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§ 1. Introduction

In this paper we shall consider the equation
o(n)/n=ao (1.1

where o is an arbitrary fixed rational and ¢ is the sum of the divisors function.
Special cases of (1.1) have been extensively studied since antiquity. In particular, the
case a=2 corresponds to perfect numbers, and the case when o is an integer
corresponds to multiply perfect numbers. It is not known if for any o whether (1.1)
has infinitely many solutions. However Hornfeck and Wirsing [11] have shown
that the number of solutions n<x of (1.1) is o(x?) for any ¢ >0 uniformly for all a.

We recall the Euclid-Euler formula for even perfect numbers : an even integer n
is perfect if and only if n =2¥!(2¥ — 1) where 2* — 1 is a (Mersenne) prime. Hence the
question of the infinitude of even perfect numbers is equivalent to the question of
the infinitude of the Mersenne primes (only 24 are known to date).

In this paper we shall call a natural number n non-primitive if n = em where e is an
even perfect number and (e, m)=1. Otherwise we shall call n primitive. If there are
infinitely many Mersenne primes and if m is odd and satisfies a(m)/m=0/2, then
there are infinitely many non-primitive solutions of (1.1) with a fixed number of
distinct prime factors (namely, the integers em where e runs over the even perfect
numbers relatively prime to m). However primitive solutions of (1.1) provide a
different story:

Theorem (Kanold [12]). For any o there are only finitely many primitive solutions of
(1.1) with a fixed number of distinct prime factors.

Kanold’s theorem has an interesting corollary, namely that if for some arbitrary
choice for a, K there are infinitely many solutions of (1.1) with exactly K distinct
prime factors, then there also must be infinitely many Mersenne primes. Indeed, the
various non-primitive solutions of (1.1) can involve only finitely many odd (and
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hence primitive) integers m with exactly K — 2 distinct prime factors and satisfying
a(m)/m=a/2.

Kanold’s proof uses the fact that ax®—by* =c has only finitely many integer
solutions x, y for given positive integers a, b, c. Considering the recent work of Baker
and others on effective solvability of some Diophantine equations (and in
particular, all the equations in the family Kanold considers) one might expect that
an effective version of Kanold’s theorem can be proved. This is in fact the case.

In this paper we shall provide a constructive proof of Kanold’s theorem. We
shall do this by giving an algorithm by which a number N(x, K) may be found such
that all primitive solutions of (1.1) with precisely K distinct prime factors are
bounded above by N(a, K).

The main tool for a crucial step in our proofis a deep theorem of Baker [5] (see
§2). While effective, the bound in Baker’s result is very large. Moreover the
algorithm we provide for the construction of N(x, K) could conceivably pass
through the step requiring Baker’s theorem many times. Consequently, in our
opinion, any explicit formula for N(«, K) achieved by the methods in this paper
would be too large to be of any interest. (It would be larger than exp,(K) where expy
denotes K iterations of exp.) However for odd solutions of (1.1) we do not need
Baker’s theorem, and thus we can establish a somewhat lower bound. In fact an
upper bound for the odd solutions of (1.1) which have exactly K distinct prime
factors is

(2cK )20 (1.2)

where ¢ is the numerator of « in reduced form (see § 5).

We remark that Kanold’s theorem for the case o =2 was previously proved by
Dickson [9] and Gradstein [10].

Our algorithm can circumvent Baker’s theorem in the special case o =3 by using
a result of Steuerwald [16] : if a(n)/n =3, then 36 f/n. However Steuerwald’s method
does not appear to generalize to other cases.

Recently Artuhov [4] and Borho [7] have obtained results for amicable
numbers similar to Kanold’s theorem. In addition Borho [8] has obtained an
explicit bound for all amicable number pairs u, v for which uv has a fixed number of
prime factors (not necessarily distinct).

C. W. Anderson inspired much of the work for this paper. In particular, his
problem [1] introduced me to the question of saying something about the set of
rationals of the form o(n)/n. In [2] Anderson conjectured that the set of rationals of
the form o(n)/n is recursive. He showed how this conjecture is related to the odd
perfect number problem; for example, if 5/3 can be written in the form a(n)/n, then
5n must be an odd perfect number. In §6 we shall give a sufficient (and perhaps
necessary) condition for a weaker form of Anderson’s conjecture to hold.

§ 2. Baker’s Theorem

The theorem to which we refer deals with integral linear combinations of logarithms
of n=2 algebraic numbers. We will use this result for the special case n=3 and the
algebraic numbers positive rationals:
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Theorem (Baker [5]). Suppose 0<§<1. If a,, a,, ay are positive rational numbers
with their numerators and denominators at most A=4, and if b, b,, by are integers
with absolute values at most H, then

0<|b, loga, +b, loga, + by logas| <e ™,

implies
H<2147054%(log A)*°.

The bound in this theorem is not as sharp as possible; indeed it is known that
H=0((logA)*>**) for every ¢>0. However the effectively computable bounds we
obtain in this paper are impractically large even for odd solutions of (1.1) [see (1.2)],
a case where we do not need Baker’s theorem. Since our results are impractical for
actually computing solutions of (1.1) in the easy (i.e., odd) case, we will not split hairs
in the hard case.

§ 3. Preliminaries

If n is a rational number, we let h(n)=a(n)/n. Then h is maultiplicative, and if m|n,
m= n, we have h(m)<h(n). If p is a prime, then h(p®) increases with a to the limiting
value p/(p—1). Hence we define h(p®)=p/(p—1). If p,, ..., p, are distinct primes,
then by h(ITp) we mean I h(p®)=Ip;/(p;—1).

If p is a prime, denote by v,(n) the exponent (possibly 0) appearing on p in the
prime factorization of n. We define w(n)=2 1, A(n)=2X ,,v,(n). Let t(n) denote the
divisor function, so t©(n)=1I,,,(1 +v,(n)).

Using the equation 6(¢*)=(q° "' — 1)/(q — 1) for primes g, and Theorems 94 and
95 in Nagell [13], we have

pln P

Lemma 3.1. If p+q are primes, then

v (o(g” ?)+va+1), if p>2

Up(O'(q“))é {vz(q+ 1)+Uz(a+ 1)_ 1, lf p=2

From Bang [6] and many others we may obtain

Lemma 3.2. If q is a prime, then w(a(q*)) = t(a+1)—2.

§ 4. The Main Result

In this section we shall prove

Theorem 4.1. For every rational o= 1 and every non-negative integer K, there is an
effectively computable number N(o, K) such that if w(n)=K and n is a primitive
solution of (1.1), then n< N(a, K).

We introduce some notation. If m, n are positive integers, we shall write m|*n if
m|n and every prime factor of m is less than every prime factor of n/m. For example,
1]*¥12, 4[*12, 12|*12, but 2,,*12, 3 ,*12, 6 4*12.
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Suppose
¢,d are positive integers with (c,d)=1;
a=c/d,;
K,k are integers with K=k >0,
D1, ..., Py are primes with p, <... <p,.
Let
A(0)={n:n is primitive and o(n)/n=a}
A, K)={ne A(x) : w(n)=K}
Ao, K, k)={m:w(m)=k and m|*n for some ne A(x, K)}
P(a, K, k)=sup {p prime : p|m for some me A(x, K, k)}
R(a, K, k)=inf{o — h(m) : me A(a, K, k)}
k
B, K;py, ..., p0)= {me A(x, K, k): H1 pilm}

S(aaK; pla "'7pk)=inf{a_h(m):mEB(aaK;pb -'-’pk)} .

Our first task will be to obtain effectively computable upper bounds for the
P(o, K, k).

Theorem 4.2. For every choice of o, K, k with K >k 20, and primes p, <... <p,, there
are effectively computable positive constants p(a, K, k+ 1), r(o, K, k), s(ot, K; py, .., Py)
with

plo, K, k+1)=P(a, K, k+1)
r(a, K, k)< R(a, K, k)
SO,K;py,- o D) ES@, K5 Py D)

Proof. First we note that if we can effectively compute p(x, K, k) and
s(a, K ; py, ..., pi) for all choices of primes p, <... <p,, we may choose r(a, K, k) as
any number satisfying the inequality

0<r(a9 K9k)§lnf{s(aaK; p17 ceey pk): pkél’(“,K, k)}’ (41)

so that r(a, K, k) is also effectively computable.
We now show that we may take

plo, K, k+1)=(K —k)o/r (o, K, k), 4.2)

so that if r(«, K, k) is effectively computable, so is p(a, K, k + 1). Indeed, suppose
me A(a, K, k+ 1), pis the largest prime factor of m, and m=m’'p® where m’|*m. Then
m'e A(x, K, k). Also a<h(m')h(p®)¥~*, so that

h(m)joa>(1—1/p)**21—(K—k)/p.
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Hence

(K—k)a < (K—k)a
a—h(m) = r(a, K, k)’

p<

which proves (4.2).
Next we note that we may assume

c>o(d). 4.3)

Indeed it is easy to show that if c <o(d), then 4(a)=@; and if c=0(d), then A(x)
={d}. Thus if ¢ £ 6(d), everything is effectively computable, so we may assume (4.3).
Thus a1 and a# o (p?)/p® for any prime p and positive integer a. These facts imply

A(,0)=0 and A(x,1)=4,

so that Theorem 4.2 is proved for K=0 and 1.
Suppose now K =2. It is clear that we may take
r(e, K,0)=a—1

so that from (4.2) we may take

K
p(a, K, 1)= &—_‘% <cK. (4.4)

We now compute s(a, K; p) for an arbitrary prime p. If h(p®)<a and if
p*e B(a, K ; p), then

> o —h(p™)= & — P
a—h(p*)>a—h(p*) =12 dp=1)

QUL

If h(p®)>a and if p“e B(a, K; p), then
1 1
a—h a Z-—:— h ®© —-h a
"z -1 7™ —h(®)

1 1
> E(h(P )—)= 2o=1)

If h(p®) =, then (4.3) implies p =0 =2. But A(2)is the set of odd perfect numbers, so
B(2,K;2)=40.
Hence for every prime p, we may take

1
S(OC,K;P)-: d—z(;———l) (45)

Hence (4.1) implies we may take

1
d*(p, K, 1)— 1)’

Hence (4.2) and (4.4) imply
pla, K,2)=(K —1)ad?*(p(a, K, 1)~ 1)< KcdcK <*K*. (4.6)

rie, K, 1)=
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We have now proved the theorem for k <2. Hence we assume K >k=2, and
make the inductive assumption that p(a, K, k) is effectively computable and r(f, K
—1, k—1)is effectively computable for any . We shall show now how to effectively
compute s(a, K ; py, ..., p,) for any primes p, <... <p,. Hence using (4.1) and (4.2) we
shall be able to effectively compute r(a, K, k) and p(«, K, k+1). Our theorem will
thus follow by induction.

Let p, <... <p, be arbitrary primes. We shall compute s(«, K; p;, ..., p,) in each
of the three cases h(lIp?)<a, h(IIp°)>a, and h(IIp?)=o.

Suppose h(IIp°) <o and m=1IIp{ € B(a,K; py, ..., p,)- Then

oa—h(m)>o—h(IIp*) 2 1/d11(p;— 1),
so that in this case we may take
L
dll(p;— 1)’
Suppose h(I1p)>a. Let
x;=[log(ZkeII(p;—1))/logp;]

forj=1,...,k where [ ]is the greatest integer function. Then pj» ™' >2kc I (p;—1).
Let e=1/cII(p;,—1). Using the inequality IT(1 —t,)=1— X, for positive quantities
tys ..ot We have

S, K5 Py oo s D)= 4.7)

x,+1_1

p; p; 1 )
< p‘) (p;—Dp;* pi—1 ( pitt

D; 1
> (T —— _y_
‘( pi—l)(l Zp?"‘“)

> (e

1 1 1
dll(p, = 1))(1 " Zell(p, - 1)) =l “)(1 B 58) >

Hence if m=1IIp{ie B(«, K; p,, ..., ), then at least one a,<x;. But

m/pi e B(a/h(p{), K—1; Pyses Pim 15 Pi 15+ D) -
Thus we may take

S(a$ K9 P15« pk)=inf{h(p‘ih)'r(a/h(p?l)’ K- 1’ k— 1) 1 élék’ 1 —<_—ai<xi} . (48)

Our last case is h(IIp®)=a. In this case we have ¢/d=a=IIp,/(p,— 1), so that
c/lp;. Say m=1IIp{ € B(a, K ; py, ..., py). Fori=1,..., k we write

a(pi)=uv; (4.9)
where every prime factor of u; is in {p,, ..., p,} and (v, [Tp;)=1. Say m|*n where
ne A(a, K). Suppose 24n. Then 2<p, <...<p,, so d, the denominator of o= ITp,/

(p;—1)=o0(n)/n, is even. But d|n, contradicting 2tn. Hence we must have 2|n, so
that

p,=2. (4.10)
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Now dcr(n)=cn, c!Hpiv and P.-*(T(p?'), so that for i= 1, cens k, we have
wl@(pf)Som)—-1=K-1.

Using Lemma 3.2 we then have

(g, +1)SK+1. (4.11)
Noting that
v, (0 (pf'?) <log, (a(pl’~ %) <(p;—1)logp;/logp; (4.12)

for j>1 and that
v,(p;+1)=log,(p;+1)<1+logp,/log2, (4.13)
we have for i=1,...,k [using Lemma 3.1 and (4.11)]
Qu)= Y v, (@(PF)< Y v, (a;+ 1)+ Y (p;— Dlogp,/logp;
Jj¥i Jj¥i jFi
St(a;+1)—1+(k—1)(p,—1)logp;/logp,
SK+(k=1)(p.—1).

Hence

u.gp’{(—lﬂk—l)(m—l). (4.14)
Let

D=2"*%([K +(k—1)(p,— 1)]logp,)*°. (4.15)

We shall show in the following that at least one a;<D. It will then follow that
a—h(Ipy)=Ih(p;*)— ITh(p;")
> ( [1 h(D?"))(h(pf)—h(pjf’))

i*j
>h(p?)—h(py)>p; @V zp;P.
Thus we will be able to take

s, K3 pys s p)=pi °

Hence suppose the contrary holds; that is, for each i we have

a;zD. (4.16)
In the notation of (4.9) there are two possibilities:

(1) wvy,...,v, are mutually distinct;

(2) v;=v; for some i<j.
We shall show both cases give contradictions, thus proving the theorem.

Suppose (1) holds so that v, ..., v, are mutually distinct. Then (4.14), (4.15), and
(4.16) imply

v/pf =0 (pf)fu;p? >2% 2 fu; 227 fu;> 1
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so that
k1 ko1 2
v,;>3 and S= Z—— Z—2<C(2)—1<§. (4.17)
l i=2Vi
Let v=1IIv,. Then v|a(IIp{})|a(n)|cn. But (v, IIp;)=1 and c|IIp;, so v|n. Then vIIp{in.
Now
1 v, +1

v dlv U; Uy

since vy, ..., v, are distinct. Also [using (4.9)]

a - a;+ 1 1
H(a(p,‘) D ) gk =n(1 )
Di p;’

p¥ A

pi

+S (4.18)

1
ZHQ‘1+m—nmJ
1 k 1
(1 I )

) W |
> (L—Zzﬁ. (419)

i=2

Multiplying (4.18) and (4.19) and using (4.17) we have

(=00 it o0,y ()
n D; v i Di

>("1+1 +S>- o1 -(1—15)
v, v, +1 2

3 1 1 3
+IsH1=Z=8s)=14+-s[1-2

This contradiction shows that case (1) is impossible.
We now assume case (2) holds; that is v;=v; for some i <j. To simplify notation
we shall let

P=p,~,q=p,~,a=a,~+1,b=aj+1,

Then
p<q,a>D,b>D.

Let

ﬁzuj(pj_l) a(pp)(p,—1) ¢"—1
up;—1)  o@p,—1) p—1

If B=1, then g® —1=p°—1, so that q=p, a contradiction. Hence (4.14) implies
1<max{B, 1/} <pk+*k- D@1 (4.20)
so that
0<|logp|<D/1000p, . 4.21)
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Note that also
lﬂ_q_b _|@ D=~ 1| _1B—1
Pl - | P
From (4.21) we have

(4.22)

2
alogp>Dlog2> <§D+3)log2

>(2|log B+ 3) log2 >log(2(8 + 1)/B)

so that p*>2(B +1)/B. Hence from (4.22) we have |f—q°/p%| <(B+1)/p* <B/2, so
that

/2 <min {B,¢"/p*} <max {B,q"/p*} <3B/2. (4.23)
Hence we have

I =|logf—blogq+alogp| <(2/B)IB —q°/p°|

=2|1-1/B|/p*.

Then

T=—logl'> —log(2|1—1/B|)+alogp

> —2—|logf|+alog2.

Hence

T>0.69a (4.24)

since T <0.69a implies a <(2+ [logf]) (0.003)”* < D, contradicting (4.21).
We also have

azb, (4.25)
for if a<b, then by (4.21)
@1 > (L4 1/p) > (14 1/p) > (14 1/p2rencr
2 (1+1/3)08382) 5 367

contradicting (4.23).
We use Theorem 2.1 for the inequality

0<|logf—blogq+alogp|=e T <e™ 6%

where we may take A=pf**~ D=1 [¢f (4.20)], H=a [cf. (4.25)], and 6 =0.69
[cf. (4.24)]. The conclusion is that

a<21479(0,69)"**([K + (k- 1) (p,— )] logp,)** <D,

a contradiction. Hence we have a contradiction for case (2) as well as case (1), thus
completing the proof of Theorem 4.2.
We now turn to the proof of Theorem 4.1:

Proof of Theorem4.1. Suppose a(n)/n=a, nis primitive, and w(n)= K. Theorem 4.2
gives us effectively computable upper bounds for each of the prime factors of n.
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Indeed if the prime factorization of n is p{'... pg< where p, <... <py, then Theorem
4.2 implies for i=1,...,K that

piép(ay Ka l)

where p(a, K, i) is effectively computable. Hence to prove Theorem 4.1 all we need do
is effectively compute upper bounds for the exponents a, ..., ag.
From the equation o(n)=an=cn/d, Lemma 3.2 gives us for any i,j

v,(a;+1)=t(a;+1)— 1 =w(o(pf)) +1
Sow(en)+1=Zw(c)+K+1. (4.26)
Then Lemma 3.1, (4.12), (4.13), and (4.26) give for any i

a;=v, (N <0, (d)+v,(0m)=v,d)+ } v,(0(p})

évp,(dH’ Z vpi(aj+1)+ Z (p;—1) logpj/logpi

jFi j*i
Sv, (@ +H(K—1)(w(c)+K+1)+(K—1)(pg—1)
<Qd)+(K—1)(w(c)+ K+ p(a, K, K)). (4.27)

This completes the proof of Theorem 4.1.

§ 5. Odd Solutions of (1.1)

In this section we obtain the explicit upper bound (1.2) for the odd solutions of (1.1)
with exactly K distinct prime factors. In view of (4.10), we note that the lengthy and
difficult case h(IIp)=a in the proof of Theorem 4.2 is not necessary in the
consideration of odd solutions of (1.1).

We denote by p/, v, s’ the functions defined in the statement of Theorem 4.2
corresponding to odd solutions of (1.1). In computing r'(x, K, k) we need only
consider (4.1), (4.5), (4.7), and (4.8). It is not hard to show (by induction) that if
K=k=2, then

— 2k

k
r(o, K, k)> (2CK [1P(K, i)) ) (5.1
i=2

Hence another induction argument coupled with (4.2), (4.4), and (4.6) shows that if
K=k=1, then

p'(o, K, k)< (2cK)?* ", (5.2)

Now suppose n= n pixis an odd solution of (1.1) with the K distinct prime factors
..,Dg- Then from (4.27) and (5.2) we have
4, 2Qd)+(K—1)(w(c)+ K+p'(2, K, K))
<cK+K2+(K—1)(2cK)¥ """
<K(Q2cK)¥ " 2,
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Hence for K>2,
n=Ip»<p'(a, K, K)K@K2"""
£ b
<(2eK )RR R ek R

2 K(K+1)/2+1

<(2¢K)120)
<(2cK)20*"

Also we note that this estimate holds for K =1, since if n = p?, then ¢/d = a = o(p*)/p%,
son=p‘=d<c.

§ 6. Anderson’s Conjecture

In [2], Anderson conjectured that the set of rationals of the form a(n)/n is a
recursive set. We prove:

Theorem 6.1. Suppose either that the set of Mersenne primes is infinite or that there is
an effectively computable upper bound for the set of Mersenne primes. Then for any
K, the set R(K) of rationals of the form a(n)/n where w(n) <K is a recursive set.

Proof. Let o be a rational number. Let S, be the set of all primitive integers »n such
that o(n)/n=o and w(n) K. Let S, be the set of all odd integers m such that a(m)/m
=u/2 and w(m)< K —2. Theorem 4.1 implies that there are effectively computable
upper bounds for both §; and S,. If S, =+, then aeR(K). If S;=S,=4, then
a¢ R(K). Suppose S; =@ and S, 0. If there are infinitely many Mersenne primes,
then for each meS,, there is an even perfect number e with (e,m)=1, so that
o(em)/em=o. Hence ae R(K). Suppose there is an effectively computable upper
bound for the set of Mersenne primes. Then for each me S, we can effectively decide
whether or not there is an even perfect number e for which (e, m)= 1. If there exists
such a pair e, m, then ae R(K). If not, then a¢ R(K).
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