Annals of Mathematics, 117 (1983), 173-206

On distinguishing prime numbers from
composite numbers

By LEoNaRD M. ADLEMAN,* CARL POMERANCE,* AND ROBERT S. RUMELY*

1. Introduction

We present here an algorithm that on input n will decide whether n is prime
or composite in “nearly” polynomial time. Specifically, for all large n it will
terminate within

(11) (lOg n)clogloglogn

steps, where c is a positive constant for which an upper bound could in principle
be computed. The algorithm depends on arithmetic in cyclotomic fields, and is
based on the discovery that for any n there is a collection of pseudo-primality
tests such that if n passes all the tests, its divisors lie in a small, explicitly given
set.

We give two versions of the algorithm, one probabilistic, the other determin-
istic, each of which has a running time bound of the above form.

The probabilistic version is computer practical. (By a probabilistic algo-
rithm, we mean one in which guesses are made to expedite the processing of the
algorithm.) If it terminates, it correctly decides whether n is prime or composite.
Thus it differs from the algorithm of Solovay-Strassen [35] which can only assert
with certainty that n is composite (but which runs in polynomial time, (log n)°).
The fastest previous probabilistic algorithm for primality, that of Williams-Holte
[39], was based on factoring and had expected running time exp (¢ylog nloglog n)
(see Dixon [11]).

The deterministic version is to be distinguished from Miller’s polynomial
time primality test in that if the new algorithm asserts that a number is prime
then its primality is provable from Peano’s axioms, whereas Miller’s algorithm
only guarantees a proof under the additional assumption of the Extended

*Research supported in part by grants from the National Science Foundation.

003-486X /83,/0117-1,/0173 /034$03.40 /1
© 1983 by Princeton University (Mathematics Department)

174 L. M. ADLEMAN, C. POMERANCE, R. S. RUMELY

Riemann Hypothesis. The fastest previous unconditional deterministic algorithms
required exponential time (Pollard’s n'/® in [23], and a recent n!/108 by
Adleman-Leighton [3]). Our algorithm is subexponential but not polynomial: the
logloglog n in the running time bound is sharp.

The history of primality testing is a long one. The Sieve of Eratosthenes
belongs to the basic landscape of mathematics, as does Fibonacci’s observation
that a composite n has a prime divisor p < yn'. Gauss computed large tables of
primes, from which he conjectured the Prime Number Theorem. In his Disquisi-
tiones, he further proclaimed primality testing and factoring to be “among the
most important problems in arithmetic.” Mathematicians interested in these
problems, represented in this century by the school of D. H. Lehmer, invented
many clever methods for dealing with large numbers, and their efforts found an
unexpected commercial application in cryptography. Recently, in theoretical
computer science, primality testing became not only a problem in its own right,
but a building block for other algorithms. We refer the reader to the survey
articles of Williams [38], Lenstra [18], and Pomerance [27] for further discussion.

Our algorithm lies at the confluence of several old ideas in primality testing,
as well as some new ones. Most modern primality tests have arisen from the
Fermat congruence

(1.2) b '=1modn (nprime, (b,n)=1).

There have been two basic approaches to using (1.2). One is to factor n — 1 and
show that (Z/n)* has order n — 1. The other, followed here, is to use the
congruence as a “pseudo-primality” test. The left side of (1.2) can be rapidly
evaluated by a process involving repeated squarings, and it can be shown that for
any given b > 1, most n which satisfy the congruence are prime. However, there
are composite numbers which satisfy it (pseudoprimes to the base b) and even
composite numbers which satisfy it for all relatively prime b (Carmichael
numbers). (See [25] and [26] for distribution estimates.)

Hence there have been efforts to find more discriminating pseudo-primality
tests. One such test is the defining congruence for the quadratic residue symbol

(1.3) +1= (%) =b""Y2modn (nprime, (b,n) =1).

If n is composite, (1.3) fails for at least half the b < n (Lehmer [15], Solovay-
Strassen [35]). Solovay-Strassen made this test the basis for their Monte-Carlo
algorithm: they observed that after checking (1.3) for k random b’s one could
declare n prime with probability of error less than 1 /2. Our algorithm proceeds
from a different observation: in addition to pass-or-fail, (1.3) places limits on the
structure of possible divisors of n. The basis for this is our “Extraction Lemma”,
explained in Section 4.

DISTINGUISHING PRIME NUMBERS 175

To obtain pseudo-primality tests which place additional constraints on
possible divisors, we take the congruences defining p'* power residue symbols in
the cyclotomic fields Q(¢,). Our use of higher power residue pseudo-primality
tests is new, though the idea of performing tests in number fields is not: the tests
of Williams, Judd and Holte [39], [40] are examples, as is the classical Lucas-
Lehmer test for primality of Mersenne numbers. However, the authors of such
tests have generally used the language of recurring sequences and worked in
fields of low degree, while we use the conceptual framework of algebraic number
theory.

The classic difficulty in using pseudo-primality tests to prove primality has
been how to link information from several different tests together. In tests based
on factoring, an advance by Brillhart, Lehmer and Selfridge [7] was combining
congruences arising from factors of both n + 1 and n — 1. One of the main
features of our algorithm is a new way of linking information from different tests,
using the power reciprocity laws and auxiliary moduli (“Euclidean primes™) to
carry information between fields.

The running time of our algorithm also deserves comment. In primality
algorithms based on factoring, the running time is limited by the speed of
factoring, and the current best factoring methods all have expected running time
exp(cylog nloglog n) (for example Morrison-Brillhart [22], cf. Pomerance [28]).
On the other hand, algorithms based on pseudo-primality tests like (1.3) face the
difficulty of finding a witness to the compositeness of n, if n is composite.
Solovay-Strassen and Miller-Rabin [30] trade certainty for speed, expecting one
will come upon a witness quickly by random guessing. Miller’s celebrated
algorithm [20] is based on a systematic search; if n is composite, Miller shows
that on the ERH a witness will be found in the range 1 < b < ¢(log n)%. Our
algorithm, too, involves a systematic search, and it is over a set of size (1.1). This
size estimate can be obtained using the ERH. However, unlike Miller’s case, the
estimate depends only loosely on n in that if it is true for n,, then it is true for all
nearby n. Thus it is possible to substitute sieve methods and averaging arguments
for the ERH.

Finally, we note that Hendrik Lenstra [19] and Henri Cohen [9] have
recently extended and recast the results of this paper, obtaining both theoretical
simplifications and practical improvements for computer implementation. These
promise to make routine the testing of primality for numbers some hundreds of
digits long.

Future directions. The question of whether there is a primality testing
algorithm which runs in polynomial time is still open. In fact, it is not even
known if there is an infinite set S of primes and an algorithm that on input n

176 L. M. ADLEMAN, C. POMERANCE, R. S. RUMELY

decides in polynomial time whether n € S. A notorious open problem, whose
solution would have important practical consequences, is to determine the
complexity of factoring integers (see Rivest, Shamir, and Adleman [33]). For an
analysis of current factoring methods, see Pomerance [28] and the references
therein. The related questions of testing irreducibility and factoring polynomials
with rational coefficients have very recently been settled by Lenstra, Lenstra,
and Lovasz [17], who gave a deterministic polynomial time algorithm for
factoring polynomials in one variable over Q. For other computational complex-
ity problems of a number-theoretic flavor we refer the reader to Adleman’s
announcement of the present algorithm [2], and to his thesis [1].

Acknowledgements. In our original proof of Theorem 3 (see § 6) we had
followed the paper of Prachar [29] which made use of Tatuzawa’s prime number
theorem [36], and obtained the bound

(log n)
for the running time of the algorithm. On reading some of our notes, Andrew
Odlyzko realized that a mean-value zero-density estimate of Gallagher [12] could
be substituted for Tatuzawa’s result, eliminating the exponent “2” in the bound.
Odlyzko’s improvement is especially significant because it gives a best possible
estimate (except for the constant c¢) for the running time. We are deeply
indebted to him for allowing us to incorporate his insight in this paper.

In addition we owe a debt of gratitude to many others who have assisted us
in this endeavor. Specifically we mention Jeff Lagarias, Hendrik Lenstra, Ram
Murty, Claus Schmidt, Richard Schroeppel, and Harold Stark.

c(logloglog n)?

2. The ideas behind the algorithm

Let 9 denote a finite set of primes. We define a Euclidean prime with
respect to § to be a prime q such that ¢ — 1 is square-free and every prime factor
of g—1 lies in .

We now give a rough outline of the algorithm. Say we are given a natural
number n which we wish to test for primality. The “preparatory” stage in the
algorithm is to find a small set § = J(n) of primes, which we shall call the set of
initial primes, such that the product of the Euclidean primes with respect to ¢
exceeds yn'. The running time of the algorithm is polynomial in the product of
the initial primes, so it is important that this product be chosen as small as
possible. In Section 6 we will show that 9 can be chosen so that

H p < (log n)clogloglogn
p€Y(n)

for all n > 100, where c is a certain positive, calculable constant.

DISTINGUISHING PRIME NUMBERS 177

From now on p, p;, p;, etc. will denote initial primes, g, g;, g;, etc. will
denote Euclidean primes, n will denote a large number to be tested for primality
and r a possible prime factor of n, 0 <r < /n.

The idea is to determine r (if it exists) by finding r mod g for each Euclidean
prime q. Indeed, if each rmod g is known, since r is smaller than the product of
the g’s, the Chinese Remainder Theorem allows us to determine r. We can test
directly if ¢ = r so we will henceforth assume r # O mod g for each q. Further,
we will fix a primitive root ¢, for each g and calculate indices with respect to it,
writing Ind (x) for the least non-negative integer such that

2.1) x =t mod g

when (x, g) = 1. Now, if Ind (r) is known, then obviously so is rmod gq. Note
further that we have carefully chosen the g’s so that the order of the group
(Z/q)* is square-free and divisible only by initial primes p. Thus, for a given g,
if Ind (r)mod p is known for each initial prime p|q — 1, then the Chinese
Remainder Theorem gives us Ind (7). In summary, if we know Ind () mod p
for each pair p, g with p | ¢ — 1, then we know r.

The crucial fact is that for each fixed initial prime p, it is possible to
compute “transition data” relating the Ind () mod p for all ¢ with p|q — 1,
such that if one of them is known, the others can be found in terms of it.
Knowing the Ind (r)mod p is equivalent to knowing certain p'® power residue
symbols. The transition data are obtained by computing various “mock” p**
power residue symbols in the cyclotomic field Q(S,), which are linked to true
power residue symbols by our “Extraction Lemma”. The power residue symbols
are related by the p* Power Reciprocity Law. These computations form the
“extraction” stage of the algorithm.

The final “consolidation” stage consists of systematically trying all possible
values for Ind (r)mod p at one distinguished Euclidean prime g = g(p) for
each p. To exhaust all possibilities, it is thus necessary to try II . p sets of values.
For each set, a candidate divisor r of n is assembled and tested. If a divisor
actually exists, then it corresponds to some set of values, and so will be
constructed by this procedure.

Let us illustrate the computation and use of transition data in the case
p = 2. Recall that for an odd prime v, and a number b not divisible by v, the
Legendre symbol (b /v) is that root of unity defined by

I+

1= (%) = p®V/2mod v.

Since (b/v) is +1 or —1 according as Ind (b) is even or odd, knowing (b/v) is
equivalent to knowing Ind (b) mod 2. The Legendre symbol can be extended by

178 L. M. ADLEMAN, C. POMERANCE, R. S. RUMELY

multiplicativity to give the Jacobi symbol (= quadratic power residue symbol): if
an odd number ¢ has the prime factorization ¢ = =0k -- - o¥ and (b, c) =1,
then (b/c) = II(b/v;)*:. Note that (b/c) does not depend on the sign of ¢ but
only on the ideal in Z it generates. If b is also odd, then (b/c) and (c/b) are
related by the Quadratic Reciprocity Law:

b\ _(c b=1 e b1 sme-
(2] =(5) oot

The key observation is that even if n is not prime, useful information can be
obtained from the Legendre congruence. Define the mock residue symbol

(b/n), by
<2> _ { =1 = b""Y/2mod n, if such a congruence holds
nje 0, otherwise.

If (b/n), = 0, then n is composite (Fermat’s Little Theorem). Our Extraction
Lemma (see §4) says that relations between mock residue symbols also hold
between the Legendre symbols at primes r dividing n. More precisely, if b is such
that (b/n), = —1, then for any m, c,

(5)7= ()t (2=)

The Extraction Lemma will be proved in greater generality below.

In the algorithm we shall compute (— q/n), for each Euclidean prime
g > 2. (The choice of —gq rather than q is made so that the factor in the
Reciprocity Law will be trivial: in the algorithm, the odd q’s will be congruent to
3mod4.) If some (— q/n), = 0 then n is composite, so assume they are all
non-zero. Also assume for convenience that, say, (— q,/n), = —1. (If each
(— q/n), =1, then in the probabilistic version of the algorithm we look for
some y such that (y/n), = —1, while in the deterministic version we avoid the
impasse by checking higher congruences akin to those in the strong pseudoprime
test of Miller.) For each q > 2 there thus exists an m;, = 0 or 1 such that

<—qo>'""= <_Q>

n /e n /o

The m, are the transition data. If r is a prime factor of n, then by the Extraction
Lemma and the Quadratic Reciprocity Law

T\ _(Z4)\ = ()= (T

(r) (r) (—q) (q)'

Thus if we knew (—gq,/r) (= (—1)d9%(md2) e could obtain (r/q), and
hence Ind (r) mod 2, for all g > 2.

DISTINGUISHING PRIME NUMBERS 179

In generalizing the above for p > 2, we encounter the problem that in order
to obtain a satisfactory pth Power Reciprocity Law, it is necessary to work in
Q(¢,) rather than in Q. This causes two further difficulties. First, in Q(S,) the
ideal (g), where ¢ = 1 mod p, is no longer prime and the prime ideals into which
it factors may be non-principal. Since the Reciprocity Law only permits one to
“flip” field elements, not ideals, it is necessary to find a surrogate for q. Such an
element is provided by an appropriate Jacobi sum. Second, the ideal (n) itself
generally factors in Q(S,), so it is necessary to compute certain ideals which
behave like the primes above n.

3. Some prerequisites

This section collects the relevant facts from algebraic number theory used in
the algorithm. Much of what follows is standard and well-known.

Cyclotomic fields. We restrict our attention to cyclotomic fields of prime
level p. A good reference is Birch’s article in Cassels-Frohlich [8]. Let

= p27i/p
=€

be a primitive p root of 1, whose irreducible polynomial over Q is the ptt
cyclotomic polynomial

— yp-1 —2
o (x) =2+ 2+ +1

The ring of algebraic integers in Q(S,) is Z[{,].

The factorization of a rational prime q into prime ideals in Z[{] is
determined by its congruence class mod p. In particular, (q) is ramified if and
only if g = p: in fact

(p) = (A\)P"!, whereA=1-¢,.
Otherwise (q) is the product of g = (p — 1) /f distinct prime ideals
()=92, -2

g

where f is the order of g in (Z/p)™ . The norm of each of these primes is
def

(3.1) N2, = #[Z[¢,] /2] = ' = 1mod p.

The polynomial @,(x) factors mod q as

g
P, (x) = ‘Hl h,(x) mod q
i=
where the h,(x) are distinct, monic polynomials of degree f which are irreducible
mod g. From this factorization we can find the 2, precisely, using the following
special case of Kummer’s theorem.

180 L. M. ADLEMAN, C. POMERANCE, R. S. RUMELY

ProposiTiON 1. The prime ideals in Z[{,] lying over (q) are
2, = (q, h,-(f,,)) fori=1,....g.

The Galois group of Q(¢,)/Q is also known: it is canonically isomorphic to
(Z/p)™ , the isomorphism being o, <> u, where 0, ($,) = ¢,

If n is a possibly composite number which behaves enough like a prime,
then a variant of Kummer’s Theorem applies to it as well.

ProOPOSITION 2. Suppose n = 2 is an integer, n has order f in (Z/p)* , and
g = (p — 1)/f. Also suppose

g
®,(x) =[] hi(x) mod n
i=1
where the h(x) are monic polynomials in Z[x) each of degree f. Consider the
ideals @, = (n, hy(S))) in Z[{,]. If r is a prime factor of n, then in Z[{,]

g

(r) = H (r, @i)
i=1
and each (r, @;) is divisible by the same number of prime ideals of Z[¢,] lying
over r.

Proof. Let

k
o (x) = '1—11 v,(x) mod r

be the decomposition into monic irreducible factors in (Z/r)[x]. There are no
repeated factors since p # r (using p } n). By Proposition 1, the primes over r are

the ideals
?H,i= (r,vf(fp)), i=1,...,k.

But each h,(x) is uniquely a product mod r of certain v,(x) and each vi(x) is a
divisor mod r of some h,(x) since Z /r is a field. Thus each (r, @,) is precisely the
product of those @Li corresponding to the v,(x) which divide h,(x) mod r. Our
assertions then follow.

Remark. It is not difficult to show that if d is any divisor of n, then
(d) =TI, (d. &,).

The p* Power Reciprocity Law. In Q(¢$,) it is possible to formulate a p™
Power Reciprocity Law. Let 2 be a non-zero prime of Q($,,) not dividing p, and
let vy() denote the corresponding exponential valuation. Note that by (3.1),
N2 — 1 is divisible by p. For any « € Q(¢,) with vy(a) = 0, define the p™

DISTINGUISHING PRIME NUMBERS 181

power residue symbol (a/2), to be the unique p' root of unity satisfying the
congruence

(ﬁ) =¢ = aM2"D/Pmod Q.
p

Just as with the Jacobi symbol, the p power residue symbol can be extended by
multiplicativity in its lower argument. It can further be extended to field

elements by setting
5, 0 (51
Y P Up, a 9’ .

ProposiTiON 3 (p™Power Reciprocity Law). Take p > 2 and let o,y be
elements of Q(S,) relatively prime to N and to each other. Then there is an
independently defined p™ root of unity (a, v), (called the norm residue symbol)

such that
(%)p - (%)p(a’ ‘Y)}\

This result is a somewhat specialized form of the corollary on p. 171 of
Artin-Tate [4]. (The norm residue symbols for archimedean valuations have been
omitted, since as noted on p. 172 of [4], they are trivial at valuations where the
completion is C.) The symbol (e, y), is multiplicative in both arguments and is
not changed when « or y is multiplied by a p' power (see pp. 150-151 of [4]).

There exist closed formulas for the norm residue symbol, but here we simply
need

ProposiTiON 4. If a =1mod N, Yy =1mod A’ and i +j=p + 1, then
(a, Y)A =1

The proposition is given as Exercise 2.13b, p. 354 of [8], and is an
immediate consequence of Lemma 3, p. 158 and Theorem 9, p. 163 of [4].

We also note the functoriality of the power residue symbol under the Galois
group: for any ¢ € Gal(Q({,,)/Q) it follows from the defining congruence that

@) (ca),=<(3),

We now consider power residue symbols in the special case where q is a
rational prime and p|q — 1. Let t = t, be a primitive root for q. Then
p—1
= — tW(g—D)/p)i
Qp(x) _’Hl (x t 9 ’)mOdq5
l:

so by Proposition 1 there is a “canonical” prime 2 lying over g in Z[{,]

182 L. M. ADLEMAN, C. POMERANCE, R. S. RUMELY

(canonical in terms of the choice of ¢,):

(3.3) 9=(q,¢, —t@V/7),
If x is a rational integer, then similarly to the case p = 2 we have
x

3.4 (_) — ¢Ind (x)

(54 5) =4

where we compute indices with respect to ¢. Indeed

x - n x - — n x
(3.5) (é),, = 24D/ = ¢IdgNa=D/p = {1044® o

by the definition of 2. Thus knowing (x/2), for the canonical prime 2 is
equivalent to knowing Ind ,(x) mod p.

Jacobi sums. The power residue symbols can also be used to compute
Jacobi sums, certain elements of Z[{,] with known factorizations into prime
ideals. Their use enables us to circumvent the difficulties that might be expected
to arise when the class number of Q({,) exceeds 1. The principal virtues of
Jacobi sums are their computability and their known factorization; but they
satisfy congruence properties helpful in the p* Power Reciprocity Law, as well.

In general, if 2 is a prime of Q({,) not dividing p and if a, b € Z, we define
the Jacobi sum

=35

where 3’ denotes the sum over a set of coset representatives x of Z[{,]/2 other
than 0,1 mod . The prime factorization of (J, ,(2)) is given by the following
result; recall that [x] denotes the greatest integer not exceeding x.

p

ProposiTioN 5 (Stickelberger). Suppose a, b € Z with ab(a + b) #
Omod p. For u € Z, let
2R
—|=u| —|=uf,
p P
p—1

oa,b(u) :[
so that 6, ,(u) = 0 or 1. Then

(I »(2)) = I o, %(2)"™*.
u=1

a+b]
u

(This result is Theorem 11, p. 98 in Lang [14], except that the conditions on
a and b are omitted there.)

We shall also need the following two results. The first is used to show that in
our cases of the p Power Reciprocity Law, the norm residue symbols are trivial.

DISTINGUISHING PRIME NUMBERS 183

The second will imply that Jacobi sums are “good” surrogates for primes £ in
Q($,); that is, useful information can be extracted from them.

ProposiTiON 6. (Iwasawa [13], Theorem 1). Foralla, b € Z,
—J,.,(2) = 1mod X°.

ProposiTion 7. If p > 2, there exist a,b € Z such that ab(a + b) Er_é

0mod p and
A def

0, ,= 2 p(u) - u"'EO0mod p

where u~' denotes an inverse to umod p.

Proof. Note that for 1 <u <p — 1, we have [u/p] = 0 and

[(p—1)/p)u] =u—1.

Hence
pizé\m’l _ piz pil ([(m _; l)u] _[ﬂp'i])u—l
m=1 m=1u=1
= 2 [(-1] —lzpil(u—l)u 1_p—l%Omodp
So there is at least one “good” pair (a, b) among (m,1) form =1,...,p — 2.

We remark that 0 »=(a+ b)?» —a?—b?)/(p)mod p, so that for all
p < 10° except for p = 1093 and 3511, one can takea = b = 1.

4. The probabilistic version of the algorithm

We are now in a position to present the algorithm in detail. In this section
we shall describe an informal probabilistic version for clarity of presentation. In
the next section we shall carry out the changes needed to make the algorithm
deterministic and give a more formal statement.

Primality Algorithm (probabilistic version).

Let n be a natural number. (If the algorithm is actually being implemented,
assume n has passed standard pseudo-primality tests and so is almost certainly
prime.)

A. “Preparation Step”

A.1. Compute f(n), the least square-free natural number such that

[g>n"2
q—1|f(n)

q prime

184 L. M. ADLEMAN, C. POMERANCE, R. S. RUMELY

Define the initial primes for n to be the prime factors p of f(n). Define the
Euclidean primes for n to be the primes g for which ¢ — 1| f(n). Since there are
infinitely many primes g such that ¢ — 1 is square-free (Mirsky [21]), f(n) always
exists. We will show in Section 6 that

f(n) < (Iog n) cologloglog n

for all large n. We believe (but cannot prove) that taking the product of the
initial segment of primes up to

1+e
log 2

loglog nlogloglog n

will provide enough Euclidean primes. An unimaginative but sure way of
computing f(n) is to compute sequentially for each square-free k=
1,2,3,5,86,...the product

Il q

q—1lk
q prime

stopping as soon as a value of k is found for which the product exceeds n!/2, The
number of computational operations required for each k is at most k° for some
constant c, so the time needed to compute f(n) is at most f{n)°*'.

A.2. Compute and fix a primitive root ¢, for each Euclidean prime q (for
example, the smallest positive primitive root). Also check that n is divisible by no

p orq.

A.3. For each initial prime p > 2, find a,b €Z such that 0 <a, b <p,
a + b =0 mod p, and

A r_1
0, ,= X0, ,(u) u? ‘% Omod p
u=1

as guaranteed by Proposition 7. Forp = 2,leta = b = 0:, » = L

A.4. Compute a “Jacobi sum” J (q) for each initial prime p and Euclidean
prime g with p | g — 1 as follows.

If p=2put](q)= —q.

Ifp>2let

Mo = L@ = 3 (3)°(155), e e

where a, b are the integers computed in A.3 and 2, defined by (3.3), is the
“canonical” prime over g with respect to ¢,. (Since Z[{,]/2 =Z/q, rational
integers can be used as coset representatives in computing the Jacobi sum.) To

DISTINGUISHING PRIME NUMBERS 185

compute a power residue symbol (x/2), = {! it suffices to make a table of
t1@=b/? for j=0,1,...,p — 1, compute and look up x@V/? and thus de-
termine j as in (3.5). Moreover, if p > 2 and if r is any rational number prime to
p, then the norm residue symbol (J,(q), r), is trivial. Indeed,

(1),), = (B(a), 7*7), = (L,(a), ()77,

since the norm residue symbol is unaffected by p* powers. But
(r 1! = 1mod AP~ 1
by Fermat’s Little Theorem and the fact that (A*~!) = (p). Also
J,(g) = 1mod N

by Proposition 6. Thus our assertion that (J,(q), r), = 1 follows from Proposi-
tion 4.

A.5. For each p, factor n into ideals in Z[{,] as it would split if it were prime
(no computations are needed if p = 2). We attempt to do this as follows. Let fbe
the order of n in (Z/p)*, put g = (p — 1) /f, and try to factor

g
P (x)=aPt+aP 24 +1= II A;(x) mod n
i=1

where each h,(x) € Z[x] is monic and has degree f. If n is in fact prime, then
with high probability of success ®,(x) can be so factored over Z/n by the
probabilistic method of Berlekamp [5] or of Rabin [31] in time polynomial in p
and log n. Note that the algorithm may diverge here, even if n is prime. But for a
probabilistic algorithm, it is only necessary that if n is prime, there is high
probability that a proof of primality will eventually be found. If the factorization
can be carried out, we will be in the situation of Proposition 2 of Section 3. Put

@ =(n,h(s,)), i=1,....g.

B. “Extraction Step”

Suppose @ is an ideal of Z[{,] not dividing (A) and a € Z[{,]. We saw in
Section 3 that if @ is a proper prime ideal and if a ¢ @, then a¥~D/? s
congruent mod @ to a p* root of 1. This may still occur even if & is not prime, so
that @ would be analogous to a rational pseudoprime. However, since @ ()), this
can hold for at most one such root of unity. We define the mock residue symbol

(a/@), to be

<g> _ {{,’; = oM D/P mod @, if such a congruence holds,
@/p

0, otherwise.

186 L. M. ADLEMAN, C. POMERANCE, R. S. RUMELY

B.1. For each initial prime p and each Euclidean prime g with p lg — 1,
compute the mock residue symbols

J,(q) ._
< @ >p fori=1,...,¢g

1

for the ideals @, found in A.5 and the] (q) defined in A.4. Note that g and the
@, depend on p. If any of the mock residue symbols are 0, declare n composite.

In the next section we will show that the computation of a mock residue
symbol can be accomplished in time polynomial in p and log n (< f(n)). We
need to compute g <p — 1 mock residue symbols for each pair p, q with
p|q — L. It is clear that the number of Euclidean primes is less than f(n), so this
step of the algorithm can be completed in time polynomial in f(n).

B.2. For each initial prime p do the following. If the mock residue symbols for
p are not all equal to 1, choose some nontrivial one, (y/®),, and call it the
distinguished symbol corresponding to p. If they are all 1, compute mock
residue symbols (v/@,), for other y’s chosen at random in Z[{], until one is
found to be not 0 or 1 and designate it the distinguished symbol. (Again, the
algorithm may diverge here, but if n is prime the probability of an arbitrarily
chosen y working is roughly (p — 1) /p.)

B.3. For each pair p, g with p | (g — 1), compute the exponents m; , such that

(4.1) <é>:= <]”6(E‘i’)> , 0=m, <p.

These relations are preserved for the power residue symbols at prime ideals
dividing the @, as we now see.

ExtracTiON LEMMA. Let @ and @, be ideals of Z[¢ ,]suchthatp} N@ = N@,
and let R, R | be conjugate prime zdeals dividing @ and @, respectively. Suppose
there is some y € Z[{,] such that (v/@),isnot 0 or 1. Then forany a; € Z[{,],
the relation (where m € Z)

A <1>”‘= <ﬁ>
) 5= (8)
implies
Y\" a,
B X)) = (L)
(B) (&), (@1)
Proof. The initial hypothesis is that y™*~D/? = ¢ mod @ for some

i §é Omod p. Reducing this congruence mod ., we see that
N@ —)

(4.2) v,(N® — 1) > vp(

DISTINGUISHING PRIME NUMBERS 187

(where v,(t) is defined by p*(*||t) since {7 % 1 mod % and N®R — 1 is the order
of (Z[%,1/9.)" .

First suppose ® = R ,. Then reducing the relation (A) mod } and using
N& = N@&,, we obtain

(4.3) (yNen/p)" = <élz>'" - < %> = o™ /P mod K.
14 1/ p

The multiplicative group of a finite field is cyclic, so we may compute indices
with respect to some primitive root 7. Thus (4.3) may be rewritten

(4.4) (mInd(y) —Ind(e))(N€—1)/P = | mod 4R,
Since the order of 7is NR — 1, (4.2) and (4.4) imply

p|(mInd(y) — Ind(e,)).

But this in turn means that (4.4) holds with “N@%,” replacing “N& . Making the
substitution and unwinding the resulting congruence give

(-Y(N@u—l)/p)"‘ = o1(11‘79‘—1)/1) mod R ;

that is, (B).
In general, let ¢ be an automorphism of Q({,,) such that 6% = % ,. Then, as
is immediately seen from the definitions,

a o la o la i
4\ 1\ 1
<6E1 >p o 1@, o '@,

p p

if o(§,) = {i. Hence replacing o, by 6~ 'a;, @, by 67'@,, and m by mj~" where

j~1is an inverse of jmod p, we are reduced to the previous case, completing the
proof.

The Extraction Lemma and the relations (4.1) among the mock residue
symbols allow us to compute many power residue symbols in terms of one
unknown one, via the following calculation.

Suppose r is a prime number dividing n. Let p > 2 be an initial prime.
Suppose (y/@), is the distinguished symbol corresponding to p. Knowing this
mock residue symbol does not allow us to compute the power residue symbol
(v/(r, @)),, but there are only p possibilities for it. We now show that the value
of (v/(r, @)), completely determines each Ind (r) mod p for every Euclidean
prime g with p| g — 1.

This idea is to evaluate (J,(q)/r), in two ways. First, note that

(5], = () o= (3t

188 L. M. ADLEMAN, C. POMERANCE, R. S. RUMELY

by the Power Reciprocity Law (Proposition 3) and step A.4. On the one hand

PR s)oa_bw)_p—l) e
(]p(q))p_ I (ou_lQ _ulzllou (9)”

u=1 P

u™, (u 6,
5), = (3),

where is the canonical prime lying over g. We have used the factorization of
Jacobi sums (Proposition 5) and functoriality (equation (3.2)). On the other hand

B0 -1 -) = ()

=1 =1 4

|
=

u=1

by Proposition 2, (4.1) and the Extraction Lemma. (Note that by Proposition 2
there is a one-to-one correspondence between the primes dividing (r, @,) and

(r, @)

Now a and b were specifically chosen in A.3 so that 0,; p is invertible mod p.

Hence
3),- ((r,Y@))

Thus from (3.4), if (v/(r, €)), = {,’j then

—1
0,338 m, ,

p
. &
(4.5) Ind (r) =k 6, X m, ,modp.
i=1

C. “Consolidation Step”

If py,...,p, are the initial primes and (y,/@,), are the corresponding
distinguished symbols found in step B.2, then for each prime factor r of n, there
are integers k,,. ..,k such that

(4.6) ((T,Yi@,-))p,. =, i=1,....d.

By the Chinese Remainder Theorem there is a single integer k defined modulo
[Ip,, such that

% — ¢k _
((’"’@i))p.. ¢, i=1...d.

For each k, 1 =k <f(n)=1IIp,, we assemble and test a possible divisor
r = r(k) of n.

DISTINGUISHING PRIME NUMBERS 189

C.1. Use the Chinese Remainder Theorem to compute for each g > 2 integers
I(k, q) such that

. &
I(k,q) =k 6,3, X m;, ;modp
i=1

for each p with p | g — 1. Also let I(k,2) = 1. If k corresponds to an actual prime
factor r of n, then the I(k, q) are the Ind () mod p (see (4.5)).

C.2. For each g, compute the least positive integer
r(k,q) =t/* P mod q.

Again, if k corresponds to an actual prime factor r of n, then the r(k, q) are the
rmod q.

C.3. Use the Chinese Remainder Theorem to compute the least positive integer
r(k) such that for each g, r(k) = r(k, q) mod g. Thus, if k corresponds to an
actual prime factor r of n, then (k) = rmod Q where Q is the product of the
Euclidean primes. If r < yn < Q, then r(k) = r.

C.4. Check whether r(k) | n. If it does and (k) # 1, n declare n composite and
halt. Otherwise continue with the next value of k.

C.5. Declare n prime. For if n is composite it must have a prime factor r < yn.
From the above considerations, we have

TuEOREM 1. The above algorithm correctly determines whether n is prime or
composite, if it terminates. There is an absolute, calculable constant ¢, > 0 such
that for every k = 1, if n is prime, the algorithm terminates within T,(n) steps
with probability greater than 1 — 27, where

f(n) = Ti(n) < kf(n)*.

Remark 4.1. If n is composite, and passes all the pseudo-primality tests in
the Extraction Step, then it will be factored during the Consolidation Step. Thus
it might appear that our algorithm gives a method for factoring. In fact, this is
not so, for any composite n will almost certainly be rejected before or during the
Extraction Step.

Remark 4.2. H. W. Lenstra, Jr. and R. Schroeppel independently noted
that the map k — r(k) is a homomorphism from the additive group Z/f(n) to
the multiplicative group (Z/Q)*, where Q is the product of the Euclidean
primes. Thus, after computing r(1) by steps C.1-C.3, one immediately obtains
(k) for k > 1 by the formula r(k) = r(1)*mod Q.

Lenstra went further, and showed that n itself is a generator for the group of
r(k) mod Q, eliminating the need even to compute r(1). As this is only a small

190 L. M. ADLEMAN, C. POMERANCE, R. S. RUMELY

facet of his recasting of the algorithm, we again refer the reader to his paper [19]
and that of Cohen [9].

Remark. 4.3. The quantity f(n) is deeply embedded in the algorithm,
appearing in the computation of the Euclidean primes, the calculation of
primitive roots and Jacobi sums for the larger Euclidean primes, and the number
of trial divisors of n in the Consolidation Step. If there are large initial primes (a
possibility we cannot a priori rule out) then it appears in the computation of
mock residue symbols as well.

5. The deterministic version of the algorithm

As presented in the previous section, the algorithm failed to be deterministic
at two points: the factorization of the polynomial @ (x) mod n in step A.5, which
was necessary to factor (n) into ideals in Z[{]; and the construction of an
element y € Z[{,] such that the mock residue symbol (y/@}), was nontrivial in
step B.2, which was needed to construct the transition data m, , and to apply the
Extraction Lemma.

We will deal with both problems simultaneously, replacing the factorization
of (n) into ideals by a process involving forming the greatest common divisor of
ideals, which will also construct the transition data. We then prove a strengthened
version of the Extraction Lemma which eliminates the need for a “y”.

The mock residue symbols (J (q)/@,), are a suggestive way of codifying
congruences, but they obscure the fact that further information can be gained
from higher congruences in the event that all of the mock residue symbols for a
fixed p turn out to be 1. So, in the following, we drop the formalism of mock
residue symbols and work directly with congruences.

Suppose steps A.1-A.4 of the probabilistic version of the algorithm have
been carried out. Fix an initial prime p and let f be the order of n in (Z/p)* . If
n is prime and @ is a prime in Z[{,] lying over (n), then N® = n’. Suppose
a€Z[§,] — R. If (a/R), =1 and p*|n’ — 1, then a™ /7" is a p root of
1 mod & ; that is,

a(n’—l)/?’z = {;’ mod @,

for some j. If {{ = 1 and p®| n/ — 1, we similarly find that o™ =/P" js a p' root
of 1 mod R, and so on. Thus if p*||nf — 1, then there is some s, 1 <s < k, and
some j with

O §7 mod ¢ and

(ii) either {7 + 1 or s = k.
If we have h numbers a,,...,a, & R, then there is some s, 1 <s <k, and

DISTINGUISHING PRIME NUMBERS 191

integers j;,. . .,j, with

(i) ag"f'l)/p'Eg}mod@, fori =1,...,h,

5.1 .
.1 (i) eitheratleastone % #1 or s=k.

If (5.1) holds simultaneously for several primes R, over (n) (that is, with the
identical numbers s, ji,...,j,) then (5.1) holds with the modulus @ = [I® ;. Our
goal is to find such a nontrivial ideal factor of (n) in the specific case when the
ay,...,a, are the J(q) for each Euclidean prime g with p|q — 1 and their
conjugates oJ,(q) in Z[{,].

We now outline a procedure which will either do this, or show that n is
composite.

Note that if n is prime, then by Proposition 1, any ideal in Z[{,] containing
n will be generated by n and h(S,), where h(x) is a polynomial with integer
coefficients with the property that h = (hmod n) divides x» ' + --- +x + 1 in
(Z/n)[x]. If one adjoins an element h,(§,) of Z[{,] to (n, h(S,)), the result is the
ideal (n, hy({,)) where h, = ged(h, h;). This gcd may be computed by the
ordinary Euclidean algorithm for polynomials, which involves division (by lead-
ing coefficients) in Z /n. This latter division may be done using the Euclidean
algorithm for integers. A moment’s reflection shows that even if n is not prime, if
the Euclidean algorithm for polynomials can be carried out for A and h, then
(n, h(§,), hy(§,)) = (n, hy(§,)). But the only way the Euclidean algorithm can
fail is if at some stage, a nontrivial common divisor of n and some leading
coefficient is found. In that case, n will have been factored.

The GCD Process. Let @° = (n) = nZ[§,).

Say now 1 <i<h and @' has been constructed. Consider the ideals
(@1 aﬁ"f_ D/p — ¢y for j = 1,...,p, by the procedure above. If n factors, or if
all the ideals are the identity ideal, declare n composite and halt. Otherwise, let
@' be the first one which is nontrivial.

If, after constructing @", it has been possible to choose {,’; # 1 at some step,
or if pt(nf — 1)/p, set @ = @". Otherwise, continue the process, but with the
exponent (nf — 1) /p? in place of (nf — 1) /p. If 1 <i < h and @"*~! has been
constructed, consider the ideals (@"*'~, a{®’~D/7* — i) for j=1,...,p, and
either declare n composite, or find an ideal @"*i. If, after constructing @** some
ideal has been obtained for which {7 # 1, or if pt(nf — 1)/p? put @ = @*".
Otherwise, continue with (nf — 1) /p®, and so on, until finally some s is reached
such that it has been possible to choose some {7 # 1, or pt(nf—1)/p°. Put
@ = @*". Clearly s < (p/log p)log n.

192 L. M. ADLEMAN, C. POMERANCE, R. S. RUMELY

If n is prime, the GCD process will construct an ideal @ (in fact with
minimal “s”), and will not falsely declare n composite.

It may be good to emphasize that the above operations with ideals can be
carried out in time polynomial in p and log n. All arithmetic operations may be
done with polynomials modulo ®,(x) =x?"! + --- +x + 1 and modulo n, so
there will not be too many coefficients and no coefficient will grow too large.
Exponentiations can be done by the process of repeated squarings, and for the
operation of the Galois group, if ¢, is an automorphism of Q(£,)/Q, and
h(§,) € Z[{,] is represented by h(x), then 0,(h(¢,)) is represented by h(x").

Finally, we remark that this construction is applicable to the ideals @, in
steps B.1 and B.2 of the probabilistic version of the algorithm, showing that the
mock residue symbols there can be computed in time polynomial in p and log n
as well.

GENERALIZED EXTRACTION LEMMA. Let f denote the order of nmod p and
let @ be an ideal in Z[,] dividing n. Let ay,. .. ,a), € Z[{,] be given and suppose
there is an integer s = 1 and integers j, for 1 <i < h with

(i) each o{”'~V/?" = $mod &,

(ii) either pt(nf — 1)/p* or some §i # 1.

Then for any a, B € {a;,...,a,} and any integer m, the statement

(A) (a(nf—l)/p‘)m = B(nf—l)/p’ mod @,

implies the statement

(B) for each prime ideal .| @, (a/R); = (B/R),.

Proof. For any @ dividing @ the congruence (A) also holds mod %, so that
writing I(») for the index of » with respect to a fixed generator 7 of (Z[{ 21/ RH*,
we obtain

FH@Qm=IBN=1/P° = | mod R..
Since rmod R has order N — 1, this implies that

nf—1
(5.2) (I(a)m — 1(B)) >

=Il(NR — 1)

for some integer I. Since p{n and n € R, we have p | NR — 1. Thus if we are in
the case p { (nf — 1) /p®, (5.2) implies

(5.3) p|(I(a)m — 1(B)).

On the other hand, if some o{"'~D/?" = S % 1mod @, then

1

.

nf—1 n

NR — 111(«,) NR —1]1(a;)

s b

f_
ps—l

DISTINGUISHING PRIME NUMBERS 193

Thus we have

nf—1
(5.4) v,(NR — 1) > vp(e)
Using (5.4) in (5.2) shows that (5.3) holds in this case as well.
Hence

FHm—IBNNE=1)/P =] mod R,

so that (N~ D/Pym = BN&=1/P ;od @R ; that is, (B) holds.

If in the GCD proces} some "'~ D/?" = $k £ 1 mod @, choose such an «,
and call it y. Recall now that the a; are the conjugates for the various J(q),
where p|q — 1 (p is fixed). Write m(o, q) for the unique integer with 0 <
m(o,q) <p — 1 and

(5.5) (.Y(nf-l)/pS)m(",Q) E(Olp(q))(nf~l?/ps mod @.

If, on the other hand, each {* = 1, set y = a, and each m(o, q) = 0. Note that
(5.5) holds in this case as well. The m(o, q) form “transition data” which can be
used similarly to the m, , in the probabilistic version of the algorithm.

Indeed, suppose r is a prime factor of n. Let R be a prime lying over r in
Z[{,] which divides @ and suppose the order of rmod p is d = d,,. Then for each
q with p| g — 1 we have, as in step B.3 of the probabilistic version,

(Jp(q)) _ (r) _ (1)‘“"’
r 14]p(q) p 9’ p
where 0; » Was chosen in step A.3 and 2 = (g, §, — t{?"P/?) is the canonical

prime lying over q described in step A.4. On the other hand, since (r)¢ =
12~ 'o,R , we have

L@\ _rot(h@)) _7q' (9 h(a)
TR e,

" Jp =119 i=1 K R
_ Pﬁl (oi_l]p(q))i _ pI—Il (l)f.m(o,“l,q)
i=1 R P j=1 R/»
_ (l)z;’;}rm(o,—‘,q)
R/
where we use (3.2), (5.5) and the Generalized Extraction Lemma.
Note that neither (y/®), nor d is known, but that if i = i, is such that

(v/%), = ¢, then the above calculations together with (3.4) show that

A N
Ind (1) =(d6, ,) i Y i-m(o*, q)mod p.
i=1

194 L. M. ADLEMAN, C. POMERANCE, R. S. RUMELY

We conclude that there is some integer k, 1 < k < f(n), such that
Ind (Ek;_bzy m(,q)modp

for every pair p,q with p|g — 1. Indeed we just choose k so that k =
d ‘i, mod p for each p.
We now give a more formal statement of the algorithm.

Primality Algorithm (Deterministic Version) g

On input n:

A’. “Preparation Step”

A’.1. Compute the least positive square-free integer f(n) such that

H q > n1/2.
q—1|f(n)

Define the initial primes to be the prime factors of f(n). Define the Euclidean
primes to be the primes g with ¢ — 1| f(n).

A’.2. Test whether any initial or Euclidean prime divides n; if one does and is
not equal to n, declare n composite and halt. Compute the least positive
primitive root ¢, for each Euclidean prime q.

A’.3. For each initial prime p > 2, find integers a, b with 0 <a, b <p,
a + b =0mod p, and

A p—1
Oy = 2 0, ,(v) - u”' =0mod p
u=1

as guaranteed by Proposition 7. For p = 2, puta = b = é; » = L.

A’A4. For each initial prime p and each Euclidean prime q with p | g — 1, fix the
prime ideal

2,= (g8, — t{a=b/)

lying over q in Z[{,], where {, = ¢*""/?. Compute the Jacobi sum J(9) € Q(S,):
if p=2,put](q)=—

q—1 x\ 91—« —b

p> 2 puth(a) = ~1u2) = - 2 (%—) (a—) |

q

where a, b are the integers (depending on p) computed in A’.3 above.

DISTINGUISHING PRIME NUMBERS 195

B’. “Extraction Step”

B’.1. For each initial prime p, carry out the GCD process in Q(¢,) with respect
to n and the set of o] (q) where q ranges over all Euclidean primes with
p|q — 1 and o ranges over Gal(Q(¢,)/Q). Thus either declare n composite or
construct a proper ideal @ in Z[{,], an integer s = 1, and integers j(o, q), with
1 <j(o, g) <p, such that

(i) each (o],r,(q))("f‘l)/’f’s = {{>9mod &,

(i) either pt(nf — 1)/p° or some {i* @ # 1,
where f denotes the order of nmod p.

B’.2. For each initial prime p, do the following. If some j(o,, q,) # p, let
Y = 0,J,(q,)- In this case, construct integers m(o, q) for all o,q such that
0<m(o,q)<p—1and

(Y(nf_l)/p’)'"(o’ D = (o]p(q))("f_l)/pl mod @.

If all j(o, g) = p, set all m(o,q) = 0.

C’. “Consolidation Step”

For each integer k, 1 <k < f(n), do C'.1 to C' 4.
C’.1. For each g > 2 use the Chinese Remainder Theorem to compute integers
I(k, q) such that

A p_1
I(k,q)=k6,} X i- m(o,._l, q)modp
=1

for each p | g — 1. Also let I(k,2) = 1.
C’.2. For each g, compute the least positive integer r(k, g) = t/* 9 mod q.

C’.3. Use the Chinese Remainder Theorem to compute the least positive integer
r(k) such that (k) = r(k, g) mod q for each q.

C’.4. Check whether r(k) | n. If it does and r(k) # 1 or n, declare n composite
and halt. Otherwise continue with the next value of k.

C’.5. Declare n prime.
We have

THEOREM 2. On input n > 1, the above algorithm correctly determines
whether n is prime or composite. There is an absolute, positive, calculable

196 L. M. ADLEMAN, C. POMERANCE, R. S. RUMELY

constant c, such that the running time T(n) satisfies
f(n) =T(n), if nisprime,
T(n) <f(n)*®, foralln.
6. The running time

Recall that f(n) denotes the least positive square-free integer such that the
product of the primes g with ¢ — 1| f(n) exceeds yn'. We have seen above that
the running time for either the probabilistic or deterministic algorithms is
bounded above by f(n)¢, where c¢ is a positive, absolute, calculable constant.
Moreover, if n is prime, the running time is at least f(n). In this section we
obtain estimates for f(n) and a closely related function g(n) which appears in
the Lenstra-Cohen variations of the algorithm. The function g(n) is defined as
the least positive integer (not necessarily square-free) such that the product of the
primes q with ¢ — 1|g(n) exceeds yn. Thus g(n) < f(n). While in practice
g(n) can be much smaller than f(n), the main theorem of this section shows they
are of the same rough order of magnitude.

Tueorem 3. There are positive, absolute, calculable constants cs, c, such
that for all n > 100,

(log n) ' 58" < g(n) < f(n) < (log n)**'*="8"",

The lower bound in Theorem 3 is relatively simple. What is needed is an
upper bound for the number d(k) of divisors of an integer k, such as that
provided by a wellknown theorem of Wigert [37]:

(61) d(k) < 2(1+0(l))logk/loglog k.

However, we require a more explicit result than (6.1) to insure that the constant
c; be calculable. This is easily provided by tracing through the proof of Wigert’s
theorem given by Ramanujan [32]. He uses the geometric mean-arithmetic mean
inequality and partial summation to show (see displays (3), (19), (20) in [32])

O e

where P is the w(k)-th prime. Here, w(k) is the number of distinct prime factors
of k and

tt) dt du

m(x)= 21, 6(x)= X logp.

pP=x pP=x

Using solely Chebyshev-type upper and lower bound estimates for 7(x) and 6(x)
(e.g., see Davenport [10], Ch. 7), Ramanujan goes on (display (28)) to show that

d(k) < 9log k/loglog k+O(log k /(loglog k)?)

DISTINGUISHING PRIME NUMBERS 197

From his proof and the fact that the Chebyshev estimates can be made
effectively, an upper bound for the implied constant is calculable.
Thus for all k beyond some computable point

(62) d(k) < (2-5)log k/loglog k.

We conclude that if n is beyond some computable point and k < (log n)"glsle ",
then

II ga= [@+1)= [I@d) = (2k1/2)d(k)
q— 1k dk djk

= (2(10g n)(1/2) logloglog n)(2,5)10,;1.,g n

= exp{(log2 + 1 loglog nlogloglog n)(log n)log(z,S)}

<n'/2,

This calculation shows that (log n)°8'°8'¢" < g(n) for all n beyond some com-
putable point, and introducing the constant c; gives the lower bound in the
theorem, for all n > 100.

The rest of this section will be devoted to the upper bound. To show f(n) is
small, it will be sufficient to show there is some small square-free integer with an
inordinately large number of divisors of the form p — 1 with p prime. Prachar
[29] has obtained such a result (without the square-free requirement) by showing,
on the average, that all multiples of the product of a long initial segment of
primes are such numbers. Our general strategy will be to follow Prachar’s proof,
but with two important differences. First, as mentioned in Section 1, we do not
follow Prachar in using the result of Tatuzawa [36] that asserts that most
arithmetic progressions a mod k with k < x¢/1°€16* have the “proper” number of
primes below x. Instead we use a result of Gallagher as applied by Bombieri that
essentially allows us to replace “x°/1°8l°8*” with “x®” where 8 > 0 is a constant.
This is Proposition 8 below. The second difference is that we wish to count only
primes p for which p — 1 is square-free. This task is routinely accomplished in
Proposition 9 by an inclusion-exclusion argument that is made simpler by the
observation that most non-square-free numbers are divisible by a small square
exceeding 1.

In this section the letter p denotes a variable prime and ¢ denotes Euler’s
function.

ProposiTioN 8. For every € > 0 there are calculable positive numbers
x, = x,(€), 8 = 8(¢) such that if x = x(&) and k, a are coprime integers with

198 L. M. ADLEMAN, C. POMERANCE, R. S. RUMELY

0 <k <x? then

S logp— S L i
p=amod k (P(k) (P(k)
p=x
except possibly for those k which are multiples of a certain integer k(x) >
(log x)3/2.

This result follows from the proof of Linnik’s theorem given on pp. 54-56 of
Bombieri [6]. The main tool used on those pages is a result of Gallagher [12] on
the number of non-exceptional zeros near the line ¢ = 1 of all L-series corre-
sponding to primitive characters with conductor not exceeding some parameter.
We use the result of Landau-Page (see Bombieri [6], p. 39) to estimate k(x)
rather than Siegel’s theorem so as to assure our constants will be calculable.
Proposition 8 is related to the result of Tatuzawa [36]. There the error term is
smaller, but k is not permitted to be so large.

Let

0(x,k,a)= Y logp,

pP=x
p=amod k

O(x,k,a)= X pp—1) - logp,

pP=x
p=amod k

where p denotes the Moebius function. Thus in the second sum we only count
those primes p with p — 1 square-free. Let a denote Artin’s constant,

2 _ 4y —
o= o370,
p [

Let y(k) denote the multiplicative function whose value at the prime power p? is
(p® — p)/(p®> — p — 1). Note that for all k, a < ay(k) < 1.

ProposiTioN 9. For every ¢ > 0, there exist calculable positive numbers
8, x, T such that if 0 < k < x°, k is square-free, and x = x, then

Op(x, k,1) — ax[/(kk)x < e%

provided ko(x) t k*I1, -1 .0

Proof. We consider separately the residue classes a,,...,a,, mod k2 which
satisfy a; = 1 mod k, ((a; — 1) /k, k) = 1. Let a denote one of these classes. If
(k, i) = 1, let R(j) denote the least positive integer which satisfies

R(j) =amod k%, R(j) =1modj.

DISTINGUISHING PRIME NUMBERS 199

If g, < g, < ... are the primes which do not divide k, we have by an inclusion-
exclusion argument that

63) 6y(x k% a) = 0(x, k%, a) — 36(x. ka7, R(q7))

+ 0(x, k%q?q;, R(q2q?)) — - +---.

i<j
Let M(T) denote the right side of (6.3) where we only consider primes g; < T.
Thus if Q =11, _7q;, then

(6.4) M(T) = 3 (—1)*4(x, k%d2, R(d?))
d|Q
= Oy(x, k*, a) + 2'logp
<0y(x,k%,a)+ 3 0(x, k®m?, R(m?)),
(m",lkZ)T"—:l

where 3’ denotes the sum over those p < x such that g2 |p — 1 for some ¢, =T
and for no g, < T. Note that if m =x'/2, then 6(x, k>m?, R(m?)) = 0, since
k2m? = x and R(m?) = m? + 1 > x. Thus
(6.5) > 6(x, k2m?, R(m?))

m=T
(m, k)=1

= ¥ + I |6z, k*m’ R(m*))
M/ Ai>Sm=T /2> m=y1l/4
(m.k)=1 (m, k)=1

<3¢, O x/p(k¥m?)+logx Y (1+ax/(k*m?))
m=T Y R
(m, k)=1

- (3cscq + l)x'

o(k*)T
Here we assume k < x!/!2 and use the Brun-Titchmarsh inequality
x _ logx
(K) log(x/K)

(cs5 an absolute constant) for the first sum; we use a trivial estimate for the
second sum; and we use

(6.6) >

m=T (p(m2) T

(cg an absolute constant) for the last estimate. (To see (6.6), let h(n) denote the

0(x,K,a)=<c
() 5

L _&

200 DISTINGUISHING PRIME NUMBERS

multiplicative function such that h(p) = (p — 1)~! for primes p and h(p') =0
for i = 2. Then

1 ¢l m ¢ 1
méT p(m?) _m>Tm p(m) m§Tm d|2mh
= Shd) 3 Ga< 3 HES

1=T/d lzdz i=1 da* T/d

“#1()
so we may take ¢ = 2I (1 + 1/(p* — p)) = 2{(2)§(3)/{(6).) We shall choose
T =2 (Bese, + 1),
so that from (6.4) and (6.5) we have

6.7 0=<M(T)— 6,(x, k%, a
(67 (1) = o K2, 0) < 2

We now estimate M(T). Letting ¢’ = ¢/3¢4 and applying Proposition 8 to
¢’, we have an x, and a § > 0 such that if 0 < k <x? x =x,, and k(x) } k2Q?2,
then

M(T)—M =‘M(T) _ 2 “2(d)(_1)w(d) x

*P(kz) (d,k)=1 <P(k2d2)
- —1)“D])o(x, k2d2, 2)) — x) x
‘%(”{“*d”“)MWJ%Emwmw
2 £'x CeX

= g0 9(k*d?) (k)T
Ce€'x X _ 2ex .
e(k*) o(K*)T 3(k?)
Combining this estimate with (6.7) we have

k)x ex
6,(x, k%, a) — oy < .
’ p(k?) | o(k?)
Adding these estimates for the (k) choices of a mod k2 and using (k) /@(k?)
= 1/k, we finally have

&X

(%, k,1) — T

ay(k)x
k

which was to be proved.

L. M. ADLEMAN, C. POMERANCE, R. S. RUMELY 201

Remark 6.1. A corollary of Proposition 9 is that 6,(x, k, 1) ~ (a(k)/k)x
as x — oo when k is squarefree. These methods show more generally that if
(k,a) = 1, if I = (k, a — 1) is square-free, and if m is the product of the primes
q | ! for which ¢®| k, then

xXasx — o0.

ay(k)e(l/m)
00(x, k, a) N—W

PropostTioN 10. There is a positive, absolute, calculable constant c, such
that for all x > 10 there is a square-free number M < x* with

2 1> ec,logx/loglogx.
p—1M
p prime
Proof (cf. Prachar [29]). Let e = 1/4 in Proposition 9 and fix the corre-
sponding quantities T, x,, 8. Let x = x,, and let k, denote the product of the
primes p < max{ 38 log x, T}. Note that then for all x beyond a computable point
x, we have k;, < x° (To compute x,, one could use the estimates of Rosser and
Schoenfeld [34].) If (k,, ko(x)) has a prime factor p, =T, let k =k,/p,.
Otherwise let k = k,. Then ky(x) k2 Indeed, if ko(x)|k> then every prime
factor of k,(x) would be smaller than T. Since ky(x) > (log x)3/2, we would
have p®| ko(x) for some prime p, provided x exceeded some computable point
x,. This would contradict k(x) | k.

Thus if d | k, we have by Proposition 9 that
def 2 1
(68) Wo(x’d’l)_ 2 ® (p 1) = logxao(x’d’l)

p=x

p..=_1m0dd

1 x x
= (mp(d) B Z) dlog x = 10dlog x°

Let A denote the number of solutions of

(6.9) m(p — 1) =O0mod k

where m < x and p < x is prime with p — 1 square-free. For each d | k, let A,
denote the number of solutions of (6.9) with d|p — 1, (m, k) = k/d.

From (6.8), the number of primes p <x with p — 1 squarefree and
d|p — 1is at least x/(10 dlog x). The number of m < x with (m, k) = k/dis at
least [x/k]p(d). Thus

x x2 o(d) .

oo
Aq= 10dlogx[I]"’(d) ~ 0klogx d

202 L. M. ADLEMAN, C. POMERANCE, R. S. RUMELY

Thus for all x beyond a computable point

2

_ x e(d)
A= %(AV 0klogzr > d

dk
x? 1
20 klog x ik P

x2 3 w(k)
>__ > (2
- 20klogx(2)

x2 3 (1/4) 8log x/loglog x
> —_— —_—
20 klog x (2)

Now the number of integers n < x* for which k | n is at most x2 /k. Also, for each
solution m, p of (6.9), m(p — 1) is such an n. Thus there is some n < x2 with
k| n and n has at least

A 1 3\ (1/4) 8log x/loglog x
> =
x2/k 2010gx(2)

> ec7log x/loglog x

representations as m(p — 1). If we let M denote the largest square-free divisor of
this n, then M fulfills the assertions of the proposition. Technically, we had to
take x beyond some computable point, so the constant ¢, may have to be
adjusted to take into account values of x between this point and 10.

Remark 6.2. The proof gives no clue as to the nature of the number M
except for a predisposition to the primes below }8log x. We conjecture that if
m(x) is the product of the longest initial segment of primes for which m(x) < x,
then

2 1= 2(1+o(1))logx/loglogx.
p—1jm(x)

All we can prove, however, is that

S 1= (logx)”*

p—1jm(x)

for all large x. This result follows from the methods of Pomerance [24].
We can now prove the second inequality in Theorem 3. Let

x = (log n)(2/c7)log10glogn'

DISTINGUISHING PRIME NUMBERS 203

By Proposition 10 there is a square-free M < x2 such that

2 1 >ec7logx/loglogx
p—1M

— e 2loglog nlogloglog n
P log(2/c;) + logloglog n + loglogloglog n

= exp(loglog n) = log n,
if n exceeds some computable point. Thus

H P > 22,,_1|M1 > 2logn > nl/2,
p—1M

so that we may take f(n) < M. But
M< x2 — (lOg n)(4/C7)10g10g10gn.

To complete the proof of the theorem one has to adjust the constant 4 /¢ so as to
include those n that are not covered by the above argument and are larger than
100.

Remark 6.3. A slightly more careful treatment of the lower bound in
Theorem 3 would show that g(n) is at least

(1/log2+0(1))logloglog n

(6.10) (log n)

From the conjecture in Remark 6.2 we get the same expression as an upper
bound for f(n). Thus, g(n) and f(n) should both be given by (6.10), the only
difference being in the “o(1)” term.

In Lenstra [19], a variation of the tests of Williams is described which runs
in time polynomial in h(n), where h(n) is the least positive integer such that the
product of the primes g < h(n)? with g |n"*™ — 1 exceeds yn . If n has no small
prime factors, then h(n) < g(n). We now present a heuristic argument suggest-
ing that h(n) should also be given by an expression of the form (6.10), the same
as for g(n) and f(n). Only an argument for the lower bound is needed.

For each k| h(n), consider primes q of the form ak + 1 < h(n)2 Then we
guess that g divides n* — 1 with “probability” 1/a. Thus the “expected”
number of such gq’s is at most

3 1 <2log h(n) + 1,
a
a<h(n)?/k

and, in all, the “expected” number of primes q | n*™ — 1 with ¢ < h(n)? is at
most

(2 IOg h(n) + l)d(h(n)) < 2(1+o(1))log h(n)/loglog h(n)’

204 L. M. ADLEMAN, C. POMERANCE, R. S. RUMELY

where we use (6.1). From this the desired lower bound follows by an argument
similar to the one used for the lower bound in Theorem 3.

Remark 6.4. For values of n < 10!'3% we may choose the initial primes
from among the first 13 primes, as the following table shows. Let E(¢) denote the
number of Euclidean primes with respect to the first ¢ primes. As in Remark 6.2,
we conjecture that E(t) = 20*°M! The data suggest that E(¢) could be
compared with 2‘/(t/logt). The ratio of these functions shows fairly stable
behavior and it may be there is a constant C with

E(t) ~C2t/(t logt) ast > 0.

We have a heuristic argument to support this conjecture, but we shall not present
it here.

TABLE
Product of first Number of Square of product

t t primes Euclidean primes of Euclidean primes

1 2 2 36

2 6 3 1764

3 30 5 2.0512 - 108

4 210 8 8.5119 - 10'°

5 2310 13 2.5354 - 104

6 3.0030 - 10* 21 5.3723 - 10%°

7 5.1051 - 10° 32 6.5191 - 1066

8 9.6997 - 10° 54 2.8537 - 103%°

9 2.2309 - 108 83 5.2088 - 10520
10 6.4697 - 10° 149 8.2520 - 10'%%
11 2.0056 - 10! 251 2.3443 - 102715
12 7.4207 - 102 450 3.0596 - 10563
13 3.0425 - 10* 807 1.4135 - 10*13%6

(Table computed by William Dubuque)

MaAssaCHUSETTS INSTITUTE OF TEcHNOLOGY, CAMBRIDGE, Mass. and UNIVERSITY OF SOUTH-
ERN CALIFORNIA, Los ANGELEs (first author)
UNIVERSITY OF GEORGIA, ATHENS (second and third authors)

REFERENCES

[1] L. M. ApLEMAN, Number theoretic aspects of computational complexity, Ph.D. Thesis, U.C.
Berkeley (1976).

[2] , On distinguishing prime numbers from composite numbers (Abstract), 21st FOCS

(1980).

DISTINGUISHING PRIME NUMBERS 205

[3] L. M. ApLeman and F. T. LEicaTON, An O(n'/'*%) primality testing algorithm, Math.
Comp. 36 (1981), 261-266. ,
[4] E. ARTIN and]. TATE, Class Field Theory, W. A. Benjamin (New York, Amsterdam), 1967.
[5] E. R. BerLEkamp, Factoring polynomials over large finite fields, Math. Comp. 24 (1970),
713-735.
[6] E. BomsiEri, Le grand crible dans la théorie analytique des nombres, Astérisque 18 (1974),
1-87.
[7] J. BriLHART, D. H. LEBMER, and]. L. SELFRIDGE, New primality criteria and factorizations
of 2™ = 1, Math. Comp. 29 (1975), 620—647.
[8] J. W. S. CasskLs and A. FROHLICH (editors), Algebraic Number Theory, Thompson (Washing-
ton, D.C.), 1967.
[9] H. Conen, Tests de primalit¢é d’aprés Adleman, Rumely, Pomerance et Lenstra, publ.
Laboratoire de Math. Pures associé au CNRS, Grenoble, France, 1981.
[10] H. Davenport, Multiplicative Number Theory, 274 edition, Springer-Verlag, New York, 1980.
[11] J. D. Dixon, Asymptotically fast factorization of integers, Math. Comp. 36 (1981), 255-260.
[12] P. X. GALLAGHER, A large sieve density estimate near ¢ = 1, Inv. Math. 11 (1970), 329-339.
[13] K. Iwasawa, A note on Jacobi sums, Symposia Math. 15 (1975), 447-459.
[14] S. Lang, Algebraic Number Theory, Addison-Wesley (Reading, Mass.), 1970.
[15] D. H. LEnMER, Strong Carmichael numbers, J. Austral. Math. Soc. Ser. A 21 (1976), 508-510.
[16] _____, Computer technology applied to the theory of numbers, in W. J. LeVeque, ed.,
MAA Stud. Math. 6 (1969), 117-151.
[17] A. K. LensTRa, H. W. LENsTRA, JR., and L. Lovasz, Factoring polynomials with rational
coefficients, Report 82-05, Department of Mathematics, University of Amsterdam, 1982.
[18] H. W. LeNsTRA, JR., Primality testing, in H. W. Lenstra, Jr. and R. Tijdeman, eds.,
Computational Methods in Number Theory, Math. Centrum, to appear.
[19] , Primality testing algorithms (after Adleman, Rumely and Williams), Séminaire
Bourbaki (June, 1981) # 576.
[20] G.L. MiLLER, Riemann’s hypothesis and tests for primality, J. Comput. System Sci. 13 (1976),
300-317.
[21] L. Mirsky, The number of representations of an integer as a sum of a prime and a k-free
integer, Amer. Math. Monthly 56 (1949), 17-19.
[22] M. A. MorrisoN and J. BRILLHART, A method of factoring and the factorization of F;, Math.
Comp. 29 (1975), 183-205.
[23] J. M. PoLLarD, Theorems on factorization and primality testing, Proc. Cambridge Phil. Soc.
76 (1974), 521-528.
[24] C. PoMERANCE, Popular values of Euler’s function, Mathematika 27 (1980), 84-89.

[25] , On the distribution of pseudoprimes, Math. Comp. 37 (1981), 587-593.

[26] , A new lower bound for the pseudoprime counting function, Illinois J. Math., 26
(1982), 4-9.

[27) _____, Recent developments in primality testing, Math. Intelligencer 3 (1981), 97-105.

[28] ,-Analysis and comparison of some integer factoring algorithms, in H. W. Lenstra, Jr.
and R. Tijdeman, eds., Computational Methods in Number Theory, Math. Centrum, to
appear.

[29] K. PracHAR, Uber die Anzahl der Teiler einer natiirlichen Zahl, welche die Form p—1 haben,
Monatsh. Math. 59 (1955), 91-97.

[30] M. O. RagiN, Probabilistic algorithms, in J. Traub, Ed., Algorithms and Complexity, New
Directions and Recent Results, Academic Press (New York) 1976, 21-24.

[31] , Probabilistic algorithms in finite fields, SIAM J. Comput. 9 (1980), 273-280.

[32] S. Ramanujan, Highly composite numbers, Proc. London Math. Soc., ser. 2, 14 (1915),
347-409.

206 L. M. ADLEMAN, C. POMERANCE, R. S. RUMELY

[33] R. RivesT, A. SHAMIR, and L. M. ADLEMAN, A method for obtaining digital signatures and
public key cryptosystems, Comm. ACM 21 (1978), 120-128.

[34] J. B. Rosser and L. SCHOENFELD, Approximate formulas for some functions of prime numbers,
Ilinois J. Math. 6 (1962), 64-94.

[35] R. SoLovay and V. STrassen, A fast Monte-Carlo test for primality, SIAM J. Comput. 6
(1977), 84-85; Erratum, 7 (1978), 118.

[36] T. Tatuzawa, On the number of the primes in an arithmetic progression, Japan J. Math.
21(1951), 93-111.

[37] S. WiGERT, Sur l'ordre de grandeur du nombre des diviseurs d’un entier, Arkiv fiir Math. Astr.
Fys. 3, no. 18 (1907), 1-9.

[38] H. C. WiLLiaMSs, Primality testing on a computer, Ars Combinatoria 5 (1978), 127-185.

[39] H. C. WiLLiams and R. HoLTE, Some observations on primality testing, Math. Comp. 32
(1978), 905-917.

[40] H. C. WiLLiaMS and J. S. Jupp, Some algorithms for prime testing using generalized Lehmer
functions, Math. Comp. 30 (1976), 867—886.

(Received October 30, 1981)

