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A tiling of the plane with polygonal tiles is said to be strict if any point common tc two tiles is a
vertex of hoth or a vertex of neither. A triangle is said to be rational if its sides have rational
length. Recently R.B. Eggleton asked if it is possible to strictly tile the plane with rational
triangles using precisely one triangle from each congruence class. In this paper we constructively
prove the existence of such a tiling by a suitable modification of the technique wuggested by
Eggleton. The theory of rational points on elliptic curves, in particular, the Nagell-Lutz theorem.
plays a crucial role in completing the proof.

1. Introduction

A tiling of the plane with polygonal tiles is said to be strict if any point common
to two tiles is either a vertex of both or of neither. A triangle is said to be rational if
its sides have rational length. In [2], Eggleton asked if it is possible to strictly iile the
plane with rational triangles using precisely one triangle from each congruence
class. In this paper we constructively prove the existence of such a tiling.

Eggleton [2] suggested a method of proof that reduces the geometric problem to
proving that if a, b, ¢ are rationals with 0 < a < b and 0 < ¢, then there are infinitely
many rational solut.ons to

x—alx=y-bly+c (1)

However there are choices of a, b, ¢ for which (1) does not have infinitely many
rational solutions. Huff [3] proved that the only rational t for which (£,0) is
rationally distant from both (0, 1) and (0, 2) is ¢ = 0. This implies (compare with the
proof of Theorem 2.1 in Section 2) the only rational solutions of (1) for a = 1/4.
b = 1, ¢ = 0 are the four solutions given by x = = 1/2, y = = 1. It can also be shown
that (1) has no rational solutions fora =b=c=1andfora=1,b=2, c=0.

Our main idea is to use the theory of rational points on elliptic curves, in
particular the Nageii-Lutz theorem, to show that with an extra condition on the
parameters a, b, ¢, equation (1) will have infinitely many rational solutions. Then we
shall show that this extra condition is weak enough to solve Eggleton’s tiling
problem affirmatively by a suitable modification of the method of proof suggested
by him.
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64 C. Pomerance

The tiling we obtain is locally finite, in that every compact set intersects at most
finitely many tiles. In the more traditional tiling problems where only finitely many
congruence classes of tiles are used, the locally finite condition is automatically
satisfied. But this is not the case in our problem. We remark that it is possible to
obtain a solution to Eggleton’s tiling probizm without using the Nageli-Lutz
theorem, but then sacrificing the locally finite property. In a forthcoming joint
paper with Eggleton, we skl use an analogue of this non-locaily finite tiling
together with the Nagell-Lutz theorem to obtain a “strict” tiling of three-space
with raticnal-edged tetrahedra using precisely one from each isometry class.

I take pleasure in acknowledging the referee’s many helpful suggestions for
improving the exposition of this paper. In addition, the referee corrected a minor
error in the proof of Theorem 2.2.

2. Preliminaries

If A, B, ' are non-collinear points on the plane, by ABC we shall mean the
triangle with vertices A,B,C. By AB we shall mean the line segment with
endpoints A, B. By AB we shall mean the length of AB. By x(A) we shall mean
the x-coordinate of A.

We record the following two facts noted by Eggleton [1]:

Property 1. If d is the length of an altitude of a rational triangle, then d* is

rational, and every positive rational arises as the value of d° for some rational
triangle.

Property 2. An altitude of a rational triangle intersects the extended side
perpendicular to it at a point rationally distant from both endpoints of the side.

The following two theorems will be relevant:

Theorem 2.1. Let a >0 be rational. The set of rationais t such that (1,0) is
rationaliy distant from (0,Va) is dense in the real numbers.

Proof. If d, ¢ are rationals such that d*~ 1> = q, there is a nonzero rational x such
that d+t=2x and d~t=a/2x, so t = x — a/dx. Conversely (x — a/4x.0) is
rationally distant frum (0, Va) for every nonzero rational x. But the set of rationals
of the form 1 — a/4x, x rational, is dense in the real numbers.

’f‘heorem 2.2. Let a, b, c be positive rationals written in reduced formas a = mlﬁn. ,
= 0:/B:, ¢ = y./y:. Suppose

vk (e~ o). @)
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Then_the set of rationals t such that (t,0) is rationally distant from both (0. V a) and
(¢, V'b) is dense in the real numbers.

We postpone the proof of Theorem 2.2 to Section 4.

3. The tiling

The triangles are arranged into a number of horizontal strips as in [1]. Each
triangle has a side on one boundary of its strip, with the opposite vertex on the
opposite boundary. The side of the triangle lying on the strip boundary is a maximal
side of the triangle, so the width of the strip is a minimal altitude for each triangle in
the strip. Two abutting triangles in a strip form a trapezoid. The x-coordinate of
each vertex of every triangle is rational (compare with Property 2).

We denote the horizontal lines which form the edges of the strips, in order of
increasing height, by ..., L., L, I, 1, L., ... where I is the x-axis. Let Va, be the
distance between I, and /.., (compare with Property 1). The numbers a, are
positive rationals and a.# a,..,. Written in reduced form, we have a. = a./B.
where a., B. are relatively prime positive integers.

Two points P, Q, one on /.., and the other on [,.;, will be called well-placed if
x(P) # x(Q) are rational and y, the numerator of x(P) ~ x{Q) in reduced form, is
such that

Y * (a“ﬁ'\*l - anﬂﬁn )

For each n there are only finitely many divisors of a.f..: — @, .18, s0 we have the
following useful result.

Lemma 3.1. Let ., !’ denote .., L.., in some order. Fixing P on ! with x (P) rational,
the set of points Q on I’ with x(Q) rational, x(Q) # x(P). such that P, Q are not
well-placed is a bounded discrete subset of I'.

In what follows we have implicitly in mind a one-to-one correspondence between
the set of congruence classes of rational triangles and the natural numbers, so
phrases such as “a triangle in the first congruence class not already considered”
have meaning.

We begin our tiling by placing a triangle in the first congruence class in the strip
bounded by I, and /,, with a maximal side on [, and opposite vertex at the origin O.
Denote this triangle by ABO (see Fig. 1). Note that Property 2 implies x(A) and
x(B) are rational. By “the triangle directly above ABO™ we mean that triangle, yet
to be chosen, in the strip bounded by [, and . which shares the side AB. By “the
triangle directly below ABO™ we mean that triangle, yet to be chosen, in the strip
bounded by I_, and l, which has a side on ., and a vertex at O (in our tiling there
will be just one such triangle). Continuing in this fashion we can describe a doubly
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infinite sequence of triangles, yet to be chosen, arranged in a “‘column™ above and
below AB. We call this the critical column.

On each lire [, the critical column will have two vertices if n is odd, one vertex if
n is even. We shall construct the critical column so that for each k the rightmost
vertices on .. -, and [z, are well-placed, as are the leftmost vertices on these same
lines.

As we build the critical column we partially fill in the strips to either side with
triangles, crezting a “‘diamond” of triangles. As construction of the critical column
continues, this **‘diamond” expands, filling the plane.

We can now describe how the tiling continues after the placement of ABO. First
we construct the triangle directly above ABO as follows (see Figure 1). Consider
the perpendicular bisector of AB, extended above I,. As a point P on this bisector
descends, approaching I, the common lengths AP and BF pass through a
continuum of values. Hence every rational in this continuum is attained. Thus we
may choose P so that ABP is rational, AP = BP < AB, ABP is incongruent to
ABO, and a. # a,. The two triangles in Fig. 1 constitute our first “diamond”.

Next we wish to find a place for a triangle in the first congruence class not already
represented by a tile. In Fig. 2 this triaagle is denoted CDE, where DE is a maximal
side. and x(E) > x(D). We reserve the freedom of sliding CDE to the left or right
in its strp.

We begin by ietting a,, a-, be arbitrary positive rationals subject to the restraints
ai#a,#a.,#a.and Va,+Va_, = 1. (Noie that Va_, is the length of a minimal
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altitude of CDE. By Lemma 3.1. we can choose C on I, so that C and O are
well-placed and x(C) is rational. This fixes D and E on [, since the triangle CDE
was already chosen. By Theorem 2.2 and Lemma 3.1 we can choose F, G on [ | so
that x(F), x(G), CF, CG, FO, GO ere all rationzal; A, F and D, F are well-placed
as are B,G and E,G; x(G)—x(F)=CF, CG,FO, GO, and CFG,FGO are
incongruent to all previously chosen triangles.

We next choose H (Fig. 3) so that DEH is an appropriate isosceles triangle (as
we chose P).

Since B, G are well-placed, by Theorem 2.2 we can choose a point I on [, so that
x(I), BL, GI are rational; x(I)- x(0O) = BO, BI, GO, GI,;, and BIO, GIO are in-
congruent to all previously chosen triangles.

Next by Theorem 2.2 and Lemma 3.1 we can choose J on /.. so that x(J), GJ, EJ
are rational; I,J are well-placed; x(J)- x(C)= CG. CE, GJ,EJ; and CGJ,CFJ
are incongruent to all previously chosen triangles.

Since I,J are well-placed, by Theorem 2.2 we can choose K on [., so that
x(K), IK,JK are rational; x(K)-x(G)=GI, GJ,IK,JK; and GIK,GJK are
incongruent to all previously chosen triangles.

In a similar fashion we sequentially choose L, M, N to fill in the corresponding
“half-diamond™ on the left side of Fig. 3. We have ensured that our second
“*diamond” has height greater than 1.

It should now be clear how we proceed. We next consider a triangle in the first
congruence class not already represented by a tile and find a place for it in the
critical column in the third strip above ABP, proceeding as with the placement of
CDE. After putting an isosceles triangle above this triangle we fill out an enlarged
“diamond”’. We can ensure that this third “*‘diamond’ will have height greater than
2. Continuing in this fashion, extending the critical column by a height greater than
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! alternately above and below the previous “diamond’"and filling in to create a new
«diamond’’, we obtain our tiling. Indeed, as our diamond expands, the number of
triangles in a strip increases without bound, and each triangle has an edge of its strip
boundary that is longer than the strip width. Hence each strip is completely tiled.
Moreover since we ensure the critical column continues to grow in height by an
amount greater than 1 in both directions after every two *‘diamonds” are completed
(after the first), our horizontal strips fill the plane. Infinitely often we repeat the step
of placing in the critical column a triangle in the first congruence class not already
represented by a tile, so we are assured of using at least one triangle from every
congruence class. At each step no triangle is used as a tile if it is congruent to a
triangle already used, so we are assured of using at most one triangle from each
congruence class. This proves:

Theorem 3.2. There is a locally finite strict tiling of the plane using precisely one
triangle from each cong:uence class of rational triangles.

4. The proof ¢! Theorem 2.2

Recall that a, b, ¢ are positive rationals, with reduced form a = a,/B:, b = a./B..
¢ = y4/y2 such that

YI*(alBZ— azﬁl)- (2)

As in the proof of Theorem 2.1, ¢ is rational and (1, 0) is rationally distant from both

(©, \/-c;) and (c, \/5) if and only if there are rationals x, y with ¢ being the common
value of

x—aldx =y - bldy +c. 3)

Multiply (3) by xy(x —y), gather the third and fourth order terms, and complete
the sauare in their factor complementary to xy. Multiply by 4aiB:B%y3y/x* and
make the following change of variables:

= —ay/x, w = BiBy.u(2y - 2x + ¢), 4)

where a = a,8:8273. Let B = a,fiB.v} and y = B:B.7v:. Note that if (x, y) is a real
salution of (3), then (u, w) is a real solution of

=ul+ (Y +a+ B)u’+ apu. ©)

Conversely, if (u, w) is a real solution of (5) with u# 0, — a, — B8, then (x, y), given
by the inverse of (4), is a real solution of (3). The inverse of (4) is

-Cou —aflya W ux
wran) Y Ta ©

To prove Theorem 2.2, it will be sufficient to prove that the rational solutions of
(%) are dense in the real solutions. For then it will follow that the rational solutions
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of (3) are dense in the real solutions, since the change of variables relating (3) and
(5) is birational and bicontinuous. But (3) has a real solution (x, y) for every x# 0.
so the set of t = x — a/4x for which (x, y) is a rational solution of (3) will be dense in
the set {x — a/4x | x # 0}, which is all the real numbers.

Let P be the integer point ( — a, ay). We easily verify that P is a solution of (5). [t
- corresponds to the solution x =y = (b - a)/dc of (3) given in [2]. We compute 2P
on (5); that is, the reflection in the u-axis of the second intersection point of the
tangeni to (5) at P with (5) (see Mordell [5] or Tate [6]). We get

or=((B5%) - (55%) ++(55) - «(55%):

We note that the coordinates of 2P are not integers, since y /f (B - a). Indeed this
follows from (2) and the fact that (y,,y.) = 1.

We now use the Nagell-Lutz theorem (again see [S] or [6]), which shows how to
determine all rational points of finite order or a non-singular elliptic curve in
normal form. Such points must have integer coordinates, and the second coordinate
must be zero or a divisor of the discriminant. Hence it follows that 2P is not of finite
order, so (5) has infinitely many rational solutions.

Note now that the graph of the real points of (5) has two branches: a bounded
branch and an unbounded branch. The bounded branch is *“‘even’ in that a
non-tangent intersecting line meets the branch twice; the unbounded branch is
“odd’ in that a non-tangent intersecting line meets the branch once or three times.
By a theorem of Hurwitz (Theorem 13 of [4]). if an elliptic curve whose real points
have an “‘even” branch and an “odd” branch has infinitely many rational points,
then the rational points are dense on the ““odd™ branch, and on the “‘even’ branch
they are either dense or entirely absent. The rational point P lies on the “even™
branch of (5). Hence the rational solutions of (5) are dense in the real solutions of
(3). (Note that the group of real points of (5) is topologicaily isomorphic to the
compact abelian group S'> Z, where §' is the circle group. Under this isomor-
phism the rational points of (5) get sent to an infinite subgroup of $* x Z; which is
not contained in S'. Hence the rational points are dense.) This completes our proof
of Theorem 2.2.

5. Comments
With slight modifications in the proof of Theorem 3.2, we can prove:

Theorem S5.1. Let T be any set of positive real numbers whose squares are rational.
If T has more than one element, then the plane can be strictly tiled with precisely one
mangie from each congruence ciass of rational triangles with minimal altitude length

inT.
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Corollary 5.2. The plane can be strictly tiled with precisely one triangle from each
congruence class of rational triangles with rational arza.

We do not know if Theorem 5.1 remains true it T has just one element.

Let 8. be a cardinal number with 1=<§, <N, Having in mind a specific
one-to-one correspondence between the congruence classes of rational triangles
and the natural numbers, we can prove:

Theorem 5.3. The plane can be strictly tiled using precisely 8, triangles from the nth
congruerce class of rational triangles, n =1,2,3,... .

Theorem 5.3 can be generalized along the line of Theorem 5.1.
We can also prove:

Theorem 5.4. The plane can be strictly tiled with precisely one triangle from each

congruence class of algebraic triangles (triangles with sides whose lengths are
algebraic numbers).

Theorem 5.4 can be generalized along the lines of Theorem 5.1 and 5.3. The

corresponding assertions with the field of rea! algebraic numbers replaced by any
subfield are also true.
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