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The Prime Number Graph

By Carl Pomerance

Abstract. Let P, denote the nth prime. The prime number graph is the set of lattice
points (n, pn), n=1,2,.... We show that for every k there are k such points that
are collinear. By considering the convex hull of the prime number graph, we show
that there are infinitely many n such that 2p, < Py i+ Pyyy for all positive i < n.
By a similar argument, we show that there are infinitely many n for which p’21 >
PP, 4+ for all positive i < n, thus verifying a conjecture of Selfridge. We make

some new conjectures.

1. Introduction. Let p, denote the nth prime. In [3], Erdos reports that he
and E. G. Straus conjecture that for all sufficiently large n there is a positive i < n
with p2 <p,_p, ;- In [4], Erdés repeats this conjecture, but here it is remarked
that J. L. Selfridge takes the opposite opinion. That is, Selfridge conjectures that
there are infinitely many »n with

(1.1 pf, >Pp_iPny; forall positive i <n.

In this paper we give a surprisingly short proof of Selfridge’s conjecture using only that
log p,, = o(n). Our proof is geometric and generalizes to prove a number of related
results. In particular, by studying the geometry of the prime number graph; that is,

the set of points (1, p,) forn =1, 2, ..., we show there are infinitely many n for
which
(1.2) 20, <Pp_i + Ppy; for all positive i <n.

Although introduced as a tool to prove (1.2), the prime number graph is also re-
lated to other problems. For example, the famous n(x + y) conjecture of Hardy and
Littlewood (7(x + y) < m(x) + n(y) for 2 < x, y) can be recast into a statement about
the prime number graph (cf. Segal [15]). Of course, the m(x + y) conjecture is now
in disrepute (Hensley and Richards [8]), but it has not yet been disproved.

We conjecture that for every k there are k points on the prime number graph
which form an arithmetic progression of vectors. This conjecture will follow if for
every k there is an n with p, , 1, P, 15, . . -, P4 @ll in arithmetic progression.

This last statement can be shown to follow from the prime k-tuples hypothesis (an-
other conjecture of Hardy and Littlewood, this one not in disrepute—see [8] for a
statement). In this paper we give an unconditional proof of the following weaker re-
sult:
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400 CARL POMERANCE

THEOREM.  For every k there are k distinct integers n(1), . . . , n(k) such that
(n(1), Pp(1y)s - - - > (1K), Py (k) are collinear.

An old and well-known conjecture is that for every k there are k& primes in arith-
metic progression. This conjecture, although similar sounding to the above theorem,
neither implies it nor is implied by it.

I have benefitted greatly in preparing this paper from stimulating conversations
with many of my colleagues. In particular, I gratefully acknowledge the help of E.
Azoff, E. R. Canfield, H. Pittie, and J. Shyr. A quick look at the references is all
that is needed to see the enormous influence of P. Erdés on the topics dealt with in
this paper. I would like to especially thank him for the encouragement he has given me.

2. The Convex Hull. In this section we prove that (1.1) and (1.2) each hold
for infinitely many n and prove some related results.

THEOREM 2.1. Let 0 <a, <a, <. .. be a sequence of numbers with lim n/a,,
= 0. Then there are infinitely many n for which

2.1 2, <a, ;ta,,; forall positive i <n.

Proof. The boundary of the convex hull of the set {(n, a,):n=1,2,... }is
polygonal. The assumption lim n/a,, = 0 implies that the nonvertical portion of this
polygonal boundary is convex and has infinitely many vertices. Moreover, each of
these vertices is in the form (n, a,)) for some n. It immediately follows that (2.1)
holds for each such n. O

COROLLARY. There are infinitely many n for which (1.2) holds.

THEOREM 2.2. Let 0 <a, <a, <... be a sequence of numbers with lim a,/n
= 0. Then there are infinitely many n for which
22) 2a, >a, ; ta,,; forallpositivei<n.

Proof. The proof is the same as that for Theorem 2.1, except that now the non-
horizontal portion of the convex hull boundary is concave and has infinitely many
vertices. O3

COROLLARY. There are infinitely many n for which (1.1) holds.

Proof. We apply Theorem 2.2 to the sequence log p,, log p,, ... . By either
the prime number theorem or the more elementary estimates of Chebyshev, we have
P, <cn log n where c is a constant. Then lim(log p,)/n = 0. We, thus, have infinitely
many n for which

2log p, >logp,_; +logp,.; forall positive i <n.
Exponentiating, we have (1.1). O

If 0 < a < 1, we can similarly consider the sequence p§, p$, . . . , and prove

that the set P(a) of n for which

(2.3) 2p% > p_; + P54y for all positive i <n,
is infinite. If P(0) is the set of n for which (1.1) holds, we have
24 0<a<p<1 implies PB) C P(a).
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To see this, let f(x) = r* + s*, where r = p,_;/p,,, $ = D, 4;/P,- Then fis convex,
£(0) = 2, f'(0) = log(rs). Hence, if f(8) < 2 for some § > 0, then rs < 1 and f(a) <
2forall a, 0 < a<g.

As usual, let li(x) denote the improper integral

f: dtflog t.
THEOREM 2.3. There are infinitely many n such that
2.5 21i(p,) <li(p,_;) +1i(p, ;) for all positive i <n;
and there are infinitely many n such that
(2.6) 2lip,) > li(p,,_;) + li(p,, ;) for all positive i < n.

Proof. 1t is known (the prime number theorem) that li(p,) ~ n as n —> .
From a famous result of Littlewood (cf. Ingham [9]) we have

lim sup(li(p,)) — n) = + o0, lim inf(li(p,,) —n) = —ce.

(The theorem to which we refer is that li(x) — n(x) is unbounded from above and be-
low. It is an easy corollary that the same is true when x is restricted to prime values.)
Hence, there are infinitely many vertices on the upper boundary of the convex hull of
{(n, li(p,)): n =1, 2,...} and also infinitely many vertices on the lower boundary.
The upper boundary vertices give solutions of (2.6) while the lower boundary vertices
give solutions of (2.5). O

Given Littlewood’s result quoted above on the gross swings in magnitude of
li(x) — m(x), it would seem that if f(x) is any concave function on x > 0, then |n(x)
— f(x)! is unbounded (or equivalently, if g(x) is any convex function on x > 0, then
Ip,, — g(n)!/log 2n is unbounded). However, this conclusion does not follow from
Littlewood’s theorem; that is, there are hypothetical prime distributions which are
consistent with Littlewood’s theorem and for which In(x) — f{x)| is bounded for some
concave function f(x). An analogy might be in order. The orbit of the moon around
the sun certainly has gross discrepancies from the orbit of the earth around the sun;
but nevertheless, the moon’s orbit is always concave with respect to the sun. However,
we can prove

THEOREM 24. If f(x) is any concave function on x > 0, then |m(x) — f(x)! is
unbounded. Also, if g(x) is any convex function on x > 0, then |p, — g(n)!/log 2n
is unbounded,

Proof. By the prime number theorem and a simple computation, the second
statement is equivalent to the first, so we need only prove the first. Let f(x) be a
concave function on x > 0 such that In(x) — f(x)|is bounded. We may assume f is
smooth. Since f(x) ~ x/log x, an easy argument gives f'(x) ~ 1/log x. (By the mean
value theorem and f' nonincreasing we have

f(Zx)'f(x)<f,(x)<f(X)—f(X/2)
x x/2
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for all x > 0. Multiplying this inequality by log x and letting x — o, we get
lim,_, ..(log x)f'(x) = 1.) Thus, for any constant

lim (f(x + ¢ log x) — f(x)) = ¢

X—> 00

Now an old result of Westzynthius (see [1]) is that

lim sup(p,, . ; —p,)/log n = .
We, thus, have for every c, arbitrarily large numbers x,, for which n(x) is constant on
the interval [x,, x, + ¢ log x,]. For large x, there is then in this interval an x
where Im(x) — f(x)| >¢/3. O

We remark that using a more modern result of Rankin [12] (or Erdés [1]), we
have |n(x) — f(x)!/(loglog x)! ¢ unbounded for any € > 0.

3. Onp2 —p, Ppii Let M(n) = maxy;c,Pp_iPn+i By the Corollary to
Theorem 2.2, there are infinitely many n with pf, — M(n) > 0. We now show this
difference can be arbitrarily large.

THEOREM 3.1. lim sup(p? — M(n)) = .

Proof. We shall show that pﬁ — M(n) — °° as n runs through the set P'(1/2),
the first coordinates of the vertex points on the boundary of the convex hull of
{(m, /p,):m=1,2,...}. Sayn€P\(1/2) and i <n is such that

(3.1) Pn = VP <Pp—pp Ppii <Pp + VD,

Letd =p, =Py d =Dpy;— Pp- Then

0 < pj —M(n) <P = Pu_iPnsi
=@d-d)p, +dd' <d-d + p,.

(3.2)

Hence, we must have d' <d. Thus, we have either (1) d' =d or (2) d' <d. In the
second case, we have from (3.2) that

(3.3) P = Dpipnyi > @ —d)p, >p,.

We shall now show that for each e > 0, there is an n,(€) such that for all n >
ny(e), n € P'(1/2), we have

(34) P, ~Pn_y > (1 —e)log n.
Assuming (3.4), we have for the above case (1) and large n that
(3.5 P2 = Pp_iPpsi = dd =d* > (1 - 2€)log*n.

To prove (3.4), let f be the function whose graph is the upper boundary of the convex
hull of {(n, V/p,): n =1,2,...}. By the prime number theorem, f(x) ~ Vx log x
as x — oo, Since f is concave, we have f'(x) ~ ¥%\/log x/x as x — oo, ignoring the
isolated values of x where f'(x) does not exist. (Let § > 0 be small. Since f is con-
cave, we have
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1 +8)x)—f(x x)—f(1-6
J(( x) — f(x) <f') <f( )~ S )
ox ox
for all x where f'(x) exists. Multiplying the inequality by 2v/x/log x and letting x

—> oo, we have

21+ 8 —1)/6 < lim 2v/x/log xf'(x) < 2(1 —+/1 = 8)/5.

X—> 00
Now letting & — 0, we have lim,_, ., 2v/x/log x f'(x) = 1.)
The slope of the segment joining (1, v/p,) to (n = 1, v/p,,_,) is
by~ pn—l
2\/pn—l
Hence, if (3.4) fails, this segment has slope less than

\/pn —\/pn—l <

(1 —¢e)logn < 1-¢€/2 flogn
2Pp_y 2 n
for large n. Thus, if n € P'(1/2) and n is large, we have f(n) = \/p,, so that (n — 1,
\VP,_;) lies above (n — 1, f(n — 1)), a contradiction. Thus, we have established (3.4).
Now assume n € P'(1/2), n is large, and i < n is such that (3.1) fails. Let p =
Pu—i» 4 = Ppp D = q —p. Then using P'(1/2) C P(1/2) (cf. (2.3)),

P, —Vpa > (Vp +Va)2)* —/pq
= (D/2(Vp +V4))* > D?/16q.

If ¢ < 2p,,, then D?/16q > 1/32 since our assumption that (3.1) fails implies D >
\/pn, If ¢ > 2p,, then D > q/2, so D?/16q > q/64. Thus, for large n and either
case,

<fn-0)

Py =~ Pp—iPnsi > 1132,

so that

(3.6) pﬁ —pn—ipn+i>pn/32'

Our theorem now follows from (3.3), (3.5), and (3.6). O
We remark that we have actually proved

lim sup(pf, - M(n))/log*n > 1.

4. Collinear Points on the Prime Number Graph. A well-known conjecture is
that for every k there are k primes which form an arithmetic progression. There is
even a stronger conjecture that the kK primes be consecutive. If this stronger conjecture
were true, we would have the corollary that for every & there are k points on the prim«
number graph which are collinear. We now prove this result without any unproved
hypothesis.

THEOREM 4.1. For every k there are k collinear points on the prime number
graph.
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Proof. 1t is enough to show that for every sufficiently large k, there are k col-
linear points on the inverse of the prime number graph:

{@,,n):n=1,2,...%

We note that by the prime number theorem with error term, we have an x, such that
for all x > x,,

4.1) Im(x) — li(x)! < x/log*x.

k

Let k be a large enough integer so that if u = €, v = u + uflog u, then

u>x,, 2uflog®u > vflogv.

Let T be the parallelogram bounded by the two vertical lines x = u, x = v and by the
two lines with slope 1/k through

(u, li@w) + 2uflog*u), (u, li(u) — 3u/log*u).

We now note that if u <x <wvand ly — li(x)| < x/log*x, then (x, y) is in 7. This
result is checked by an elementary calculation, the details of which we suppress.

We have by (4.1) and the above, that if u <p, <v, then (p,, n) lies in T. Now
consider lines passing through lattice points in the interior of T with slope 1/k. There
are exactly

Sku/log*u = Suflog3u
such lines. But by (4.1),
() — m(u) ~ (v — u)/log u = uflog*u,
so that we have
m(v) — m(u) > u/2 log?u.
Thus, one of the above-mentioned lines passes through at least

(Suflog®u) ™1 (/2 log*u) = k/10

points (p,,, n) withu <p, <v. O

It was pointed out to me by P. Erdés that this proof generalizes to give the fol-
lowing striking result: for any given k, the set of n for which (n, p,,) is not on a
line with k other points (m, p,,,) has density 0.

It is interesting that the above proof uses an error term in the prime number
theorem. (Rather that (4.1), all that we really need to prove the theorem is an error
term of o(x/log?x).) If a, < a, <...is a sequence of integers with @, =
(1 + o(1))n log n, we cannot prove that for every k there are k points (n, a,,) collinear,
but we nonetheless conjecture that this is the case. We can prove that if £(x) is a smooth
convex function with f(x) = O(xv/log x) and a,, = (1 + o(1))f(n), then for every k
there are k points (n, a,,) collinear.

In a forthcoming paper we shall show that if the increasing sequence of integers
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a,, does not have density 0, then for every k there are k of the (n, a,) collinear. More
generally, we shall prove that given any k and B there is a number n(k, B) such that
ifn>n(k, B)and uy,u;, ..., u

, is a sequence of points in Z* with

then k of the u; are collinear. For related results see Ramsey [10] and Ramsey and
Gerver [11].

5. Further Comments and Problems. Recalling from Section 2 the definition of
P(a), we note that for every a € [0, 1),

(5.1) U PO = P@.

>«

Indeed, if n € P(@), since the inequalities (2.3) and (1.1) are strict, it follows that there
is an € = e(n, o) > 0, such that n € P(a + €).
It would be interesting to study the set

A: ={a€(0, 1): N P(ﬁ);ep(a)}.

B<a
Note that if n € P(0), then from (5.1) we have an a,,, 0 < o, <1, with
{ae n €P(@)} = [0, ).
However,

(5.2) N P) = {1},

a<l1

so that if n € P(0),n > 1, then o, < 1. To see (5.2), note that if n € ﬂa<1 P(a),
n > 1, then

(5.3) 2p, 2Py tPypy-

However, from Landau’s theorem that 2m(x) — w(2x) —> °° as x — oo, (5.3) can hold
but for at most finitely many n > 1. Recent work of L. Schoenfeld [14] can be used
to show (5.3) in fact holds for no n > 1. We now easily see that

A={a,:n€P0),n>1}.

Thus, A4 is a countably infinite subset of (0, 1). We conjecture that A4 is dense in
[0, 1]. An elementary Galois theory argument shown to me by J. Shyr gives that
every member of A is irrational. (Note that ,, € 4 implies there is an i < n with
20" = ppr; + PR

Recalling the definition of M(n) from Section 3, we conjecture that

(54) lim sup(p,zz - M(n))/p,, > 0.

Note that the proof of Theorem 3.1 would give this conjecture if we could show that
there are infinitely many n € P'(1/2) such that 2, #D,_; + D, 4; for all i satisfying
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(3.1). If true, (5.4) is probably very close to best possible. Using Cramér’s conjecture

lim sup(p,, —pn_l)/log2n =1,

we have as n —> o

M(n) > pn+1pn—1 > P,2, - (1 + 0(1))pn 10g2n’
so that
lim sup(pf, - M(n))/p, log?n < 1.

Of course the prime number theorem gives Ip2 — M(n)!| = o(p2). In fact, using
the best known error term in the prime number theorem gives |p2 — M(n)! =
O(p? - exp(—c(log n)3/%)) for some ¢ > 0. If the Riemann hypothesis is assumed, we
would have 1p2 — M(n)l = O(p3/? log?n).

We now briefly investigate the maximal order of M(n) — p2. From Erdés [2] it
follows that there is a ¢ > 0 such that

(5.5) Ppy1 ~Pp > (L +)p, —Pyy)

has a positive density of solutions #. But from an easy application of Brun’s method,
we have the upper density of the set of n for which p, —p,_, <t log n tends to 0
as t — 0. Thus, there is a £, > 0 such that there is a positive density of n for which
(5.5) holds and p,, —p,_; > ¢, log n. For these n,

Ppi1Pn-q — pfl = (1 + o(1))ctyp,, log n,
so that
lim sup(M(n) — p2)/p,, logn > 0.

We now define A(n) = miny;,(»,,_; + p,, ;). Using another result from
Erdos [2] and an argument similar to the above, we have

lim sup(2p,, — A(n))/log n > 0.

From the Corollary to Theorem 2.1 we have infinitely many » for which A(n) > 2p,,.
We conjecture that A(n) — 2p, can be arbitrarily large. In a short computer search for
nonnegative occurrences of A(n) — 2p,,, kindly performed for us by E. R. Canfield, the
largest value of A(n) — 2p,, found for n < 1000 was 24, assumed at n = 985 (Pogs =
7759). In addition, it was noticed that values of p, for which A(n) — 2p,, = 0 are
distributed very nearly like the squares. However, we cannot show such p, have rela-
tive density O in the primes, although this surely must be the case. We also conjecture
that the set of n for which pﬁ > M(n) has density 0. More numerical work might
prove profitable in examining these problems.

In this regard, we should point out that the set of n for which (n, p,) is a vertex
point on the boundary of the convex hull of the prime number graph has density O.
For if n;, <n, <... are these values of n, then we easily see that p,,2/n2 < p,,3/n3
<.... We can then apply a result of Erdés and Prachar [5] (also see Rieger [13])
to get that the n; have density 0. However, we cannot prove that the set of n for
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which (n, log p,,) is a vertex point on the boundary of the convex hull of the set of
all (m, log p,,,) has density 0. A result of Erd6s and Rényi [6] might prove helpful
in this regard.

Combining the method of proof of Theorem 2.1 with the best known results on
the error term of the prime number theorem, we can show there is a positive constant
¢ such that for all sufficiently large x, the number of n < x for which (1.2) holds is at
least exp(c(log x)3/%). Assuming the Riemann hypothesis would give at least
c'x' % (log x)73/2 such n < x. We get similar results for the distribution of the values
of n for which (1.1) holds. We conjectured above that both of these sets have density
0. We should remark that the results of Erdos [2] give that both sets have upper den-
sity strictly less than 1.

The Corollary to Theorem 2.2 has an immediate application to a certain extre-
mum problem in combinatorial number theory. In the paper Erdés [3], f(k, x) is de-
fined as the least integer » such that whenever 1 <a; <---<a, < Xx are integers,
there are r + 1 a’s composed of at most r different primes. Then, if £ = n(x) + 1,
f(k, x) exists. In [3] Erdos gives proofs due to him and Straus that

(5.6) fn(x) + 1, x) < 2n(v/x) + 1
for all x and

fr@) + 1, x) ~ 2n(v/x).
They conjecture
(5.7) 2r(Vx) — f(m(x) + 1, x) —> oo.

It is in this regard that they make the conjecture stated at the beginning of this paper.

We now show that (5.7) is false by showing that equality can hold in (5.6) for
arbitrarily large values of x. We conjecture the expression in (5.7) is unbounded, but
we cannot show this.

It is shown in [3] that f(m(x) + 1, x) = ¢ + 1, where ¢ is the largest integer so
that all products p;p; with i +j = ¢ + 2 and i #/ do not exceed x. Let now n be an
integer for which (1.1) holds. Let x = pfl — 1. Then the “#” for this x is at least
2n — 2, s0

fnex) +1,x) = 2n—1 = 2n(v/x) + 1.

Since (1.1) holds for infinitely many #, we have thus shown equality holds in (5.6)
for an unbounded set of x.
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