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Abstract. We obtain rigorous upper bounds on the number of primes
p ≤ x for which p−1 is smooth or has a large smooth factor. Conjecturally
these bounds are nearly tight. As a corollary, we show that for almost
all primes p the multiplicative order of 2 modulo p is not smooth, and
we prove a similar but weaker result for almost all odd numbers n. We
also discuss some cryptographic applications.

1 Introduction

We recall that an integer k ≥ 1 is called y-smooth if it is divisible only by primes
p ≤ y. Here we obtain reasonably good upper bounds on the number of primes
p ≤ x for which p − 1 is y-smooth and also for primes p ≤ x for which p − 1 has
a large y-smooth factor.

We apply these bounds to show that for almost all primes p the multiplicative
order l(p) of 2 modulo p is not smooth. In particular, we show that for any
function ε(p) → 0, for almost all primes p, l(p) has a prime divisor q ≥ pε(p).
We also prove a similar statement for the multiplicative order l(n) of 2 modulo
almost all odd integers n.

Besides being a natural question, it also has some cryptographic motivations
which we discuss in Section 4.

As usual, ϕ(m) denotes the Euler function. We use log to denote the natural
logarithm. Throughout the paper the implied constants in symbols ‘O’, ‘�’ and
‘�’ are absolute (the notations U � V and V � U are equivalent to U = O(V )
for positive functions U, V ). The symbol ‘∼’ indicates the asymptotic relation is
uniform over all parameters in their stated ranges.

2 Smooth Divisors of p − 1

Let P (n) denote the largest prime divisor of the integer n ≥ 2, and let P (1) = 1.
Let π(x, y) denote the number of primes p ≤ x with P (p − 1) ≤ y. Let ψ(x, y)
denote the number of positive integers n ≤ x with P (n) ≤ y. It seems reasonable
to conjecture that a random integer in the interval [1, x] is about as likely to be
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y-smooth as is a random integer of the form p − 1 where p is a prime in [1, x],
at least if y is not too small. That is, it may be that

1
x
ψ(x, y) ∼ 1

π(x)
π(x, y), (1)

for y ≤ x and y → ∞. This possibility is explicitly raised in [18], but the thought
goes back at least to [6]. Through the years there has been progress towards the
weaker assertion

π(x, y) � ψ(x, y)/ log x,

but only in the range xϑ ≤ y ≤ x, where ϑ > 0 is fixed. A recent paper of Baker
and Harman [2] has the champion value of ϑ, namely 0.2961, but they have the
inequality in the somewhat weaker form

π(x, y) ≥ ψ(x, y)/(log x)O(1).

Earlier papers on this subject are the already-cited [6] and [18], as well as papers
by Wooldridge, Balog, Fouvry and Grupp, and Friedlander. In [1] there is a proof
that π(x, y) is proportional to π(x) when log x/ log y is bounded, conditional on
a reasonable hypothesis on the distribution of primes in arithmetic progressions.
In addition, Granville (see [8]) has an unpublished argument that (1) holds when
log x/ log y is bounded, conditional on the Elliott-Halberstam conjecture. In [15]
a connection of (1) to a strong form of the generalized twin prime conjecture is
demonstrated.

There are highly nontrivial upper bounds for π(x, y) by Fouvry and others
when y > x1/2, and here the quest is to find the largest value of ϑ for which
you can prove there is some c > 0 with π(x, xϑ) ≤ (1 − c + o(1))π(x), or even
just π(x) − π(x, xϑ) → ∞. Such a quest may be considered a back-door attack
on the conjecture that there are infinitely many Sophie Germain primes, namely
primes q where 2q + 1 is also prime. However, the results in our paper are more
aimed at smaller values of y; we make no new contribution towards the problem
of a nontrivial upper bound for π(x, y) when y is large. Finally, we remark that
there is at least one paper [16] (brought to our attention by the referee) that
gives an upper bound for the number of primes up to x for which the order of a
given element is y-smooth when y > x1/2.

Let ρ(u) denote the Dickman–de Bruijn function which is defined by

ρ(u) = 1, 0 ≤ u ≤ 1,

and

ρ(u) = 1−
∫ u

1

ρ(v − 1)
v

dv, u > 1.

We recall that ρ(u) = u−u+o(u) as u → ∞. For these and other properties of
ρ(u), see [25].

It is known that ψ(x, y) ∼ ρ(u)x in a wide range, and so, in light of the
above comments, it seems appropriate to compare π(x, y) with ρ(u)π(x). In fact
we give an upper bound for π(x, y) that is nearly this sharp.

We begin with the following lemma which is perhaps of independent interest.
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Lemma 1. For exp
(
(log log x)2

) ≤ y ≤ x, we have

∑
m≤x, P (m)≤y

m

ϕ(m)
∼ ζ(2)ζ(3)

ζ(6)
ψ(x, y)

where u = log x/ log y and where ζ(s) denotes the Riemann zeta function.

Proof. Let z = log y and assume that exp
(
(log log x)2

) ≤ y ≤ x. We have

∑
m≤x, P (m)≤y

m

ϕ(m)
=

∑
m≤x, P (m)≤y

∑
d|m

µ2(d)
ϕ(d)

=
∑

d≤x, P (d)≤y

µ2(d)
ϕ(d)

∑
m≤x/d, P (m)≤y

1

=
∑

d≤z, P (d)≤y

µ2(d)
ϕ(d)

ψ(x/d, y) +
∑

z<d≤x, P (d)≤y

µ2(d)
ϕ(d)

ψ(x/d, y).

Since ψ(x, y) ∼ ρ(u)x uniformly for y ≥ exp
(
(log log x)5/3+ε

)
, a result of Hilde-

brand (see [25], Chapter III.5, Corollary 9.3) and since

ρ(log(x/d)/ log y) ∼ ρ(u)

for y ≥ exp
(
(log log x)2

)
and d ≤ z, we have

∑
d≤z, P (d)≤y

µ2(d)
ϕ(d)

ψ(x/d, y) ∼ ρ(u)x
∑

d≤z, P (d)≤y

µ2(d)
dϕ(d)

∼ ρ(u)x
∑

P (d)≤y

µ2(d)
dϕ(d)

∼ ρ(u)x
∑
d≥1

µ2(d)
dϕ(d)

=
ζ(2)ζ(3)

ζ(6)
ρ(u)x.

Let j0 = 	log z
, so that
∑

z<d≤x, P (d)≤y

µ2(d)
ϕ(d)

ψ(x/d, y) ≤
∑

j0≤j<log x

∑
ej<d≤ej+1, P (d)≤y

µ2(d)
ϕ(d)

ψ(x/d, y)

� x
∑

j0≤j<log x

∑
ej<d≤ej+1, P (d)≤y

µ2(d)
dϕ(d)

ρ

(
u − j + 1

log y

)

� x
∑

j0≤j<log x

e−jρ

(
u − j + 1

log y

)

� xe−j0ρ

(
u − j0 + 1

log y

)
= o(ρ(u)x),

by the choice of z. This completes the proof. ��
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Theorem 1. For exp
(√

log x log log x
) ≤ y ≤ x, we have

π(x, y) � uρ(u)π(x)

where u = log x/ log y.

Proof. In the following the letter q runs over prime numbers. Let πq(x) denote
the number of primes p ≤ x with P (p − 1) = q. Let z = exp

(
(log log x)2

)
, and

assume z ≤ Y ≤ x. We have

π(x, Y )− π(x, Y/e) =
∑

Y/e<q≤Y

πq(x) =
∑

Y/e<q≤Y

∑
m≤(x−1)/q, P (m)≤q

mq+1 prime

1

≤
∑

m≤ex/Y
P (m)≤Y

∑
Y/e<q≤Y

mq+1 prime

1 �
∑

m≤ex/Y
P (m)≤Y

m

ϕ(m)
· Y

log2 Y
,

where we use Brun’s method (see [9], Theorem 2.2, page 68) for the last inequal-
ity. We thus have by Lemma 1,

π(x, Y )− π(x, Y/e) � ρ

(
log x − log Y + 1

log Y

)
x

Y
· Y

log2 Y

≤ x

log2 Y
ρ

(
log x

log Y
− 1

)
.

Now assume y is as in the theorem and let i0 = 	log z
. Then, by the above
estimate,

π(x, y) ≤ π(x, z) +
i0∑

i=0

(
π(x, y/ei)− π(x, y/ei+1)

)

� ψ(x, z) + x

i0∑
i=0

1
(log y − i)2

ρ

(
log x

log y − i
− 1

)
.

The function f(t) = ρ(log x/(log y−t)−1)/(log y−t)2 is decreasing for 0 ≤ t ≤ i0,
so that

i0∑
i=0

1
(log y − i)2

ρ

(
log x

log y − i
− 1

)

≤ ρ(u − 1)
log2 y

+
∫ i0

0

1
(log y − t)2

ρ

(
log x

log y − t
− 1

)
dt.

The integral is equal to

1
log x

∫ log x
log y−i0

−1

u−1
ρ(s) ds <

1
log x

∫ ∞

u−1
ρ(s) ds = − 1

log x

∫ ∞

u

tρ′(t) dt

=
1

log x

(
uρ(u) +

∫ ∞

u

ρ(t) dt
)

� uρ(u)/ log x.
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Thus,
π(x, y) � ψ(x, z) + ρ(u − 1)x/ log2 y + uρ(u)x/ log x. (2)

Note that ρ(u− 1) ∼ ρ(u)u log u, see (61) in Chapter III.5 of [25]. We have then
that ρ(u−1)/ log2 y � uρ(u)/ log x in the stated range for y. In addition, by the
choice of z, the term ψ(x, z) is negligible in comparison to uρ(u)x/ log x. This
completes the proof of the theorem. ��

We remark that but for the factor u in Theorem 1, the estimate is likely
to be best possible. It is reasonable to conjecture that π(x, y) = o(ψ(x, y))
uniformly for x → ∞ and y ≥ 2. Theorem 1 implies this result for y ≥
exp

(√
log x log log x

)
, and (2) does so in the wider range y ≥ exp

(
(log x)1/3+ε

)
.

That π(x, 2) = o(ψ(x, 2)) is essentially due to Fermat, but already for y = 3, the
conjecture that π(x, 3) = o(ψ(x, 3)) seems difficult. Hooley [11] has shown, under
assumption of several unproved hypotheses, including the Generalised Riemann
Hypothesis, that the set of integers n with 2n −3 prime has density 0. It is likely
the same proof would go through for primes of the form 3 · 2n + 1. Thus, there
may be a conditional proof that π(x, 3) = o(ψ(x, 3)), and if so, it is likely that a
similar proof would work for π(x, y) = o(ψ(x, y)) with y fixed or growing slowly.

There is another approach to Theorem 1 through direct sieving. That is, for
any parameter z with 1 ≤ z ≤ y we have

π(x, y)− π(z) ≤
∑

P (d)≤z

µ(d)
∑

n≤x, P (n)≤y
n≡−1 (mod d)

1.

The inner sum has been studied somewhat, see [7], and using such results, plus
sieve methods, may yield a larger range of validity in Theorem 1.

Now, let π(x, y, w) denote the number of primes p ≤ x such that p − 1 has a
divisor m > w with P (m) ≤ y.

Theorem 2. For exp
(√

log x log log x
) ≤ y ≤ w ≤ x, we have

π(x, y, w) � uρ(v)
log(2v)

π(x) + uρ(u)π(x),

where u = log x/ log y, and v = logw/ log y.

Proof. Let Q(n) denote the least prime factor of n, if the integer n > 1, and let
Q(1) = +∞. For a positive integer m, let πm(x, y) denote the number of primes
p ≤ x such that m|p − 1 and such that all prime factors of (p − 1)/m exceed y,
that is, Q((p − 1)/m) > y. Note that

π(x, y, w) =
∑

m>w, P (m)≤y

πm(x, y).

Therefore, by Brun’s method, see [9],

π(x, y, w)− π(x, y) ≤
∑

w<m<x/y, P (m)≤y

πm(x, y)
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≤
∑

w<m<x/y, P (m)≤y

∑
n≤(x+1)/m, Q(n)>y

nm+1 prime

1

�
∑

w<m<x/y, P (m)≤y

x/m

log y log(x/m)
· m

ϕ(m)

≤ x

log2 y

∑
w<m<x/y, P (m)≤y

1
ϕ(m)

.

Now,

∑
w<m<x, P (m)≤y

1
ϕ(m)

=
∑

w<m<x, P (m)≤y

1
m

· m

ϕ(m)

=
1
x

∑
w<m<x, P (m)≤y

m

ϕ(m)
+

∫ x

w

1
t2

∑
w<m≤t, P (m)≤y

m

ϕ(m)
dt.

Using Lemma 1, we have

∑
w<m≤t, P (m)≤y

m

ϕ(m)
≤

∑
m≤t, P (m)≤y

m

ϕ(m)
� ρ

(
log t

log y

)
t,

so that

∑
w<m<x, P (m)≤y

1
ϕ(m)

� ρ(u) +
∫ ∞

w

1
t
ρ

(
log t

log y

)
dt

= ρ(u) + log y

∫ ∞

v

ρ(s) ds

� log y

log(2v)
ρ(v).

The last estimate follows from a similar integral calculation in the proof of
Theorem 1, and from the fact that ρ(s)/ρ(s+ 1) ∼ s log s as s → ∞.

Putting this estimate into our earlier estimate, and using log x = u log y, we
have that

π(x, y, w)− π(x, y) � ρ(v)
log(2v)

· x

log y
=

uρ(v)
log(2v)

· x

log x
.

This estimate, combined with Theorem 1, completes the proof. ��

3 Smooth Orders of 2

For an odd integer n, let l(n) denote the multiplicative order of 2 modulo n.
Let L(x, y) denote the set of odd primes p ≤ x with l(p) being y-smooth, and

let L(x, y) = |L(x, y)| be the cardinality of L(x, y).
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Theorem 3. For exp
(√

log x log log x
) ≤ y ≤ x, we have

L(x, y) � uρ(u/2)
log(2u)

π(x),

where u = log x/ log y.

Proof. Let z = log y. We first consider only primes p with l(p) > x1/2/z. Note
that if p ≤ x is such that l(p) is y-smooth and l(p) > x1/2/z, then p − 1 has a
y-smooth divisor which exceeds x1/2/z. But, by Theorem 2, we have

π(x, y, x1/2/z) � uρ(u/2− log z/ log y)
log(2u)

π(x) + uρ(u)π(x) ∼ uρ(u/2)
log(2u)

π(x),

by our choice of z. Now let us estimate L0, the number of primes p with l(p) a
y-smooth integer bounded by x1/2/z. For each integer j, the number of primes
p with l(p) = j is evidently at most j, so that

L0 ≤
∑

j≤x1/2/z, P (j)≤y

j ≤ x1/2

z
ψ

(
x1/2

z
, y

)
∼ x

z2
ρ(u/2).

Since x/z = xu/ log x ∼ uπ(x), and log(2u) = o(z) in the stated range for y, we
have

L0 � xρ(u/2)/z2 = o ((uρ(u/2)/ log(2u))π(x)) ,

which, with our earlier calculation, completes the proof. ��
In particular, we see that for any function ε(x) → 0, the number of primes

p ≤ x for which l(p) is xε(x)-smooth is o(π(x)).
Now we show that Theorem 3 combined with known sieve estimates implies

that the order of 2 modulo n is not smooth for almost all integer n.
Let N (x, y) denote the set of odd integers n ≤ x with l(n) being y-smooth,

and let N(x, y) = |N (x, y)| be the cardinality of N (x, y).

Theorem 4. For exp
(√

log x log log x
) ≤ y ≤ x, we have

N(x, y) � x/u

where u = log x/ log y.

Proof. If l(n) is y-smooth, then clearly each prime factor p of n must have l(p)
being y-smooth. By Brun’s method (Theorem 2.2, p. 68 of [9])

N(x, y) � x
∏

p≤x, p	∈L(x,y)

(
1− 1

p

)
� x

log x

∏
p∈L(x,y)

(
1− 1

p

)−1

� x

u

∏
p∈L(x,y), p>y

(
1 +

1
p

)
.
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It is now enough to show that

∑
p∈L(x,y), p>y

1
p

� 1.

By Theorem 3 and partial summation, we have

∑
p∈L(x,y), p>y

1
p

=
1
x
(L(x, y)− π(y)) +

∫ x

y

1
t2
(L(t, y)− π(y)) dt

�
∫ x

y

1
t log y

ρ

(
log t

2 log y

)
dt

=
∫ u/2

1/2
2ρ(s) ds � 1,

which completes the proof. ��

In particular, we see that for any function ε(x) → 0, the number of odd
integers 1 ≤ n ≤ x for which l(n) is xε(x)-smooth is o(x).

4 Cryptographic Applications

We remark that it is well known that primes p for which p− 1 is smooth are not
suitable for cryptographic applications which rely on the hardness of the discrete
logarithm problem modulo p. Our Theorem 1 implies that there are very few such
primes. This fact has never been doubted in practice but our results provide its
rigorous confirmation and a quantitative form of this statement. Unfortunately it
also means that the polynomial factorization algorithm of [23] almost never runs
in polynomial time. A similar remark pertains to integer factorization via the
p−1 method of Pollard (cf. [20]). Both of these applications to smooth values of
p−1 are actually to very smooth values, and so the more delicate calculations of
the current paper are not really necessary to deduce that usually the algorithms
are not polynomial.

It is clear to see that using 2 as the generator for exponentiation-based cryp-
tographic constructions, such as the Diffie-Hellman key exchange scheme, the
El Gamal cryptosystem, the Digital Signature Algorithm and so on (these and
many other examples can be found in [14,24]) reduces the cost of exponentia-
tion. Indeed using repeated squaring type algorithms to compute ga (mod p)
requires a substantial number of multiplications by g, see Section 9.3 of [5] or
Chapter 14 of [14]. Thus using g = 2 reduces this stage to merely one bit-shift
and, possibly, one subtraction of the modulus (only in 50% of the cases), for
example, see Section 14.81 of [14].

We remark that it is often recommended to work in groups of prime order,
which 2 may not necessarily generate. In this case one can select a large prime
divisor q of the order l(p) of 2 modulo p and then compute g ≡ 2r (mod p),
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where r = l(p)/q. Obviously g generates a group of order q. Now, to compute gx

(mod p) one just computes y ≡ rx (mod q) and then

gx ≡ 2y (mod p).

There is also one more reason to use 2 as the base. It has been shown in [4]
that in this case a slight modification of the corresponding Diffie-Hellman key
exchange scheme has a very important property of bit security (provided the
whole scheme is secure in the traditional sense). More precisely, it has been
shown in [4] that recovering even a certain bit of information about the modified
secret Diffie-Hellman key modulo p (deciding whether it belongs to the interval
[0, (p − 1)/2]) is as hard as the recovering the whole key.

On the other hand, if the multiplicative order of 2 modulo p is smooth then
the Pohlig–Hellman algorithm can be used to efficiently solve the discrete loga-
rithm problem in base 2, see Section 3.6.4 of [14] or Section 5.1 of [24]. We recall
that based on our current knowledge we may conclude that the hardness of the
discrete logarithm problem modulo p in base g, for an integer g, is majorised

1. by q1/2 where q is the largest prime divisor of the multiplicative order of g
modulo p, see [14,24];

2. by Lp(1/2, 21/2) for a rigorous unconditional algorithm, see [19];
3. by Lp

(
1/3, (64/9)1/3

)
for the heuristic number field sieve algorithm, see [21,22],

where as usual we denote by Lm(α, γ) any quantity of the form

Lm(α, γ) = exp
(
(γ + o(1))(logm)α(log logm)1−α

)
,

with the “o(1)” expression tending to 0 as the variable m tends to ∞.
The problem is: If the prime p is selected at random, what are the chances

that the running time q1/2 of the Pohlig–Hellman algorithm 1 is smaller than the
running time of, say, algorithm 2? It follows from Theorem 3 that the chances
of this occurring are vanishingly small. Thus, our result implies that for g = 2
and a randomly selected prime p, with probability exponentially close to 1, the
security of the discrete logarithm to base g = 2 is as high as when a “safe” prime
p is deliberately chosen (namely, a prime p where p − 1 is twice a prime).

For the suggested modifications in [4] of the ElGamal public key cryptosys-
tem, it is also important that the order of 2 modulo p is not smooth and thus
the discrete logarithm problem in the corresponding group is hard. On the other
hand, as in [4], we have to warn that small generators are not suitable for using
with the ElGamal signature scheme, see [3]. However, the results of this paper
can be extended to multiplicative orders of any fixed integer g ≥ 2.

5 Remarks

We remark that it is likely to be true that L(x, y) � ρ(u)π(x) in the stated range
for y. The slightly weaker estimate L(x, y) � uρ(u)π(x) is likely to be provable
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assuming the Generalised Riemann Hypothesis, using the tools that Hooley [10]
has used to prove Artin’s conjecture on the Generalised Riemann Hypothesis.

Studying other arithmetic properties of l(p), for example, the number of
prime and integer divisors, is of interest as well. A recent paper on this subject
is [17] (also see [13]).

Finally, having in mind applications to elliptic curve cryptography, one can
ask how often a given elliptic curve defined over Q has a smooth order modulo
a prime p. This subject is considered in [12], the paper of Lenstra where elliptic
curve factoring is first introduced.
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