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1. Introduction

Everybody knows that an entire function f is uniquely determined by the
sequence of values f(1). f(1/2). f(1/3)..... This is a special case of the so-called
Identity Theorem. We shall show here that if one is given only the set
{f(1), £(1/2), f(1/3),...} (in no particular order), then f is still determined unique-
ly. This result does not hold for all sequences (a,) decreasing to zero,
however; in particular we shall exhibit a sequence (a,) of positive numbers which
decreases to zero at the same rate as (1/n). but such that {f(a,)} ={g(a,)}. as sets.
for two different entire functions f and g. (We use the notation (a,) for the
sequence and {a,} for the set of points a,.a,.....)

So some sets of complex numbers are sets of range uniqueness (sru’s) and
others are not. (We shall give a precise definition shortly.) Among other results.
we shall show that sets in certain broad classes are not sru’s and that others are
sru’'s. We also give several examples. The notion of sru makes sense for sets of
any infinite cardinality. but we shall consider mainly countable sets. particularly
ones converging to 0. We are able to characterize the sru’s among many such
sets.

In this article we shall use only elementary methods and results of complex
variables, except in part of the next to last section. Perhaps the main surprise is
that the topic has apparently been overlooked until now. There are many
interesting questions about sru’s that we shall mention but cannot yet answer.

We would like to thank Kevin Clancey for some helpful discussions.

2. Some Sets Which Are Not Sets of Range Uniqueness

In what follows, E will denote a set of complex numbers. For f a complex
function with domain containing E let f (E)={ f(z): ze E}, the range of the restric-
tion of f to E.
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Definition. We say that E is a set of range uniqueness for entire functions, or sru,
if the following implication holds. If f and g are entire and f(E)=g(E), then
/=g

The range uniqueness property is unchanged by alteration of a finite number
of points in a set. This follows at once from

Theorem 0. Let E be a set of range uniqueness. A set formed by adjoining to or
deleting a point from E is also a set of range uniqueness.

Proof. Let E be an sru and let E'=E {e}, where ecE. Suppose E’ is not an sru.
Then there exist distinct entire functions f and g with f(E)=g(E’). Let Q and
R be the polynomials

Qw)=(w—f(e))(w—g(e)).  R(w)=wQ(w).

We consider composite functions Qo f(x)=Q(f(x)). etc.
We have Qof(E)=Qog(E) so Qof=Qog. Also, Rof(E)=Rog(E). so Ref
=Rog. It follows that

f=Ref)(Qef)=(Rog)/(Qog)=¢

as meromorphic functions, and so f=g, and E is an sru.

Next, suppose that E is not an sru. Again, let E'=E{e}. We shall show
that E' is not an sru. We have f(E)=g(E), where f and g are distinct entire
functions. Let ¢'eE’. This time set

Q(w)=(w—f(e))(w—g(e) (w—f () (w—gl(e)

and R(w)=wQ(w). We have Qof(E)=Q0g(E). Also,
Qof(E)=Qof (E)u{0} =Qof(E),

and similarly with g in place of f. It follows that Qof(E)=Qog(E’). The same
argument shows that Rof(E’)=Rog(E'). If E' were an sru, then we would have
Qof=Qog and Rof=Rog and so
=R°f :Rog =
/=07 70"

which would imply f=g. It follows that E’ is not an sru.

Definition. A complex function h defined on E is called pre-entire on E if

(a) there exists an entire function g such that goh extends from E to an entire
function in the complex plane, and

(b) there exists some point e€E such that g(e) = g(h(e)).

In particular, if E has a finite limit point, then every non-constant entire
function except the identity function is pre-entire on E. An example of a pre-

entire function on C is h(z)=ﬁ, with any determination of the square root, for
if g(z) =22 then g(h(2))=z.
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Theorem 1. Let E<C. Suppose that either

(@) E does not have a finite limit point or

(b) there exists a pre-entire function h on E such that the symmetric difference
h(E) AE is finite. Then E is not a set of range uniqueness for entire functions.

Proof. Suppose first that (a) holds. By the familiar construction of Weierstrass
there is an entire function f having E as its exact set of zeros. Let g=2f.
To prove (b) we may now assume that E has a finite limit point. Let

E,=h""{h(E)AE} ={e€E: h(e)¢E}

and let E, =E\h(E). (Notice that h(E~E,)=Enh(E)=E~E,.) Then h(E,)UE,
=h(E)AE is finite. Let {e,} = E where the e, are distinct and e, —» xe . Finally.
let g be an entire function such that goh extends to an entire function f and f+g
on E.

The Identity Theorem implies that f(e,)*g(e,) for all large n. Moreover.
since g is not constant (otherwise. f=g). {g(e,)} is an infinite set. Let €. e*ele,}
be such that f(e*)+ g(e*)=+g(e’) and

8(¢)-g(e*)¢g(h(E)AE) =g(h(Eo)VE ) =f(Eo)Ug(E,).

Now construct a polynomial P such that P has roots at every point of
S(Eo)Ug(E,) as well as at g(e') and at f(e*). but no root at g(e*). Then Pof. Pog
are unequal. entire. and Pof(E)= Pog(E). To see the last statement. note that

Pof(ENEg)=Pog(h(ENE,)=Pog(E~E,).
Pof(Eg) = {0} = Pog(E).
Pog(E,)={0} = Pof(E).

Remark. The theorem can be strengthened a little. Indeed. instead of assuming
h(E)AE finite. we need only assume g(h(E)4E) has no finite limit points (where g
is entire. goh extends to an entire function. and geh=g on E). The only real
difference in the proof is that the polynomial P is replaced by an entire function
Q whose zero set is exactly g(h(E)4E)u{g(e).f(e*)}. The function Q can be
constructed as a Weierstrass product.

Later. in Theorem 5. we shall establish a converse of Theorem 1 for
countable sets E of positive numbers having 0 as the sole limit point. Thus. the
existence of a pre-entire function h on E with h(E)AE being a finite set
completely characterizes the non-sru’s E among such sets. The characterization
of sru’s for more complicated sets is an open question.

3. Examples

Examples a)-d) illustrate Theorem 1. Each set E listed here is not an sru. The
accompanying pre-entire function h (which is. in fact. entire in each case) has
h(E)AE finite. A corresponding entire function g is listed for which g#goh=f
and f(E)=g(E). The essential property of g is noted in each case.
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a) E={+1.=x1/2. =1/3....}. h(z)= —z. g(z)=z (g not even).

b) E={1/2°1/2'.1/2% ...} h(z)=2z. g(z)=sinm z (g(2)=g(1)).

¢) E={1/2V2°.1/2V*" 1/2V". .}, h(z)=z"
g2)=(z-1/2) (=27 (z—1/4) (2(1/2)=g2"")=g(1/4).

d) E={a,.a,.a,....}. where a, =1 and a,.a;.... are defined recursively as the
positive solution of

a,+at=a, ;. h@@)=z+z2% g(z)=2>-3z (g2)=g(1)).

Examples A)-J) below give sets E that will be shown to be sru’s. Note that
Theorem 1 implies that there is no pre-entire function h with h(E)4E finite in
these cases. In each case n runs through the positive integers.

A) {1/n) B) {i/n*+1/n%}

C) {1/2"} D) {1/272+ 17}

E) {1/2" "} F) {1/2*"}u{1/2*"}
G){1/n!} H) {1/2"}u{1/3"}
I) {1/p,}.p,=nth prime J) {1/log(n+1)}.

Remark. Comparison of Examples d) and A) gives a surprise. for we will now
prove that the a, of Example d) are asymptotic to the 1/n of Example A). Yet
{1/n} is an sru while {a,} is not. This shows that the property of being an sru is
a delicate one.

Proposition. Let a, >0 be defined recursively by a, =1.and a,, +a?, ,=a,. Then
a,~1/n.

Proof. First it is clear that a,]0. Next. we show a,>1/n. If a,, ; <1/(n+1) holds
for some positive integer n. then

1 1

a,=a,. +af+ 1 <m+m<;
and since a,=1. our claim is proved by induction. Also we note that each
a,<2/n. For if a,, ,>2/(n+1), then a,>2/(n+1)+4/(n+ 1)2=2/n, again con-
tradicting a, =1. i

Let ¢,=na,. We wish to show ¢, —1. We have already shown 1=¢,=2 for
all n. Let ¢>0 be arbitrary. We shall show that for all large n, ¢,<1+¢, thus
proving the proposition. Indeed. let n,=2+2/¢ be an integer and suppose n=n,.
If ¢,>1+¢. then

2\ p—1 +e
¢, =(n—1) (%+Z—"2)>"—n—c,,(1 +—,-1+—F)

n*+en—e—1 - ¢
= C -
n® " 2n
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In particular ¢, ;>1+e.s0 that if n—1>n, we can repeat the argument and get
Co_2>C,_;+¢&/2n—2). and so on. Thus if n=n, and ¢,>1+e¢. then

n 8 n

lzcno— 1 ¢, = Z Com— 1 _Cm>§ Z

m=ng n

il
Dm.

It follows that n cannot be arbitrarily large. which proves our assertion.

4. Sets of Range Uniqueness

In this section we establish a number of criteria which guarantee that certain
sets are sru’s. We apply these results to show that Examples A-I are sru’s.

Definition. Let {a,} = C. a,—0 and let h be a complex function defined on {a,}
for all but finitely many n. We say that h has a pole somewhere if there exists a
meromorphic function H defined on some connected neighborhood N that
contains {a,} such that

a) H(a,)=h(a,) for each sufficiently large n.

b) for some positive integer g the function z+— H(z%) has an extension as an
analytic function of z in some neighborhood of zero. and

¢) H(z) has a pole at some point z,eN. (See the discussion of Examples A
and B for specific functions h having a pole somewhere.)

A bounded infinite set of positive numbers E having 0 as the sole limit point
is expressible as E={a,} where a,|0. We call such a set monotone. We call a
set E of complex numbers rapidly convergent (to zero) if E = {a,}. where

la, , | <la,|—B,la,? (1)
for some sequence B, — + oo.

Theorem 2. Let {a,} be a set which is either monotone or rapidly convergent.
Suppose there is a function h defined on {a,} such that exactly one of the relations
h(a,, )=a, or h(a,)=a,, , holds for all sufficiently large n and such that h and
each iterate h'*'=hoh. h®)=hohoh. ... has a pole somewhere. Then {a,} is a set of
range uniqueness for entire functions.

Example A. {1/n} is an sru, for we may take h(z)=z/(1—z). We have h(1/n)
=1/(n—1) for =2 and M™(z)=z/(1 —kz) has a pole at z=1/k.
Corollary (to Theorem 2). Let ¢ be a polynomial which has a zero of order at least

2 at the origin. Suppose that ¢ is 1 —1 on some neighborhood M of (0.1]. Then the
set {o(1/n)}>_, is an sru.
Example B. {in~? +n~3}_| is an sru. for we may take ¢(z)=iz*+z>.

n=1

Proof of the Corollary. Let a,=¢(1/n). We first show that a, satisfies (1). Write
¢(z)=z"Y(z). where b=2 and ¥(0)%0. We have

e )= ) e ) )| oo
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‘/’(%) +(nil)b {hp(%)pr (ﬁi)'}

Thus

1 1
la,| _la"“lz{ﬁ_m—l)b}

< b 1 c ¢

ST ) e
1 2

28,0 (;) w2 =Ba?

with B,=c¢"n"~".
We require an inverse of ¢ for our argument; we indicate briefly how this
can be achieved.

Puiseux Series Representation. Suppose that Y a,z" converges in some neigh-
borhood of the origin and the coefficients a,. ... a,_, all vanish. but a,+0. Then
the equation w=>_ a, z" has a solution z=Y c,t". convergent in some neighborhood
of t=0. where t=w'/?. The coefficients c, may be found by formal power series
manipulations. [1. vol. 111. §63. p. 246]

Returning to the proof of the Corollary. we note that ¢ is 1 —1 on M. Let
¢~ be defined on N =¢(M) as that branch mapping onto M. We define h on N
by

h(2)=e(e~ ' (2)/{1—¢ '(2)})

Then h(a,)=a, , for all n=some L. Also. for k=1.

h¥(z)=p(p~ ' (2)/{1—ko~ ' (2)}).

and this function has a pole at z=¢(1/k)eN. Also. letting H(z) denote the
function h)(z). we note that z+— H(z%) has an analytic extension to a neigh-
borhood of zero for a suitable positive integer g. This follows from the Puiseux
Series Representation. Thus. by Theorem 2. {¢(1/n)} is an sru.

The proof of Theorem 2 and most of the subsequent criteria for sru’s depend
on the following two lemmas.

Lemma 1. Let f be a non constant function which is analytic at 0 and vanishes
there. Let {a,} be a monotone or rapidly convergent set. Then |f(a, )< |f(a,)| for
all sufficiently large n.

Proof of Lemma 1. Suppose {a,} is monotone. Let F(z)=/(z) f(2). so that F is
analytic at 0 and non negative on some line segment [0,b]. Because f=0.
neither is F. It follows that F'(x) does not vanish infinitely often on [0,b]. Thus
|F(a,)| =|f(a,)|? s strictly decreasing for all sufficiently large n.

Next suppose that {a,} is rapidly convergent. Write f(z)= ) ¢;z, with I the

iz

least integer for which ¢;#0. Then for all sufficiently large integers n we have
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|f(an+ 1)‘ _le arIH-] +0(la, . A 1)|
| f@) | | cal+0(a)"T) |
1
é an+l +B|an|
aﬂ
<[t Bl <1.

Lemma 2. Let {a,} be a convergent sequence of complex numbers and let fand g
be different entire functions satisfying (i) {f(a,)} ={g(a,)} (as sets) and (ii) both
{If(a,)l} and {lg(a,)} are ultimately monotone decreasing sequences. Then there

exists an integer k=+0 such that f(a,)=g(a,.,) holds for all sufficiently large
integers n.

Proof of Lemma 2. Let k(n) be an integer such that fla,)=g(a,, ) Since |f(a,).
lg(a,)| are both eventually strictly decreasing. we have n+k(n)—>oo as n—oo.
Moreover. we have an n, such that if n>n, then |f(a,)>|f(a,) >0 for all m<n
with f(a,)+0 and |g(a)|>|g(a,)|>0 for all I<n with g(a)=*0. If n is large
enough. we have n=n, and n+k(n)=n,. Then

< fay )< (@, DI <If (@) =18(a, k)

> |g(an+ 1 +k(n))| > Ig(an+ 2+k("))| >....

But f(a,,)=8(a,, ,km.1) Let m=n+1+km+1). Since n+kn)=n, and

g(a,)l <|g(a, ;). Wwe must have m>n+k(n). If i is such that f(a)=8(a, | 1xm):
since | f(a;)|<|f(a,) and n=n,, we must have i>n. Thus

L@l =1/ (@, Dl=lg@,) <lg(@,, 1wl =11 (@),

so that equality must hold at each point. Thus m=n+1+k(n). ie., k(n+1)=k(n).
Hence there is an integer k for which k(n)=k for all large n. Since f< g, we have
k0.

Proof of Theorem 2. We suppose that f and g are entire. f+g. and f{a,})
=g({a,}). Moreover, we may assume that f and g are both non constant. By
subtracting a suitable constant, we may assume f(0)=g(0)=0. This is so
because, by continuity f(0) is the sole limit point of f({a,}). g(0) is the sole limit
point of g({a,}) and f({a,})=g({a,}). By the lemmas, possibly with the roles of f
and g interchanged, there is an integer k>0 such that f(a,)=g(a,,,) for all
large n.

Suppose that h(a,)=a, ., for all large n. (The case h(a,)=a,_, for all large n
is treated analogously.) Let F =goh™!. Then, for all large n we have

F(a,)=g(h"(a,)=g(a,,,) =1 (a,).

Thus F has f as an entire extension from {a,},. ., for some L. Let H be the
meromorphic function postulated by the condition that h¥ has a pole some-
where. In particular, H(a,)=h™(a,) for n=L, L+1,.... Consider the two func-
tions f(z?) and g(H(z)), where q is an integer for which H(z% extends as an
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analytic function of z in a connected neighborhood @ of 0. These two functions
are both analytic on €, and since they agree on a sequence (a,’),,, that
approaches 0 (where any g-th root of a, may be used). they must agree
throughout Q by the Identity Theorem. (We have in effect proved a version of
the Identity Theorem for functions with branch singularities at the limit point.)

Since f(z%) =g(H(z%) in @, this equality persists throughout N'/4 where N is
the connected and simply connected neighborhood of {a,},., where H is
supposed meromorphic. (Any branch of the g-th root may be taken.) Now
z+—f(z% is bounded in a neighborhood of p'/%. where p is the pole of H. But by
Liouville’s Theorem z+— g(H(z%) is unbounded in each deleted neighborhood of
p'’%. This contradiction establishes the result.

Theorem 3. Suppose that {a,} is either monotone or rapidly convergent and is not a
set of range uniqueness for entire functions. Then there is an integer k>0 such that
both

lim an+k lim loglan+k|

now n-w logla,l
exist and are finite. Moreover. the second limit is rational.

Proof. Assume {a,} is not an sru. Then there are unequal entire functions f. g
with f({a,})=g({a,}). As before, we may assume f(0)=g(0)=0. By the lemmas
and possibly interchanging f and g. there is a positive integer k such that f(a,)
=g(a, ) for all large n. Let L m be the smallest positive integers with o)1
=c#0. g"™(0)/m!=d+0. We then have

f(z)~cz'. g(z)~dz™ as z—0.
Thus
ca,~day , as n—oo. )
so that
a

¢ 1/m
ko (—) alm=1""as n—co.
a d

n

Thus I=m (since q,, ,/a, is bounded) and

0. Af I>m
lim Sntk ) eyum
now a4 -] . ifl=m.
" (d) ‘
Moreover, log|cadl|—logldal, | =0, so that

logla, ] !
20 Tlogla) m )

a rational number.

Remark. We can replace (2) with the stronger assertion

cd —dar ,=0(la,"*").
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Moreover. in place of (3) we have the stronger relation

log'an+kl l ( 1 )
=tk 40 )
logla,| m log|a,|

An example where Theorem 3 does not apply is provided by the set
{27 u{=3"". n=1.23.....

In any enumeration as a sequence (a,) with |a,| non-increasing. the ratio a,. . /a,
does not converge to a limit as n > oo for any k0. Yet this set is not an sru. for
we can take g as any non even entire function and f(z)=g(—z).

We now use Theorem 3 and the above remark to establish {a,} as an sru for
Examples C)-I).

If E={a,}, a,]0, and log a,, ,/log a, — oo, then Theorem 3 implies E is an sru.
This establishes Example C) (E={1/2"}) as an sru. Similarly if
loga,, (/loga, —r and no integral power of r is rational. then E is an sru. Thus
Example D) (E={1/2V2*"") is an sru. (cf. Example c¢) Example F) (E
=1{1/2*"}U{1/2*"}) is an sru for if E is rewritten as {a,} where a,|0. then for
every k>0. loga,, ,/loga, does not tend to a limit.

For example E) (E = {1/(2")!}) note that

ogdn_ i k2 g (L)
loga, n n’

so that E is an sru by the above remark.

For Example H) (E={1/2"}u{1/3"} ={a,}). note that for each k>0. a,,./a,
does not tend to a limit. so the theorem implies E is an sru.

Finally. for Example I) (E={1/p,}. p,=n-th prime) we use the fact that for
each k. p,.,~p,. which is a corollary of the prime number theorem. Then if
{1/p,} is not an sru. (2) implies /=m and c¢=d. Thus the remark implies p, '
—Pati=py'""-O(1). But

11 P PPyt PPt 4P )
P Phix PuPhok
~1(pn+k_pn)

I+ 1

Py

Thus we would have p,,,—p,=0(1). contradicting the elementary fact that
there are arbitrarily large gaps in the sequence of primes. Thus {1/p,} is an sru.

Theorem 4. Suppose that a,|0 and there is a positive integer k such that
lim(a,, /a,)=0 and lim(loga,_ ,/loga,)=1. Then {a,} is a set of range uniqueness
for entire functions.

Proof. Suppose not. By Theorem 3. there is an integer k,>0 such that
lim(a,,, /a,)=r.lim(loga,., /loga,)=s. Then

lim Zrkke — gk Jim 10gd, .1y, =s
a loga,

n
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By our hypothesis. we see that r*=0,s*=1,s0 that r=0. s=1. By the proof of
Theorem 3. we see that r =0 implies s> 1. a contradiction.

Remark. This theorem establishes Example G) (E={1/n!}) as an sru.

We now establish a strong converse of Theorem 1 in a special case.

Theorem 5. Suppose a,|0 and E={a,} is not a set of range uniqueness for entire
functions. Then there is a pre-entire function h on E such that h(E)AE is finite. In
fact. there is an integer k=0 such that h(a,)=a,_, for all large n. Moreover, h can
be chosen so that it has an analytic extension to a neighborhood of the open
interval (0, ¢) for some ¢>0.

Proof. Let f.g be unequal entire functions with f(E)=g(E). As in the proof of
Lemma 1. we may assume f(0)=g(0)=0. Let F(z)=f(z) f(2). G(z)=g(2)g(2).
Then F. G are entire, non negative on the real axis, and by Lemma 2, applied to
f and g. there is an integer k+0 with F(a,)=G(a,,,) for all large n. Since G is
not identically 0. there is a >0 such that G is monotone increasing on (0.9).
Thus F#+G.

By choosing & sufficiently small we may use the Puiseux Series Repre-
sentation to define G~ ' as an analytic function on some neighborhood U of
(0. G(9)].

There is an ¢>0 and a neighborhood N of (0.¢) such that F(N)c U. Let h
=G~ 'oF. We thus have h well-defined and analytic on N. Also, Goh=F 3+ G on
E. so h is pre-entire. Finally. h(a,)= for all large n. so that h(E)AE is finite.
and the theorem is proved.

Using Theorem 5. we now establish the following, perhaps surprising. result.

n+k

Theorem 6. If a, |0, then there is a set of range uniqueness for entire functions {b,}
with b,|0 and b,~a,.

Proof. We may assume {a,} is not an sru. for otherwise take b,=a,. Let ¢,/0 be
any sequence such that for each n, a,>a,, ;(1+¢,, ). Let

a,, if n is not a square.
" la,(l+¢,), if nisasquare.

It is obvious that b,|0 and b,~a,. It remains to show that {b,} is an sru.
Suppose it is not. By Theorem 5, there is an &> 0. functions hy, h, analytic on a
neighborhood of (0,¢), and positive integers k;,k, with hy(a,)=a, ,,.h,(b,)

by, for all large n. Thus letting h,(0)=h,(0)=0, we have h,. h, contmuous
on [0, ¢). Consequently there is a 6 >0 such that the iterates h{?), h[’"] are defined
and analytic in some neighborhood of (0, §).

There are infintely many n such that n,n+k, k, are both not squares. If n is
large and such a number, then

b,=a,b

k _ __ ik
n Ontkiky n+k1k2 and h[12](a,,)—a _h[zll(an)-

n+kika
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We shall prove below that h{?)=h{). But also there are infinitely many non-
squares n for which n+k, k, is a square. If n is large and such a number, we have

k k k —
an+k|k2 =hll Zl(an)zh[z ‘](a"):hlz ll(bn)_bn+k1k2’

contradicting the definition of the sequence {b,}.

It remains to prove that h?!=h%) Changing notation, we have functions H .
and H,, each meromorphic on a neighborhood N of (0,¢]. Furthermore, we
have entire functions f;,f, and g,,g, so that f1(0)=1£,(0)=g,(0)=g,(0)=0 and
such that f(H,(z))=g,(z) and f2(H,(2))=g,(z) on N. Moreover, we have a
sequence o, |0 in (0,¢] such that H,(x,)=H,(x,) for n=1,2,.... We must prove
that then H,=H, on N. This is just a version of the Identity Theorem for
functions analytic except for a branch singularity. By the Puiseux representation
there is a positive integer ¢q such that H 1(2) and H,(z) are represented by series
of powers of z'%. More precisely, there are functions H, and H, analytic in a
neighborhood M of 0, and an integer =1 such that

fl(H1(tq))=g1(tq)§ fz(ﬁz(tq)):gz(tq)-
Furthermore, there are only finitely many such pairs H,, H,. Since
Ji(H (1) =g, (t9); S2(H (1) =g, (t9),

we see that H,(t*) and H,(t%) have analytic extensions K,(f) and K,(t) re-
spectively, to a neighborhood M* of 0. But, with, say, the positive determination
of the g-th roots, K, (a,")=H(x,) =H,(a,) =K ,(}/%) for n=1.2,.... So by the
Identity Theorem, we have K, =K,. That is, H,(t%)=H,(t%). So H,(t%)=H (%)
on a neighborhood of (0,¢'4]. Hence H, =H, on (0,¢] and consequently H,
=H, on N. This completes the proof of Theorem 6.

5. Generalizations of Range Uniqueness

We now define a notion of weak set of range uniquness where cardinalities are
taken into account.

Definition. If f is a complex function, Ec €, and aeC, let N(f,E, o) denote the
cardinality of the set {e€E: f(e)=u}. (We take no account of multiplicity here.)
If g is also a complex function and if N(f.E,a)=N(g, E,«) for all o, we write
f(E)=g(E). We say E is a weak set of range uniqueness for entire functions, or
wsru, if f(E)=g(E) for entire functions f,g implies f=g.

Thus if E is an sru, then E is a wsru. The converse is not true as we now see.
Theorem 7. If a, |0, then {a,} is a weak set of range uniqueness for entire functions.

This theorem is an immediate corollary of the lemmas. We leave the few
details for the interested reader to supply.

Example a) of a non-sru is also an example of a non-wsru. Another simple
example is patterned after Example b). Let E={2":n an integer}. g(z)=sinr z.
f(z)=sin2n z. Note that N(f. E.0)=N(g. E.0)=¥N,,.
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Definition. Suppose that E is a set with the following property: whenever f(E)
=g(E) for entire functions f and g, then the first r+1 Maclaurin coefficients of
f and g coincide. We call such a set E a partial sru of degree r. (A partial sru of
degree oo is an sru.) Here we shall show that a monotone set E with terms
converging sufficiently slowly to zero is a partial sru of some degree r.

Theorem 8. Suppose that {a,} satisfies a,|0 and a,—a, ,=o(a,) for some positive
integer r. Then {a,} is a partial sru of degree r.

Proof. Suppose that f and g are entire functions with f({a,})=g({a,}). Arguing
as in §4 we may assume f(0)=g(0)=0 and that there is some integer k such that
f(a,)=gl(a, ) holds for all sufficiently large n. If k=0. then f=g by the Identity
Theorem. Without loss of generality we may assume that k>0. If k> 1 note that

a,—a,, =oa)+...+ola, ,_ =o(a,).
We have

ga)—f(a)= | gwdu=0(,—a,,)=o(@).

an+k

It follows that the first r+1 Maclaurin coefficients of f and g agree and so {a,}
is a partial sru of degree r.

Example. Let a,=(log(n+7))(n+7)~"/*>. We have

(log(n + 7)) —o(@?).

0<an_an+1: (n+7)3/2

and so {a,} is a partial sru of degree 3.

Example J. For a,=1/log(n+1) we have

O0<a,—a !

n n+l<m:0(an)

for any fixed positive integer r as n —oo. Thus {1/log(n+1)} is an sru.

Example d) (a,=1.a,+a?=a,_,) is a partial sru of exact degree 1. Indeed
Theorem 8 guarantees that {a,} is of degree 1 and the pair of functions g(z)=3z
— 2%, f(z)=3(z+ z%) —(z + z%)*. which satisfy {f(a,)} ={g(a,)}. differ in the coef-
ficients of z2.

6. Sets of Range Uniqueness for Functions Analytic on Subsets of the Plane

In this section, we give two instances in which a set E is not a set of range
uniqueness for functions analytic on some subset G of the complex plane. but is
a set of range uniqueness for functions analytic on a slightly larger set. We thus
see that the property of E being an sru on G can depend on the shape of G far
away from E.
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Definition. For two sets K, L of complex numbers with K < L we say that K is a
set of range uniqueness for L whenever the following implication holds: if f and
g are holomorphic functions on L and if f(K)=g(K). then f=g.

The case we have studied so far is L=C. We make a brief study of some
other domains L.

Theorem 9. Let ID={z:|z|<1} be the unit disc. There is a sequence a,10.
{a,} =ID. that is not a set of range uniqueness for ID. but that is a set of range
uniqueness for every region G such that IDU{1}<G.

Remark. The point of this theorem is that the property of {a,} being an sru for a
region G depends on properties of G far away from the sole limit point of {a,}.
This is a kind of “action at a distance.”

Proof. Let Q be a Jordan region with boundary J that lies in ID except that 1eJ.
We further require that 0eQ. that Q is symmetric about the real axis. and that J
has an exponential cusp at z=1 (more about this later).

Let h be the Riemann map of ID onto Q so that h(0)=0, h'(0)>0. Note that by a
theorem of Carathéodory [2. Vol IIl. Corollary to Theorem 2.24. p-70] h
extends continuously as a 1 —1 function to ID and maps 0D onto J. Since h(z)
=(h(z)) by the uniqueness of the Riemann map. we have h(1)=1.

Note that h is real on [—1.1]. By Schwarz's Lemma. since lh(z)| <|z| for
zeID~ {0} and since h(1)=1. we have h(x)<x for 0<x<1 and h(x)>x for
—1<x<0. Also. the only fixed point of h in ID is z=0. Choose a, with
—1<a, <0. and define {a,} recursively by h(a,)=a,, ,. We have a,10 because 0
is the only fixed point of h.

By Theorem 1 adapted to ID. {a,} is not a set of range uniqueness for
functions analytic in ID. because h({a,}) 4 {a,} ={a,} is finite.

Now let us prove that {a,} is an sru for G if G satisfies our hypotheses. By
the lemmas of §4. adapted to G. if f and g are analytic in G with f{a)=g(a,})
and f#g. then there is an integer /40 (say />0 by interchanging the roles of f
and g if necessary) such that f(a,,)=g(a,) for all sufficiently large n. Now
S (z2)=g(2) for all zeID because it is true for all ze{a,}. n=ny. and this last
set has a limit point in ID. Without loss of generality. take g(1)=0. Since as
x—1". i(x)—1. we also have f(1)=0. Because f and g are analytic at z=1. we
have f(x)~c(1 —x)? and g(x)~d(1 —x). where ¢.d=+0 and p and q are positive
integers. Hence

c(1=h(x)P ~d(1—x)

or

1—h"(x) B
(I_X)T—»e#:o.oo (x—>17)

where o =g/p and e=(d/c)'/”.



396 H.G. Diamond et al.

By the Poisson integral formula,

2

-X
Ol =g Db {5 s
2 . 1-x?
2___ _ i0 -
T2 IL [1=Ihte )I]1—2xc059+x2
2(1—x) 1_x2

>r1_ i(1—x) P ———
>[1—|h(e )] Ax 1—2xcosf + x?

Zc[1-|h(e" )]

for a suitable constant ¢>0, as we see on estimating the last integrand. We have
used above a monotonicity hypothesis on |h(e*®)| for small 6. Indeed. let us now

suppose that 1 —|h(e'%)|= for small 6. We then derive

lo
o1

[1=h()]zcllog—
so that

[1-h(x)]

-0 as x—»1—  for any a>0.
(I—x)

However for 0<x <1, h(x)<x, h(h(x)) <h(x),..., so that for [=2,3, ...,

1—h(x) 1—h(x)
(—xrF (-xr

This contradiction shows that no such f and g exist, so that {a,} must be a
set of range uniqueness for functions holomorphic in G. The proof of the
theorem is complete.

The next result actually proves more in a shorter space. The proof is a slight
variation on ideas in the earlier part of the paper.

Theorem 10. Let E={1.1.1....}. and let G={z:|z|<2}. Then E is not a set of
range uniqueness forfuncttons analytlc on G. but it is a set of range uniqueness for
functions bounded on G near z=2 and analytic on G.

Remark. By Theorem 0, adapted to the present context. we can replace E in the

1 1 1
t E,
above statement by any {n n+ln+2" }

Proof of the Theorem. First. let

z=1)(z—%) )
(z—=2)* ° z+1

Then f(E)=g(E). f and g are analytic on G. and f #g. since f(—1/2)#g(—1/2).
say. This shows that E is not an sru for G.

f)= s0=f (-
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Now suppose that fand g are bounded functions on G near z=2. analytic on
G and f +g. but f(E)=g(E). We will arrive at a contradiction. By Lemmas 1 and
2. there is an integer k>0 such that f(1/n)=g(1/(n—k)) for all large n (after
possibly interchanging f and g). Thus

z
0= (=) @
when z=1/n and n is large enough. Hence (4) holds identically for all z in a
neighborhood of 0. But the left side is defined whenever |z| <2. So we may use
(4) to analytically continue f to the set

z
{kz+1.lz|<2}u{z.|z|<2}‘

which is the whole Riemann sphere €* when k> 1, and is € \ {2} when k=1.
In case k>1. f is therefore analytic on C* and hence constant, so we may
suppose k=1. Now f(z) is bounded as z—2 within {|z| <2} and it follows from
(4) that f(z) is bounded as z—2 within {z/(z+1): |z| <2}. (Note that this set is the
exterior of the closed disc whose diameter is [2/3,2].) Since the union of these
two sets contains a deleted neighborhood of z=2. it follows that f'is bounded in
this deleted neighborhood. Hence f'is analytic on € and is therefore a constant.
Since this is impossible, the theorem is proved by contradiction.

Remarks. Essentially the same proof shows that we may replace the boundedness
of f(z) at z=2 by the assertion that f(z)=o0(jz—2|"!) as z—2 within G. This
could be useful in discussing sets of range uniqueness for the Hardy classes H?.
Also, an examination of the proof will show that we have actually proved the
following. If f and g are distinct analytic functions on G for which f(E)=g(E).
then at least one of f, g is unbounded in G near z=2. Moreover. if g is bounded
in G near z=2, then g(z)=f(z/(z +1)).

7. Problems

Some of the following problems probably will turn out to be easy and some
hard, but we do not know which. Questions asked for sru’s often continue to
make sense (and may be easier) when asked about wsru’s or partial sru’s of
finite degree.

Problem 1. Can an arc be an sru? How about an analytic arc?

Problem 2. Can a perfect set be an sru?

Problem 3. Which triangles are sru’s? (By triangle we could mean either the
perimeter or the whole figure.) Equilateral triangles are obviously not sru’s.
How about a 3—4—5 triangle?

Problem 4. Can an open set be an sru?

Problem 5. Characterize all countable sru’s. It should be remarked that a
countable set of real numbers that is dense on IR cannot be an sru. This follows
from the main theorem of [3].
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Problem 6. Characterize those sequences b; <b, <... of positive integers for
which {1/b,} is not an sru. For example, it follows from the methods of this
paper. that {b,} has asymptotic density 0 in the natural numbers (that is.
b,/n— o). In fact. we can show that there is some o> 1 such that b,>«" for all
large n. If {b,} also has the property that {b,”} is bounded. must it be true that
for some integers k,r we have {b,} (modulo finite sets) the union of k geometric
progressions each with common ratio r?

Problem 7. What are the maps ¢: € —C such that if E is an sru. then ¢@(E) is
an sru?

Problem 8. Let &* be a class of entire functions. say the class of entire
functions of exponential type. or those of type <. In an obvious way. one can
define the notion of sets of range uniqueness relative to &*. Study this situation.
For example, taking &* to be £ the class of polynomials, one can show that E
= {222"} is an sru. This is a consequence of Theorem 3 after the transformation
p(z)—1/p(1/z).

Problem 9. What conditions upon a set {a,} weaker than those of Theo-
rems 2 and 3. suffice to guarantee that {a,} is an sru? For example. do
Theorems 2 and 3 remain true if the monotone or rapidly convergent condition
is replaced by the pair of conditions a,—0 and arga,—0?

Problem 10. Can an uncountable set be an sru?
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