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The quadrat ic  sieve algori thm i s  cur ren t ly  t h e  method of choice t o  f a c t o r  very 

l a r g e  composite numbers wi th  no small fac tors .  I n  the  hands of the  Sandia Nat iona l  

Laboratories team of James Davis and Diane Holdridge, it has held t h e  record  f o r  t h e  

l a r g e s t  hard number f a c t o r e d  s i n c e  mid-1983. As of t h i s  wri t ing,  the  l a r g e s t  number 

it has cracked is t h e  71 d i g i t  number 9.5 hours on the C r a y  

XMP computer a t  Los Alamos, New Mexico. I n  t h i s  paper I s h a l l  give some of  t h e  

h i s t o r y  of t h i s  a lgor i thm and a l s o  descr ibe some of the  improvements that have been 

suggested f o r  it. 

- 1 )  / 9 ,  taking 

KRAITCHIK'S SCHXME 

There i s  a l a r g e  c l a s s  of fac tor ing  algori thmsthat  share a common strategy. 

If N 

U Z V  mod N, where 

algorithm) have been obtained f o r  

X2 EY2 mod N. Then one s tands  a good chance t h a t  the  grea tes t  common f a c t o r  

(X-Y, N), found by E u c l i d ' s  a lgori thm, i s  a non-tr ivial  f a c t o r  o f  

then another combination of  congruences can be t r i e d .  Thus these algorithms have 

severa l  p a r t s  : 

i s  t h e  number t o  b e  f a c t o r e d ,  then t h e  idea is t o  multiply congruences 

U #V and complete o r  p a r t i a l  fac tor iza t ions  (depending on t h e  

U and V ,  so as t o  produce a spec ia l  congruence 

N .  If it is  n o t ,  

( 1  Generation of t h e  congruences U i V  mod N ,  

( 2 )  Determination o f  the complete o r  p a r t i a l  fac tor iza t ions  of U and V f o r  

some of t h e  congraences, 

(3) Determination of  a subset  o f  the factored congruences which can b e  

X2 _Y2 mod N ,  mult ipl ied t o  produce a s p e c i a l  congruence 

( 4 )  Computeticn of (X-Y, N )  
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For example, say w e  try t o  f a c t o r  N =91 and we not ice  that 

81 E-10, 90 % - I ,  75 z-16, and 64 Z - 2 7 .  

Factoring these  numbers completely we have 

34 E-2-5, 2-32.5 :-I, 3-52 1-2: and 26 Z-33. 

Multiplying t h e  l a s t  two congruences , we have 

26.3.52 -24.33 , 
o r  cancel l ing common f a c t o r s ,  

22.52 ~ 3 2 .  

This gives  

two congruences, g e t t i n g  

lo2  :32 mod 91 and 7 = (  10-3,91). Or we might have mult ipl ied t h e  first 

2.36.5 22.5 ->36 51,  

so 2T2 Z12mod 91 and 13 =(27-1,91). 

This general  scheme f o r  f a c t o r i n g  w a s  published by Kraitchik C41 i n  1926. The 

numbers 

t h e  congruences one i s  l i k e l y  t o  genera te  w i l l  not successful ly  f a c t o r  i n  Step (21, 

one's chances a r e  enhanced i f  one o f  i s  arranged t o  be a square and t h e  o t h e r  

has a l a r g e  square f a c t o r .  In  [51, pp. 26-27, Kraitchik explains how t h i s  should be 

done. He l e t s  U =x2 where x is  c a r e f u l l y  chosen so that V =-N+x2 has a l a r g e  

f a c t o r  y2. He can f o r c e  y2 t o  appear  by choosing x as a solut ion of t h e  quadra- 

t i c  congruence V/y2 need not be s m a l l  and so e a s i l y  facto- 

rable .  This method has  i ts  problems. 

U,V a r e  f a c t o r e d  i n t o  primes except for  squared fac tors .  Since most of 

U,V 

x2 Z B  mod y2. However, 

Krai tchik o p p o r t u n i s t i c a l l y  used o ther  congruences U ZVmod T4 t h a t  w e r e  

suggested by t h e  s p e c i a l  form of  N i n  question . These congruences would not  b e  

ava i lab le  f o r  a "random" 

were used t o  assist i n  f i n d i n g  

s t ra tegy  t h a t  goes back t o  Fermat. I t h i n k  Kraitchik preferred t h i s  method f o r  two 

reasons. F i r s t ,  f e w e r  congruences U Z V  mod N with mul t ip l ica t ive  information about 

U and V a r e  used. Second, when X , Y  a r e  found with X2-Y2 =N, one could be  assured  

of a non- t r iv ia l  f a c t o r i z a t i o n  of 

may produce a t r i v i a l  f a c t o r i z a t i o n .  L i t t l e  d i d  Kraitchik know that h i s  l a r g e l y  

abandoned method of Froducing "cycles" ( t h e  combination of congruences i n  s t e p  ( 3 ) )  

would be t h e  b a s i s  of most modern fac tor ing  algorithms ! 

N. In  h i s  l a t e r  work c51, t h e  congruences U E V  mod B 

X and Y with X2-Y2 =N. This i s  an old f a c t o r i n g  

N, unlike with t h e  other  method where s t e p  ( 4 )  
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THE CONTINUED FRACTION ALGORITHM 

Instead of  f i n d i n g  U SV mod N with one of  U,V a square and t h e  o t h e r  d iv i -  

s i b l e  by a l a r g e  square factor, another  s t r a t e g y  might be t o  choose one a square 

and t h e  o ther  smazz i n  a b s o l u t e  value. It thus would more l i k e l y  f a c t o r  i n  s t e p  (2). 

I n  1931, Lehmer and Powers 161 suggested t h e  use of tiie continued f r a c t i o n  expansion 

of  fi t o  genera te  t h e  congruences U ZV mod N i n  Kraitchik's scheme. This is 

done by a simple r e c u r s i v e  procedure t h a t  c rea tes  p a i r s  8, An where 

Q 1 A2 mod N n n  

and 

f r a c t i o n  expansion o f  fi, b u t  h i s  aim w a s  t o  use t h e  congruences ( 1 )  t o  f i n d  infor -  

mation on the quadrazic  c h a r a c t e r  mod Q of prime fac tors  p of N. Then a d i r e c t  n 
search, such as trial d i v i s i o n ,  could be g r e a t l y  speeded up because many p o t e n t i a l  

d i v i s o r s  would not  have the proper charac te r .  In  cont ras t ,  Lehmer and Powers advo- 

cated 

l Q n l  <2&. An o l d  method o f  Legendre a l so  suggested t h e  use o f  t h e  cont inued 

mult iplying several congruences of t h e  form ( 1 )  t o  produce congruent squares. 

Morrison and B r i l l h a r t  El01 were t h e  f i r s t  t o  t r y  the  continued f r a c t i o n  algo- 

rithm on a modern computer. I n  t h e  implementation they made several  major improve- 

ments and refinements t h a t  would be of  use i n  any of the  combination of  congruences 

family of  a lgori thms.  F i r s t ,  t h e y  used a ' 'factor base", o r  all of t h e  primes t o  some 

point  F, t o  dermine which of  t h e  congruences ( 1  ) were useful. When a congruence ( 1  

w a s  generated, t h e  number (Ln w a s  subjected t o  trial divis ion by t h e  primes p SF. 
If a complete f a c t o r i z a t i o n  could be obtained, t h e  congruence was kept f o r  l a te r  use 

-if not, it w a s  d i scarded .  

Step ( 3 )  of t h e  algori thm, t h e  a c t u a l  combination of congruences w a s  e f fec ted  

by a Gaussian e l i m i n a t i o n  i n  a very l a r g e  matrix over 

f a c t o r  base c o n s i s t s  of t h e  primes pl,. . . ,pf, and i f  

Z/2Zm Speci f ica l ly ,  if t h e  

a f a .  
Qn = ( - 1 )  n pi1 

i = l  

0 

where t h e  a.  are non-negative i n t e g e r s ,  then w e  look a t  t h e  vector 
+. 
v ( n )  = ( a  ,a1 ,..., a,) mod 2 .  

0 
+ I f  we have enough v e c t o r s  

dependency 

d n ) ,  then Gaussian elimination w i l l  produce a l i n e a r  

-t -+ + v ( n l )  +.. .+ v(n  ) = 0, k 
so t h a t  Qn ..* 9- is  a square,  say X2. If we compute X mod N and 

Y =A o q e  A mod 3, t h e n  X2 3Y2 mod N and we a r e  ready f o r  s t e p  ( 4 ) .  
L 
I 1 - 

"1 nk 
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Another improvement, c a l l e d  the "ear ly  abort  strategy" w a s  described i n  c111. 

This improvement extended t h e  u s e f u l  range of t h e  continued f rac t ion  algorithm on 

an ordinary main frame computer by about 10 d i g i t s  -from t h e  mid 4 0 t s  t o  t h e  mid 

50's ( see  C141, C121). 

A spec ia l  purpose, low c o s t  processor has been designed by J.W. Smith and 

S.S. Wagstaff, Jr. and b u i l t  a t  t h e  Universi ty  of Georgia t o  implement t h e  cont inued 

f r a c t i o n  algorithm w i t h  the e a r l y  a b o r t  s t ra tegy .  It i s  designed t o  do t h e  trial 

div is ion  s t e p  on a Q i n  p a r a l l e l  ( s e v e r a l  t r i a l  d iv isors  can be t r i e d  a t  once)  

and t h e  device has  extended p r e c i s i o n ,  so that t h i s  ar i thmetic  done with long in-  

tegers  can be done i n  single prec is ion .  It should be f u l l y  operat ional  soon and w e  

await t h e i r  r e s u l t s .  It -dill probably be somewhat i n f e r i o r  t o  t h e  r e s u l t s  produced 

by t h e  Sandia team, buz+&is should b e  weighed by t h e  f a c t  that t h e  cost  of t h e  S m i t k  

Wagstaff device i s  about  t h r e e  orders  of  magnitude l e s s  than t h e  cost  of  a Cray 

X M P. 

n 

THE M I L L E R  -WESTERN ALGORITHM 

The i s s u e  of  Mathematics o f  Computation which contains t h e  Morrison-Brillhart 

paper is dedicated t o  D.H. Lehmer and has  many i n t e r e s t i n g  a r t i c l e s  on computational 

number theory. I n  t h i s  issue t h e r e  i s  an a r t i c l e  by J.C.P. Mil ler  [71 on f a c t o r i n g  

t h a t  a l so  uses  congruences 

aim is t o  f i n d  congruences w i t h  U and V 

combine t h e s e  congruences t o  produce congluent squares, each congruence i s  r e a d  as 

a l i n e a r  r e l a t i o n  o f  i n d i c e s  wi th  respec t  t o  some pr imit ive root  g of  p, where 

p 
off inding p v i a  c r e a t e d  congruences of  t h e  form at 5 1  mod N.  If some q l t  can 

be found with 

N. 

U 3 V  mod N. He a t t r i b u t e s  t h e  idea t o  A.E. Western. The 

completely factored. But r a t h e r  t h a n  

is  a prime f a c t o r  of N. When enough congruences can be found there  i s  a chance 

atIq $1 mod N, then  perhaps (atIq- t ,  N) is a non-tr ivial  f a c t o r  o f  

I see no p a r t i c u l a r  advantage t o  t h i s  method over just combining t h e  f a c t o r e d  

congruences t o  produce congruent squares  i n  t h e  Kraitchik scheme. I mention the 

algorithm here because o f  the very simple way Mil ler  chooses t h e  congruences 

U E V  mod N .  Namely h e  just p a r t i t i o n s  N as A+B, l e t t i n g  U = A ,  V =-B. There i s  

an i n t e r e s t i n g  unsolved problem o f  ErdBs that says t h a t  f o r  each 

N ( E )  such t h a t  f o r  each i n t e g e r  N > N  ( E )  there  i s  a p a r t i t i o n  of N as A+B 

where no p r h e  i n  A B 

E r d k ' s  problem t h a t  g i v e s  many such p a i r s  

i t s e l f )  i s  not so hard ! 

E > O  t h e r e  is an 

exceeds NE. What we need i s  an algorithmic s o l u t i o n  of  

A , B .  Perhaps t h i s  problem (and f a c t o r i n g  
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SCHROEPPEL’S ASYMPMTIC ANALYSIS 

In t h e  l a t e  1970’s some important advances on factor ing were made by Richard 

Schroeppel. He never publ i shed  h i s  results, but they have become known through copies 

of h i s  l e t t e r s  and through second hand published accounts (e,g. C81 , c111). F i r s t ,  

Schroeppel began the sys temat ic  s tudy of  t h e  asymptotic running t h e  of  f a c t o r i z a -  

t i o n  d g o r i t h m s  i n  t h e  K r a i t c h i k  family. Second, he found an algorithm i n  the f d l y  

where s t e p  ( 2 )  could b e  accomplished without time consuming t r i a l  divis ion.  

Schroeppel‘s asymptot ic  a n a l y s i s  hinged on t h e  optimal choice of  t h e  parameter’  

F, t h e  upper bound f o r  t h e  primes i n  t h e  f a c t o r  base. A small choice of 

only few fac tored  congruences a r e  necessary t o  produce a l i n e a r  dependency, b u t  such 

congruences a r e  very  hard t o  f i n d .  With a l a r g e  choice of 

versed. Somewhere between “ l a r g e ”  and “ s m a l l ”  is  t h e  optimal choice. Schroeppel 

rea l ized  that t o  s tudy  t h i s  s i t u a t i o n  asymptotically one needed t o  use t h e  f u n c t i o n  

$(x,y)  -the number of i n t e g e r s  up t o  

f i c a l l y  t h i s  w a s  needed wi th  being t h e  average s i z e  of t h e  residues being trial 

divided and y =F. Thus $(x,y) /x  represents  t h e  “probabi l i ty” t h a t  a r e s i d u e  will 
completely f a c t o r  over  t h e  f a c t o r  base. 

F m e a n s  

F t h e  s i t u a t i o n  i s  re- 

x d i v i s i b l e  by no prime exceeding y. Speci- 

x 

For example, suppose w e  s tudy t h e  continued f r a c t i o n  algorithm. Then t h e  t Y -  

p i c a l  Qn w i l l  be approximately 6. Further ,  i f  f i s  t h e  number of primes i n  t h e  

fac tor  base,  then we should have f rJF/2 logF (only those odd primes p with  

(N/p) 1 1  can d i v i d e  a 8)-  We need t o  obtain about f completely fac tored  $‘s. 
Thus we should expect t o  have t o  generate  

f ( @ ( G , F ) / f i ) - ’  = f f i / $ ( f i , F )  

values of 

t r i a l  d iv is ions  on t h e  average 

s teps  needed t o  f a c t o r  N with  t h e  continued f r a c t i o n  algorithm should be about 

% b e f o r e  enough fac tored  ones a r e  found.. More, we need t o  do about f 

Q produced, so the  t o t a l  number of  t r ia l  d i v i s i o n  n 

f2fi/$(fi,F). 

Ignoring o ther  s t e p s  i n  t h e  algori thm, w e  thus choose F 

quantity. Schroeppel assumed t h a t  

( a  r e s u l t  which w a s  su jsequent ly  proved i n  c11)  and found 

of F is L(N) 1 /JB+o( 1 1 where 

so a s  t o  minimize t h i s  

<(log *)’-E 

t h a t  t h e  optimal choice 

L(N) = exp(J1og N l o g  log  a)  

( n a t u r a l  l ogs )  and t h a t  t h e  expected running time is  L(?T)fi+o(’). O f  course,  t h i s  

argument i s  o n l y  he&Stic - for  one, it is  assumed without proof t h a t  t h e  n m b e r s  

Q, f a c t o r  over t h e  p r l h e s  t o  F as frequent ly  as  random numbers of t h e  same 
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approximate s i z e .  

SCHROEPPEL'S LINEAR SIEVE 

Schroeppel's new algori thm with by-passed trial divis ion i s  a l so  i n  Kra i tch ik ' s  

family. L e t  

( 2 )  

If I A I ,  IBI are less t h a n  N', then  IS(A,B)I s2N "'+' so that t h e  S(A,B) are 
r e l a t i v e l y  s m a l l ,  not  much l a r g e r  than  t h e  

have 

8 ' s  given by ( 1 ) .  More, we e v i d e n t l y  

S(A,B) I T(A,B)  mod N 

so t h a t  we use these as t h e  congruences i n  Krai tchik 's  scheme. We attempt t o  comple- 

t e l y  f a c t o r  t h e  S(A,B)'s 

T(A,B) ' s .  Note t h a t  (2) a l r e a d y  g ives  a partial  fac tor iza t ion  of 

thus arrange f o r  a product  o f  T(A,B)'s t o  be a square i f  each A and each B i s  
used an even number OP t imes  i n  t h e  product. Thus w e  t r e a t  t h e  var iab les  A,B 

they w e r e  primes i n  t h e  Gaussian el iminat ion s tep .  

over  a f a c t o r  base, but we do not t r y  t o  f a c t o r  t h e  

T ( A , B ) .  We could 

as if 

Thus t h e  Gaussian e l h i n a t i o n  s t e p  i s  harder  and t h e  residues S(A,B) are a 

b i t  l a r g e r  than i n  the cont inued f r a c t i o n  algorithm. There is an advantage h e r e ,  

though, and it i s  that t h e  numbers S(A,B) can be factored uithout trial d i v i s i o n .  

The idea  is t h a t  for  a f i x e d  va lue  A. f o r  A we can l e t  B run over consecut ive 

integers .  These numbers form an  ar i thmet ic  progression, so that i f  

p{ S(Ao,Bo+p) , p/ S(Ao ,Bo+2p), e t c  * That i s ,  w e  know beforehand exact ly  which va lues  

of B have S(Ao,B) d i v i s i b l e  by p. No more do we need t o  waste a t r ia l  d i v i s i o n  

s tep  on a number where the t r ia l  d i v i s o r  does not go. 

pIS(Ao,Bo), t h e n  

Schroeppel's asymptot ic  a n a l y s i s  suggested t h e  running time of h i s  a lgor i thm 

W ~ S  L ( N )  '+O('). However, h i s  a n a l y s i s  neglected t h e  time for t h e  Gaussian elimina- 

t ion .  This i s  not a mistake i n  t h e  continued f r a c t i o n  algorithm ana lys is  because it 
r e a l l y  takes  less t h e  than  t h e  t r i a l  d iv is ion  s tep.  But i n  Schroeppel's a lgori thm 

we have given t h e  Gaussian e l imina t ion  a l a r g e r  task  t o  accomplish and it can be  

shown ( h e u r i s t i c a l l y )  tha t  it takes s teps ,  worse than t h e  running 

time of t h e  continued f r a c t i o n  algorithm. 

L(N)3'2+0(') 

THE QUADRATIC SIEVE 

In 1981 I suggested t a k i n g  A =B i n  Schroeppel's l i n e a r  s ieve algori thm, 

c a l l i n g  t h e  r e s u l t i n g  method t h e  quadrat ic  s ieve  algorithm. This simple move changes 

th ings  d r a s t i c a l l y .  L e t  

( 3 )  Q ( A )  = S ( A , A )  = ( L f i J + A ) 2  - N ,  
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Thus w e  a r e  back i n  the game of producing quadratic residues as i n  t h e  continued 

f r a c t i o n  algorithm, s o  t h e  Gaussian el iminat ion s tep  should not be  a major hiffi- 

cul ty .  In addi t ion ,  we can s t i l l  s ieve  as Schroeppel did. If FIQ(A ), t h e n  

plQ(Ao+p), pIQ(Ao+2p), e t c .  This  property of t h e  function Q ( A )  follows f r o m  t h e  

f a c t  t h a t  it i s  a polynomial wi th  i n t e g e r  coef f ic ien ts .  Heur i s t ica l ly ,  t h e  running 

time f o r  t h e  a lgor i thm is  L ( N )  m+O(l), including t h e  matrix s t e p ,  an improvement 

over t h e  continued f r a c t i o n  algorithm. This analysis  and a descr ip t ion  of t h e  algo- 

rithm is  found i n  C111. 

0 

The idea  i n  ( 3 )  i s  t o  choose A with IAl <NE. Since f o r  s m a l l  A we have 

Q(A) = an, 
We thus have 

method (3) of choosing quadra t ic  res idues 

Qai tch ik  d iscussee  above. There i s  a d i f fe rence  though. Kraitchik c a r e f u l l y  prepa- 

red values of x s o  t h a t  x2-N had a l a r g e  square factor .  In  (3) we indiscr imina-  

t e l y  choose a l l  v a l u e s  of  x near fi. 

1 Q ( A )  I 52N1’2+E, as with Schroeppel. It is  amusing t o  note  t h a t  M e  

mod N i s  very s imi la r  t o  t h a t  of 

The advantage i s  c l e a r ,  because now we can use a sieve. For each odd prime p 

i n  t h e  f a c t o r  base  ( p  

congruence 
( L f i J + A ) *  z N mod p, 

l a b e l l i n g  t h e  s o l u t i o n s  A(’), A$’) ( f o r  p=2, spec ia l  treatment is  r e q u i r e d ) .  We 

then compute very c rude  l o g s  of  each o f  t h e  Q(A)  f o r  A i n  a long i n t e r v a l  ( these 

logs are a l l  approximately equal) .  These logs  a r e  s tored i n  an ar ray  indexed by t h e  

values of A. We t h e n  p u l l  ou t  each l o g  t h a t  has i t s  index A :A!’) o r  A$) m o d  P 

and subt rac t  l o g  p 

s ion  l o g ) .  This  i s  done f o r  each 

powers of t h e  s m a l l e r  primes 

t h a t  a r e  c l o s e  t o  0. These l o c a t i o n s  correspond t o  values of 

factored.  The number 

course, very few n m k e r s  $(A)  

i n  t h e  algorithm i s  n e g l i g i b l e .  Note t h a t  not only does t h e  quadrat ic  sieve alga- 

rithm have asymptot ica l ly  fewer s t e p s  than t h e  continued f r a c t i o n  algori thm, b u t  

each s t e p  is s impler .  I n  t h e  quadrat ic  s ieve a typ ica l  s tep  is a s ingle  p r e c i s i o n  

subtract ion , w h i l e  i n  t h e  continued f r a c t i o n  algorithm a t y p i c a l  s t e p  is a d i v i d e  

with remainder of  a s i n g l e  p r e c i s i o n  in teger  i n t o  a long dividend. 
Asymptotic-y, t h e  algori thm of  Schnorr and Lenstra El31 (which is not  i n  t h e  

Kraitchik family)  should be f a s t e r  than t h e  quadratic sieve : i t s  h e u r i s t i c  run t ime 

i s  L ( N )  l+O(l).  However it has  not ye t  proved computer p r a c t i c a l  and t h e  crossover  

Point may be very l a r g e .  A t y p i c a l  s t e p  i n  t h e  Schnorr -Lenstra algorithm i s  comp- 
s i t i o n  of binal-1 q a d r a t i c  forms with multi-precision en t r ies  and f ind ing  a reduced 

form i n  t h e  c l a s s .  

i s  i n  t h e  f a c t o r  base if (N/p) = 1 )  we solve t h e  q u a d r a t i c  

1 

from t h e  number i n  t h e  locat ion.  (Again, log  p is  a l o w  prec i -  

p i n  t h e  f a c t o r  base and for some of  the h igher  

p. A t  t h e  end, we scan t h e  a r ray  f o r  r e s i d u a l  logs 

& ( A )  t h a t  completely 

Q ( A )  may now be  computed and factored by t r i a l  d i v i s i o n .  Of 
completely f a c t o r ,  so t h e  amount of t r ia l  d i v i s i o n  



176 

TIIE DAVIS VARIATION 

Davis and Holdridge c21 have w r i t t e n  a very c l e a r  a r t i c l e  on t h e  implementa- 

t i o n  of t h e  quadrat ic  s i e v e  a lgor i thm and t h e r e  i s  no need t o  dupl icete  t h e i r  work 

here. But I would l i k e  t o  mention an important.improvement Davis made on t h e  method. 

It seems c l e a r  t h a t  the quadra t ic  s i e v e  algorithm majorizes t h e  continued f r a c t i o n  

algorithm i n  every r e s p e c t  b u t  i n  t h e  s i z e  of t h e  quadratic residues. Namely, i n  t h e  

l a t t e r  method, each ' $ 1  i s  less  t h a n  2 f i  but  i n  t h e  former, t h e  numbers l Q ( A )  I 
a r e  about (where E > O  i s  small and tends t o  0 slowly as N ->-). O f  

course, t h e  l a r g e r  t h e  r e s i d u e ,  t h e  less l i k e l y  it i s  t o  fac tor  over t h e  f a c t o r  base. 

N1 /2+E 

The Davis v a r i a t i o n  is simply t o  s ieve over various ar i thmetic  progressions of 
A ' s  so t h a t  t h e  Q ( A ) ' s  a r e  guaranteed t o  have a f ixed factor .  S p e c i f i c a l l y ,  i f  p 

is some l a r g e  prime not i n  the f a c t o r  base and plQ(A ) where 0 <Ao < p ,  t h e n  p 

divides  every Q(Ao+Ap) as noted before .  L e t  

Q ~ ( A )  = Q ( A ~ + A P ) .  

so t h a t  after t h e  known f a c t o r  

t h e  same s i z e  as 

have a l a r g e  family of polynomials -one ( i n  f a c t ,  two) f o r  each possible  

each p used w e  cons ider  p as a new prime i n  t h e  fac tor  base. Thus i f  k fac to-  

red values  of Q ( A )  a r e  found, a f te r  el iminat ing p we have k-1 vec tors  l e f t  

over t h e  o r i g i n a l  f a c t o r  base.  However, Davis avoids losing even one vector .  H e  

does t h i s  by f ind ing  a f a c t o r e d  Q (A) 

follows. If i n  t h e  o r i g i n a l  polynomial $ ( A )  a locat ion A1 is  found a f t e r  s i e v i n g  

where t h e  res idua l  log  is not  near  0,  bu t  l e s s  than 2logF, then t h e  cofac tor  af ter  

& ( A 1 )  is divided by a l l  p r i z e s  i n  t h e  f a c t o r  base i s  a prime p with F < p  <F2.  W e  

thus  use t h i s  p t o  form Q ( A )  (and we can choose A E A  mod p ) .  We s ta r t  w i t h  

one factored value b e f o r e  s i e v i n g  t h e  new polynomial, so any new fac tored  va lues  

found a r e  all t o  t h e  good. 

p is divided out of Q ( A ) ,  the  cofactor  is about 
P 

Q(A). Thus i n s t e a d  o f  having j u s t  one polynomial t o  work w i t h ,  we  

p. For  

P 

f o r  "free". This magic is  accomplished as 
P 

P 0 1  

TH2 MONTGOMERY VARIATION 

Independently of Davis, P e t e r  Montgomery C91 has come up with another  s t r a t e g y  

f a r  f i g h t i n g  t h e  dri't t o  i n f i n i t y  of t h e  quadratic residues 

t a i l o r  makes polynomials t o  custom f i t  not only t h e  number 

t h e  length of the  i n t e r v a l  we s i e v e  over before we change polynomials. 

Q ( A ) .  H i s  method 

N t o  be fac tored ,  b u t  
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Suppose we s ieve  over i n t e rva l s  of length 2M before we change p o l p & d S .  

We are looking f o r  polynomials 

F(x)  = ax2+2bx+c where N1b2-ac, 

fo r  then 

( 4 )  aF(x) = a2X2+2abx+ac = (ax+b)' -(b2-ac) 

3 (ax+bI2 nod N. 

Further, we would l i k e  t h e  values of t o  be small i n  absolute value on fLn 
in te rva l  of length 2M. It thus seems reasonable t o  center t h i s  interval on t h e  

vertex of the  parabola 

F(x) 

F(x) -so we specify the  interval as 

I = (-b/a-M, -b/a+M) 

and choose a,b,c s o  t h a t  

-F(-b/a) F(-b/a-M) = F(-b/a+M). 

To be spec i f ic ,  we choose a,b,c so that 

( 5 )  b2-ac = N . 
Then from (41, 

-aF(-b/a) = N ,  aF(-b/a-M) = aF(-b/a+M) = a2M2-N. 

Thus w e  should choose a so t h a t  N =a2M2-N, i . e . ,  

Montgomery suggests then t h a t  w e  decide f i r s t  on 

sieved. Next an in teger  a is chosen satisfying (6)  and then integers b and c 

are found sa t i s fy ing  ( 5 ) .  (For example, we could choose a as a prime sa t i s fy ing  

( N / a )  = I .  Then the  quadratic congruence b2 Z N  mod a is solved for  b and c is 

chosen as (b2-N)/a). 

2M, the length of the i n t e r v a l  

We thus have constructed a quadratic polynomial F(x) so tha t  on the  in t e rva l  

I 

This i s  be t t e r  than t h e  polynomials & ( A )  and B ( A ) / p .  For them on the i n t e r v a l  

(-M,M) t h e i r  absolute values a re  bounded by 2Ma. Thus the la rges t  of Montgomery's 

residues a re  about 2 f i  times smaller and so somewhat more l i ke ly  t o  fac tor  Over 

the fac tor  base. 

Here i s  an  idea  which should improve Montgomery's basic plan. If k 21 values 

of F(x)  

vectors because the  f ac to r  

could be serious i,9 the expected value of 

the r a re  instances w e  had k > O ,  it would be l ike ly  that k =1 and nothing w o u l d  

are  found which f ac to r  over the fac tor  base, we only end up with k-1 

a m u s t  be eliminated from the congruences (4) .  This 

k were much smaller than 1 ,  f o r  then i n  
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be  gained. To solve t h i s  problem, w e  choose a =g2 where g is a prime with 

(N/g) = l  

nate  a from (4)  because it is a square. All fac tored  values of F(x) are now t o  

t h e  good. 

- 
and g z J a / M .  Then everything i s  as before, but we do not have t o  e l h i -  

The quadrat ic  congruence 

( 7  1 b2 E N mod g2 

can be  solved very simply i f  g E 3 mod 4 and (N/g) = l .  Just take 

b = N  (g2-g+2)/4mod g2. 

This involves a r i t h m e t i c  mod g2. Ins tead ,  by first solving (7 )  mod g by taking 

b =N(g+’)’4mod g and next  determine x so t h a t  (b,+xg)2 ZN mod g2, all of the 

a r i t h m e t i c c a n b e  done mod g. (This  idea  w a s  suggested by Wagstaff -it i s  an elemen- 

t a r y  appl ica t ion  of Hensel’s  lemma), 

1 -  

Above we chose a s a t i s f y i n g  ( 6 )  t o  minimize t h e  m a x b  value of IF(x)l on 

I. Instead,  it may be  nore a p p r o p r i a t e  t o  minimize t h e  auemge value of 

For t h i s  we should choose 

IF(x)l. 

a zj (1.5127453)fi/M. 

However, it probably m a k e s  very l i t t l e  d i f fe rence  whether we choose a by t h i s  

scheme o r  by ( 6 ) .  

I n  t h e  implementation of Montgomery’s var ia t ion  (which has not ye t  been done) 

F(x). If it is very one should compute how c o s t l y  it is t o  produce new polynomials 

cos t ly ,  a l a r g e r  va lue  should be chosen f o r  M ; i f  it i s  not so cost ly ,  a smaller 

value should be chosen f o r  

as poss ib le ,  where t h e  overhead o f  producing new polynomials and computing t h e  

s t a r t i n g  points  f o r  each prime used i n  t h e  s ieve  says it should not be too short. 

M. That i s ,  we should s ieve over as short an i n t e r v a l  

L4RGE PRIMZ VARIATION 

In El11 t h e  l a r g e  prime v a r i a t i o n  was suggested for  t h e  quadrat ic  s i e v e .  This 

var ia t ion  is  commonly used with t h e  continued f rac t ion  dlgorithm. As mentioned 

above, i f  t h e  r e s i d u a l  log  af ter  s iev ing  i s  not c lose  t o  0 ,  but  l e s s  than 

then we have produced a quadra t ic  res idue  t h a t  completely fac tors  over t h e  f a c t o r  

base except f o r  one l a r g e  p r i n e  f a c t o r  p with F < p  <F2. Not cnly do we r e c e i v e  

t h i s  information f o r  :‘ree,but such residues a r e  simple t o  process. I f  t h e  l a r g e  

prime 

t h i s  l i n e  may be  discarded.  I f  it appears k times, we caa el iminate  i t ,  being 

l e f t  with k-1 

t h e  event k 1 2  w i l l  no t  be  t h a t  uncommon. 

2 logF, 

p i s  never seen a g a i n  i n  another  factored residue, it i s  useless  f o r  us and 

vec tors  over t h e  f a c t o r  base. The “birthday paradox” suggests  t h a t  
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If t h i s  method i s  used t o g e t h e r  with t h e  Davis var ia t ion ,  another method 

should b e  used t o  produce t h e  polynomials 

g >F be a prime with g E 3  mod 4 and (N/g) =1. I f  b is  t h e  so lu t ion  o f  (71, 
w e  l e t  A. =b-L&J mod g2.  Then w e  can use t h e  polynomial 

Q (A). We can instead use ( 7 ) .  Le t  
P 

Qg2(A) = Q(Ao+g2A) 

i n  t h e  Davis v a r i a t i o n .  (We can a l s o  use A. z-b-LJumod g 2 ) .  

Every value fac tored  over  t h e  f a c t o r  base is  useful  and we can use t h e  large prime 

v a r i a t i o n  on a l l  of the 

overhead with producing t h e  polynomials Qg2(A)  than the  P(x] i n  Montgomery's 

v a r i a t i o n  because g can  be chosen smaller  with Davis. 

Q 2(A) f o r  various choices of g2. Note t h a t  there i s  l e s s  
g 

SMALL MODULI 

In  trial d i v i s < o n  it t a k e s  j u s t  as long t o  t e s t  d i v i s i b i l i t y  by 3 as by 101. 

But s iev ing  by 3 t a k e s  101/3 t imes Longer than 101 since it has more frequent  "hits': 

Thus a considerable  percentage of  s iev ing  time i s  spent with the  very smal les t  mo- 

dul i .  This seems a waste s i n c e  t h e s e  s m a l l  moduli contr ibute  t h e  l e a s t  information.  

One idea  i s  t o  s k i p  s i e v i n g  wi th  them completely. Say we do not s ieve wi th  any modu- 

l u s  below 30. Then i f  3 i s  i n  t h e  f a c t o r  base, f o r  example, we w i l l  not s i e v e  mod 3,  
mod 9 ,  nor mod 27. But w e  will s i e v e  mod 81, subtract ing 4 log3  ( i n s t e a d  of 

log  3)  at h i t s  f o r  this modulus. I f  is t h e  product of t h e  highest  powers of t h e  

moduli skipped and i f  P <F, t h e n  we  l o s e  nothing by t h i s  s t ra tegy.  Indeed, the ma- 

ximal e r r o r  introduced i n  skipping t h e  small moduli is at most 

i f  t h e ' r e s i d u a l  log is less t h a n  

every completely f a c t o r e d  number w i l l  have a res idua l  log l e s s  than 

P 

log P < l o g  F. Thus 

log F t h e  number has factored completely and  

l o g  F. 

If t h i s  idea  proves good, one might " l i v e  dangerously" and l e t  P b e  somewhat 

bigger than F. I n  f a c t  i f  w e  l e t  P be around F2 and use t h e  la rge  prime varia- 

t i o n  too ,  t h e  o n l y  r e s i d u e s  l o s t  w i l l  be some of the  residues which f a c t o r e d  wi th  a 

l a r g e  prime. O f  course ,  you may p r e f e r  not t o  l o s e  anything. 

USE OF A MULTIPLIER 

The f a c t o r  base f o r  N i n  t h e  quadrat ic  sieve algorithm cons is t s  of t h o s e  

primes p SF with  ~ = 2  o r  (N/p) = I .  If we replace N by 1 N where X is a 
small pos i t ive  square-:reeinteger (Krai tchik again -see [ k ] ,  p. 208 and [5], Ch. 2) 

then t h e  f a c t o r  b a s e  changes. The expected contr ibut ion t o  

power of p i n  x2-x R i s  
log(x2-A N )  by  the 

Ep = (2 l o g p ) / ( p - l )  

if x i s  a randon i n t e g e r  and (X N / p )  =l. For p=2 t h e  expected c o n t r i b u t i o n  is 
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- l o g  2 , i f  X Nz3 mod 4 
E2 = l o g  2 , i f  A Nr5 mod 8 

2 l o g 2  , i f  X N E l  mod 8. 

P 

1' 
If plX t h e  expected c o n t r i b u t i o n  E is ( l o g  p)/p. Thus we wish t o  choose the 

value of X SO as t o  maximize t h e  func t ion  

where t h e  sum is over  those  primes p f F  with p=2, (X N/p) = 1 ,  o r  PIX. This 

function i s  very similar t o  one assoc ia ted  with t h e  continued f r a c t i o n  algori thm 

(see  C31, p. 391, Ex. 28 or C121). 

S P E C I A L  PURPOSE PROCESSORS 

J.W. Smith, S.S. U a g s t a f f ,  Jr., and I have discussed the  f e a s i b i l i t y  of 

bui lding a spec ia l  purpose processor  t o  implement t h e  quadratic s ieve algorithm. W e  

a r e  encouraged by t h e  prospec ts .  For a budget of perhaps ft25,OOOin p a r t s ,  we b e l i e v e  

a "quadratic s iever"  could  be  b u i l t  t h a t  would r i v a l  a Cray i n  speed. For t e n  o r  

twenty times as much money a machine could be b u i l t  t h a t  could f a c t o r  100 d i g i t  

numbers i n  a month. Perhaps t h e s e  f i g u r e s  a r e  way off, it i s  hard t o  t e l l  

one t r i e s .  

unless 

The b a s i c  idea  of t h e  "auadra t ic  s iever"  would be t o  construct  a sequence of  

1 6 x  4K 
moduli ( f a s t e s t t h r o u g h  the s i e v e )  would b e  s t a r t e d  one a f t e r  t h e  a t h e r  through the 

sequence Of  units. There-would never be in te r fe rence  of  moduli because we have l e t  
t h e  f a s t e s t  r a c e r s  s tart  f i r s t .  

units each of which would s i e v e  over an i n t e r v a l  of length 4096. The largest 

Another idea  is t o  use  many unextraordinary computers each using a d i f f e r e n t  

batch of polynomials w i t h  one c e n t r a l  computer which i s  fed t h e  factored r e s i d u e s .  

With a l l  of  t h e s e  i d e a s  w e  may begin t o  approach t h e  100 d i g i t  l e v e l  i n  f a C t 0 -  

ring. But 150 d i g i t  numbers should be about 100,000 times harder and it seems clear 

t h a t  current  methodology is i n s u f f i c i e n t  f o r  fac tor ing  such huge numbers. However, 

u n t i l  someone proves tLAt f a c t o r i n g  must be hard, t h e r e  w i l l  always be some doubt 

about t h e  s e c u r i t y  of 3 S A .  When R S A  w a s  introduced 40 d i g i t  numbers were consi-  

dered hard t o  f a c t o r ,  w'aile now we a r e  doing 70 d i g i t  numbers and t a l k i n g  about 

100 d i g i t  numbers. As always, t h e  f u t u r e  is hard t o  predict .  
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