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3 $1. Introduction.

If A is s set of natural numbers, let A{(x) denote the number of

rembers of A not exceeding x . The asymptotic density of A is

: E sA: = lim :—1c Alx) ,
i 1 o

should this limit exist. The Schnirelmann density of A 1is

| : OgA: = inf%A(n) ’

: E* n2l

3 where n denotes an integer. Of course the Schnirelmann density always
,j exists. If 4$A exist;, then clearly oA £ §A .

3 Often the Schnifelmann density gives little information about A .
For example, 1f 1 € A, then 0A = 0 . One interest in Schnirelmsnn

;f 1 This paper contains original research and will not be published
elsewvhere.

2 Research supported in part by an NSF grant.
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density comes from the theoréms of Schnirelmann and Mann [4] that if
oA > D , then there is some integer h such that every natural number
is 2 sum of h or Fewer members of A . In fact, any h 2 1/oA will do.
In this note we will be concerned with the case when A = A(8) 1is
the set of natural numbers not divisible by any number in the set 5§ .
We shall abbreviate &A(S), oA{S), A{S8)(x), respectively, by 6(3},
of5), S¢x> . Most of our considerations will be when S d1is a set of
primeg. In this case (or more generally; whenever the .members of 5

are pairwise coprime), 8(8) must exist; in fact,

§(s) = T (l---']j).
gES

Whenever &6(S) exists, we define the discrepancy, D(S) , of the

set S5 as the difference
D(5) = &(8) — o(5) .

Among the problems we consider are the méximél possible discrepancy as
5 ranges over (1) sets of primes, (i1) sete of pairwise coprime
integers, (iii) sets of integers for which D(S) is defined. We also
congider when a set S of primes with positive discrepancy can be
enmbedded 4n a larger set of primes §' with zero discrepancy, but the
same Schnirelwann density. We slso state several problems we have not

been able to solve.

Our principal results are listed below.

Theorem 1. For finite sets of matural numbers S , D(58) =0 if and

only if the least member ©of S divides every member of 5 .
Theorem 2. sup{D(S):$ & finite set of natural numbers} = 1 .

Let P depote the set of prime numbers. Say a set S CE is
minimgl 1if there iz some N sith o(5) = *% S¢Ry and S C [1,H] .

Note that 4F S C P and D(S) > D , then there is some 5, TS5 with
Se minimal, a{Sy) = o{8) , and D(S,) 2 D(5). Let max S denote the
largest element of the set 5 . Ilet
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D = aup{D{(5):5 C P} = sup{D(8):5 C ® , S minimal}

D' = lim sup{D(S): SC P , § minimal, max S 2 x}
X+ o
D - sup{D{S): 5 a set of pairwise coprime natural numbers} .

Clearly we have D' £ D £ B, . We have
Thecrem 3. D' = 0.285025... .
Theorem 4. Dy < ¢~L = 0.367879... .

Theorem 5. If S C P , then there is a set 8' with SC S ' C P

such that
(i) a(8') = o(5)
(ii) D(s') =0 .

§2. Proofs of Theorems 1-5.

Theorem ). For finite sets of natural numbere S , D(§) = 0 4if and

cmly‘if the least member of S divides every member of S .

Proof. Let m denote the least member of the finite set of natural

numbers S . If m dividesl every member of S , then

B(S)to(s)sl-g—;,ao D(S) = O .

Now suppose = does not divide every member of S , so that

l(m <N, wvhere N denotes the least common multiple of the members

of 5 . Thus
1 m=1
4(8) NS(N) < s
Bote that

S<N> - S(H-m> = p-1

since no number strictly between N-m and N  is divisible by a member
of 5 . Therefore

L oenems = SSH = (arl) | SCKH
o(S) < 3= SCN-m> I CEFE s,
69
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so that D{(5) > 0 .

Theorem 2. sup{D(8):5 a finite set of natural numbers} = 1 .

4

Proof. For n 2 3, let §; denote the set of natural numbers in the

interval [[nflog n],n] . Evidently,

1

. 1 1
= <
a(S)) S =5 ¢n> < Tee

so that 1dm o(5,) = 0 . On the other hand, from Erdss [2],
lim 8(5,) = 1 . Therefore lim D(S;) = 1 .and the theorem is proved.

Theorem 3. D' = (.285025... .

Proof. We shall use the following corollary of the main result in

Hildebrand [5].

Theorem {Hildebrand). Let

G(x,K) = min{Z S¢o: SC[1,x]ne, 3 %g R} .
PES

Then there are positive constants ¥, 4 such that
6(x,K) = p(eK)(1 + 0((log x)77))
uniformly for 1 < K £ & loglog x .

In this result, p denotes the Dickman-de Bruijn function defined b
the conditions: )
(i) ¢ 4= contipuous on [0,®) ,
(ii) o(u) =1 for w € 0,1},
(141) p'(u) = —p(v=-1)fu for un > 1.
It is known that p(u) 18 positive, mon-increasing, and that p(u) 20
as u=o , From the defining properties of p 1t is easy to see that

(2.1) p(u) = 1 -logu for 1 Ssusg2.
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Let
f(u): = 1ju - plu) .

Fote that f£(1)} = 0 , £(u) 2 0 as u = @ , and that' (from (2.1})
£(2) = log 2 -~ 1/2 » O . Therefore the maximum value of £{u) on

ra in the
{1,8) occurs at some finite point wu, > 1 . We now show that
(2.2) T ug = 2.9329475... , flugy) = 0.285025... .
Indeed,
S ~Itup(u-1
proved. £'(u) = IR (u) = _“é&l -
u u
Let glu) = ;l-l-up(u—l), so that =sign f' = gign g . For 1 <u<2,
glu} = =14+ u>0. For u>2,
It in g'(u) = p(u-1) + up'(u-1) = p(u-1) - =53 p(u-2)
< p(u-1) - p(u=2} s 0,
v
80 that g{u} is decreasing on [2,m) . From (2.1), on the interval
[z,3] v
{2.3) g{u) = =1 + v - u log{u-1) .
Thus g(2) =1, g(3) =2 -3 1log 2 ¢ 0 . We conclude that ug € {2,3]
and by Newton's method applied to (2.3) we find the value of u, claimed
in (2.2). To compute f{ug) , we 'pse
: Flu ) ==X = p(u) Lo o2y - fu" p'{t)de
] [ u ' o u |
) o [+] 2
H
4
defined by : u -
Y .__1__,,(2)+f°£.§.§_l2.dt
1 u t
‘ [ 2
| | 1 Yo 1-log(t-1)
} === 14+dog2+f de ,
. u T
o 2
p{u) + 0 and jntegrate numerically.
b see that With these preliminaries aside, we can now prove Theorem 3. Let

S(x,y) denote [x,y] NP and let u 21 be fixed. Then from

- Mertens' theorem,
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1
G(S(y,yu)) ~5 as y @ .

Also from Dickman'®s theorem [1] ,

ofS(y,y)) S ¥y US{y,y"I<yH"> ~ plu) as y I e,

Therefore

D' 2 1im sup D(S{y,y")) 2 Lfuv — p(u) = f(u) ,
yre

so that D' 2 £(ug) .
Thue to complete the proof of Theorem 3, we need only show the

reverse inequality. For this we shall use Hildebrand's theorem guoted

above. Let S C P be minimal with &(5) 2 1/4 and let N be such
that o(8) = % S¢N> , max $ £ X . We have

(2.4) Vecas) = I (-3 sexpl - T 2,
PES P _ pESs P

so that
\

T Lcteg 4.
pes P
If N 4s large enough, Hildebrand's theorem is applicable with x =N,

K= 3 i , glving
pes *

(2.5)  o(s) 2 G(N, T ) =oplexp( T 1))(1+0((log M) .

Therefore, from (2.4) and (2.5) ,

D(S) = 8(S) - o(S) S exp(- £ =) - olexp( T 2 ) (a+o(1)) ,
pes P pes P

where the ™o(1)" tends to 0 as XN 2 ® . We conclude that

D' £ max{ % » ;l = plug)t = £lu,) ,
o

which completes the proof of the theorem.

Theorem 4. D, < ™1 = 0.367879... .
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Proof. Let S be any set of pairwise coprime natural
pumbers. If &(5) < e~l , then certainly D(S) < ¢l , s0 amssume that
0s) 2 el . VWe also may assume that D(S) > 0 so that there is some

N with o(8) = 2 SCN> . Thus

N
u(s)zl—% z [2121- }Z.%-
meES b =]
Also,
-1 1
e £8(8) = I (1-1l/m) Sexp{ - ¥ =},
mes mes ™
so that

A
[
.

D(S) € exp{ - ¥ %} -1+ ¥ % , 0s ¥ %
mES mES meS
But the maximum value of e™ - 1 4 u on [0,1] 15 at u =1 which

gives the value e~! . This completes the proof of the theorem.

Jheorem 5. If S € P , then there is 8 set 5' with S CS'C P
such that

(1) o(5") = a(5)

(i1} D(s') =0 .

Proof. We first ghow the following lemma.
@0

lema. Let 5)C S C...CE and let S= U S - Then
o(S) = lim 6(Sy) . i1
19
Proof. We have 0(81) 2 6(S3) Z ... , so the limit exists, call it g .
Since o(S8;) 2 o(S} for each i , we have ¢ 2 o(5) . Sﬁppoae
¢ > o(S) . Then there is some N such that o » % S<N> . But
S{K> = S;CN> for all sufficlently Yarge i . Thus o » a(84) for some

1, 8 contradiction.

We now turn to the proof of the theorem. Say S CP . Ve wmay
suppose D(S) > O , for otherwise let S' = § . Consider the set

F={T: SCTC?, o{3) = a(T)} .
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Let S§' be any maximal element of F . (By the lemma, F has maximal
elements.) It remains to show that D(8') = 0 . Suppose mot, 8o that
p{8') > 0 .

There exists some N so that if n > ¥, then

]

1

1 t _1_- 1
nS(n))U(S)+2D(S).

Let p be any prime with
p¥ g, p > max{2/D(s5') , N} .

We claim that §' U {p} 1s in F , contradicting the maximal chodce of
s' and thus proving the theorem. It will be sufficient to show that
o(s5')y = o(S* U {p}) . Say M is such that

o(s* u {p}) -% (s* u {pHaw .

Suppose M 2 p . Then

oL o Loreny Lsrans o X
G(S)(HS(M) 2D(S)<HS<H) P

4 % (st u {phy<> = o(8' U {p}) s o(s") ,

a contradiction. Thus M ¢ p .and sc evidently o{5' U {p}) = a{8") .

§3, TFurther problems.

Is D' = D? If mot, then clearly there is some finite set of
primes S with D = D({S) . Perhaps & candidate for such a set 5§ ca
be found numerically, but we have had no luck. We examined many sets
of primes and the largest discrepancy calculated was = 0.245712
achieved for S the set of primes in the interval {19,12487] .
Although it is not clear that a set of primes $ with maximal
discrepancy {shoﬁld such a set 5 exist) must consist of all the prim
in an intervai, it was solely over such sets that we searched. As
gbove, let S(a,b) denote the set of primes in the interval [a,b} .
For each prime p , let bP denote the prime which naximi;es
D(S(p,bp)) - From the proof of Theorem 3 ,
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T

p of.

b IJuo+o( 1)

p = » D(s(p,bp)) * f(u,) as p e,
vhere 1g» f(u,) are given by (2.2). Must the convergence to ¥{ug)
be from below? If mot, then D' < D . For several small values of p

we have computed candidate values of bp and have approximated

D(S(P:hp) ) :

b D b log b /1
P b, B{S(p p)) of pl og P
2 13 o 0.129308 3.7004&
3 113 0.173985 ' 4.3031
5 719 0.204992 4,0871
7 1861 0.223270 3.8691

11 47159 0.235227 3.5313

+

Perhaps an example can be found to show D' < D, , but we have
not investigated this. ) '

It is clear from the proof of Theorem 5 that actually a more
general result is provable. WNamely, given a set of primes 5 , then for
any x with o{8) £ x £ §(S) , there is a set of primes S5, 2 5 with
0(S;) = ¢(5) and &(54) = x . Consider the set of points in ¥

A= {(o(5), 3(8)): s C P} .

It is clear that for esch & , 0 € 8 £ 1 , we have' (a,a) € A .
Indeed, if § 18 a maximal met of primes with o{(S) 2 a (from the
-lemma 4n the proof of Theorem 5, 5 exists), then o{(S8) = a . For if
o(S) > a and if p is sny prime larger than (o(5) - a)~l and not
in 5 , then

u(SU{p})Zﬂ(s)-%>a,

contradicting § wmaximal. Also by the proof of Theorem 5, D(S) = 0 ,
s0 {a,a) €A .

" From the sbove paragraph, for each a, 0 £ a £ 1 , the set of b
with (a,b) € A dis an intervel [s,by) or [a,bg] . Is the
interval glways closed? 'fhia would follow by showing that whenever
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81,53,... are minimal sets of primes with o0(S3) = a , then sup{G(Si}}?

G(Sio) for some 1, .
The function a = b, 1s continuous only at 0 and 1 . Indeed,

if a 4is drrational, 0 ¢ & ¢ 1 , then by =& . DBut for any 0 < a (1 ¢

lim sup by > a .
t=a

Indeed, let u be such that p(u) = a . Then from the methods of the i:

proof of Theorem 3,

lim o(S(x,x )) =a , . 1im £(S(x,x7)) = u'_l

X X

so that there is a-sequence t; * a with btn vl a.

What can be said about the set of a such that (a,b) € A ?

Is it always dense in the interval [ab,b] where
ap, = inf{o(8):8(5) =b , S C 7

If so, then D' =D . To see this, suppose D' ¢ D aﬁd so D = D(5) E
for some S5 C P . Let b= §(S) , so that ay = o(5) . Let {S,} be
s sequence of sets of primes with &(S;) =~ b and #(S,) | ap . Let

52 C S, be a minimal set of primes with U(Sz) = o(5,) - Then

8(57) 2 b, so that

lim inf D(5°) 2b-a_ =D .
h o n b
But aince the setsa 'S: are mutually distinet, we must have
{max S:} unbounded, Bo that D' 2 lim inf D(S:).E D , a contradiction.
Consider the function b — a; . It is not so hard to see that ay
is monotone non-decreasing and that ap ¢ b whenever 0 (b (1.
Moreover, by wonotonicity b —3 ap 38 continuous at all but at moat
countably many b . Is it continuous at all b 7
For SCE and D(S) > 0, can the set of N for vhich o(s) =
1 S¢N> be arbitrarily large?l Leé ¥;(5), Kp(S8) , respectively, be

K
the smallest, largest N with o(5) = % SCN> . Can No(S)/Ni(5) be
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<1

m.

a)

arbitrarily large? Probably these questions can be answered in the
affirmative by starting with a finite set of primes and adding some large
primes so as to have the Schnirelmann dengity attained again. These
questions seem to be much harder for minimal sets of primes. We can

show that Nyj(S)/max § can be arbitrarily large. Indeed, 1if

S = [x,2x] N P, then N1(8) > xI*C  for some c >0 . For if

N ¢ x2 , then

1 N

+3 L 1)

1 S5 =1- ¥
pES P

N PES

o

vhere { } denctes the fractional part. Thus 1Ff o(8) = % S<N>  for
some N < x2 , then % 2{N/p} is minimal for N in this range. It ig
easy to show that F{N/p} =x/log x uniformly for x < N £ xltc

using Hoheisel-type results on the distribvtdon of primes in short

intervals. Probably N1(8) » x2—€ holds for each ¢ > 0. On the
other hand it is easy to show Na(5) <« x2+e £} every £ > 0 . In

general, if S 48 the interval of primes [x,y] n P and IS| 2 2 , then
probably for y £ x2 ye have Ni(5) = x2+o(l) . No(S) and for y » x2
ve have N;{5) = y1+°(l) = Ny(S) . We can show that if 5 = {p,q} where
P > q are primes, then F1(8) 2 p(g-1)/{q-p) , 50 that if g~ p < log p
(which can Be arranged infinitely often), then Ni(8) > pzllug P -

Is it true that if S C P ig minimal and max § = P , then

% Sp> - 0(5) 30 as pIow
oT even
% S<{p> ~ o{S) as po2o?
These fail if S € P . For example, if 5 48 the set of integers

in (n,2n] , then

1 1 1 11
7 SQw = o, an SCn> ~ 22,

The set of &(8) whe;e SCP, S finite, is exactly the set of
rationals of the form &(n)/n where ¢ denotes Fuler's function. There
is a very simple decision procedure for membership in this set. What can
be said gbout the met of 0(S) where S C P » 5 finite? Can any
rational in (0,1} be shown to be not in thie set? What if § 4gs

alloved to he any finite set of pairwige coprime integers? Is the




membership problem for the set of &(5) still decidable? Finally, what
if § is any finite set of integers? Does every ratiomal i € (0,1]
satisfy T = g(S1) = &6(57) for some finite sets of integers 53, Sp 7
Another line of research is to cnnaideé gaps between the elements
in the set A(S) for various choices of 5 . This questidn and similar
gquestions are studied in the papers [3], [6], {7], [g8].
Finally we record the following old problem of the ageless firat

author. If 5 is a set of patursl numbers, let
£"¢{xY = x ~ S<{x>

for every matural number x . Thus §'¢x> is the number of integers
up to x divisible by some member of S . There are easy examples

where % §'¢x> is wery large and then drops drastically. For example,

from the proof of Theorem 2,

=

L] 1
Sn<n> =1, 1lim i Sn(x> = 0
. A

fof n large. The guestion is if the reverse can happen. That'is, can
% §'¢n> be small for some = 2 max § , but i S'<(x> 18 large for some

x > n? To quantify this guestion, we ask if it is always true that

i S'(x>y < z 5"¢<n>

x n

for any finite set of natural nmumbers 5 and x > n & max S? That ngm
cannot be replaced by a smaller number can be seen by looking at the

case S ={k} , n=2k-1, x =2k .
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