with rq a champ.
Thus, Theorem 1 is proved. O

We remark that the proof in [3] that numbers of the form 2p are champs
contains a small error. The proof depends on the inequality D(m) < %d(m!),
and the argument that supports this inequality is suspect. We give an alternate
approach: The inequality holds when m is a prime, in fact, it is an equality in this
case. In addition, the inequality holds when m = 4,6,8,9, or 10. Suppose m > 12
is composite. It is shown in (5) in [3] that d(m!)/d((m — 1)!) < exp(S(m)/m),
where S(m) is the sum of the prime factors of m, with multiplicity. It is easy to
see that S(m)/m < 2/3 when m > 12 is composite. Indeed if p is a prime factor of
m we have

S(m) <p+S(m/p) <p+m/p<2+m/2<2m/3.
Thus, d(m!)/d((m—1)!) < €?/3 < 2, which implies that D(m) < d(m!), as claimed.

3. The proof of Theorem 2

The proof is similar to the proof of Theorem 6 in [3].
Let P(n) denote the largest prime factor of an integer n > 1. We shall use
Theorem 3 of [3] which says that

d(n!)
d((n—1)!)

We first show that if
(a) P(n) < n/log®
(b) some integer k in the interval [n — log® n,n) has P(k) > k/log® n,
(c) n is sufficiently large,
then n is not a champ. We next show that the set of integers satisfying these
conditions has asymptotic density 1.
So suppose that (a), (b) and (c) hold and that n is a champ. From (6) we have

p (n)

=1+ —=+0(n"?. (6)

d((n — 1)) = d((k — 1)) + D(k) + D(k +1) + -+ + D(n — 1)
< d((k— 1)) + (n— k)D(n)

d((k = 1)) + (n — k)d((n — 1)!) <W% . 1)

< d((k —1)) +d((n - 1)) log®n (10;0 —+ O(n—1/2)) :

Since d(m!) is an increasing function of m this gives

dk) - _ d((n=1)))

1
T =15 S a1+ Ol ™)

log™“n
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But (6) and (b) imply that

d(k")
k-0 = T iogn

+0(n™1?), (8)

and (7) and (8) contradict each other for sufficiently large n.

It is clear that the set of integers n which do not satisfy (a) has asymptotic
density zero. In particular, if z/logz < n < z and (a) does not hold, then n is
divisible by a prime p with p > z/ log?! . But the number of integers up to
divisible by such a prime p is bounded by

log 1
Z £<<:1: oglogz
P log

z/log?! z<p<Lx

We now use the following result of G. Harman [4]. He proved that for each
§ > 0, for almost all integers n, the interval [n — log”*® n,n] contains a number
k = pq with p, ¢ prime and p < log'® n. It thus follows that P(k) = q is large.
Thus, the exceptional set of integers n for which (a) and (b) do not both hold
has <« zloglogz/logz + o(x) members up to z. Hence this exceptional set has
asymptotic density zero. This proves the theorem.

By tracing through the argument in [4] and slightly de-optimizing the expo-
nents, one can get a result with a smaller exceptional set, and which yields (3)
unconditionally. In fact, one has that the number of integers n < x for which
[n — logm n,n] does not contain a number k = pg with p, ¢ prime and p < log10 n
is « z/logz. Then changing the “20” in (a) to “21” and the “8” in (b) to “10”,
the above proof can be modified to give (3).

Note that the bounds in (2) and (3) differ only by a factor of loglogz, but it
is hard to make a guess which one of them lies closer to the truth. Although by
Theorem 1 (assuming the prime k-tuples conjecture) it seems that there are many
kinds of champs, the sequence of such champs (and any additional ones which may
exist) may be rather thin, so that after all the bound (2) may be of the correct
order of magnitude.

We finally remark that Mikawa [5] was able to reduce the constant “7” in
Harman’s theorem to “5”. However, in Mikawa’s proof the “almost-primes” that
are produced do not have their largest prime factor large enough to help us with
the distribution of champs.
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