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On primitive divisors of Mersenne numbers
by

CarL PoMERANCE* (Athens, Ga.)

An 1nteresting source of problems in number theory is to study the
restriction of a familiar function to a special set of integers. For example, it is
common in the literature to -see papers which study the various divisor
functions at polynomials evaluated at natural numbers or at primes. In_ his
interesting paper [2], Erdos considered the divisor function

o (m=Y 1/d

dlm

restricted to Mersenne numbers; that is, numbers m of the form 2"— 1.
It is well known that

o_1(m) = O(loglogm).
Thus letting m = 2"—1, we trivially have
o (1) = 0(log n).

What Erdos proved in [2] is the surprlsmgly dlﬁ’lcult result that the logn can
be replaced with loglogn:

o_1(2"~1) = O(loglogn).

It is not so hard to see that ‘this result is best possible.
For d an odd natural number, let /(d) denote the exponent to which 2
belongs modulo 4. That is,

. 29=1modd and 2'# Imodd for all 1, 1< < I(d).
Let
Em= Y V.

id)=n
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The function E(n) is connected to Erdds’s result via the identity
6_,2"-1)= Zl E(m).

In another paper [1], Erdos showed that

Y E(m<clogx, ¢ =) 1/dl(d) =Y E(n)/n< .

n<x dodd n
(The latter result had been shown earlier by Romanoff [9] by a complicated
argument; Erdés’s argument in [1] gives this as an easy corollary of the
former result, which itself is not so hard.) The proof of the former result
actually gives
1) Y E(n) < (e7+0o(1))logx,

n<x :

where y is Euler’s constant. These results are of interest in that they
immediately imply that

Y o_;(2"-1)~ecpx  as  x— o0,
nsx

Thus the maximal and average orders of o.,(m) for m a Mersenne
number have been satisfactorily handled. It is to be remarked, however, that
the situations for d(m), w(m) are much harder and are far from resolution.
Here d, o respectively count the number of natural divisors and the number
of distinct prime divisors. ‘

The function E(n), which proved a useful tool in Erdds’s papers [1], [2],
seems interesting in its own right. In fact, in these papers, Erdos asks for the
average order, normal order, minimal order, and maximal order of E(n).

Concerning the average order, we trivially have

(2) YEmz Y 1/d>}logx.

n<x d < x,dodd

In [2] Erdés conjectures that there is a ¢; with

Y E(n) =(cs+o(1))logx.
I am unable to prove this conjecture, but 1 show below that the constant e’
in (1) can be replaced with a smaller constant. Probably the “correct” value
of ¢ 18 1/2.
In view of (1) and (2) it seems natural to measure E(n) by its ratio with
1/n. Thus in [2] Erdds suggests that nE(n) has a distribution function and
that

(3) limsupnE(n) = op, liminfnE(n) = 0.
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The first limit was also conjectured in [1]. Erdos states he can prove E(n)
= 0(1) and even that
4 Am: = Y  ld=o(l)

_ d|28—-1,d>n
but he gives no explicit function tending to 0 as n— co. He suggests that for
every ¢ > 0,

%) An)=0(n"1*9).
Below I establish the limits in (3), but show that nE(n) does not have a

distribution function. In fact I show that there is a set S of natural numbers
of logarithmic density 1 such that

(6) lim nE(n) =0.

neS,n—=m
Recall that the logarithmic density, should it exist, of a set of natural
numbers A is

1 1

lim
x-w 108X Sexn
Probably (6) holds for a set § of natural density 1, but I have been unable to
show this. }
I establish a more quantitative form for the limits in (3) by showing that

nE(n) = exp {{1+0(1))/loglogn}, nE(n) < c,(logn)~17/2*

each hold for infinitely many n.
The relative logarithmic density, should it exist, of a set of primes B is

1 1

log log x pen%sx;'
I show that (6) holds for a set § of primes of relative logarithmic density 1.
This is accomplished as a corollary to a result of independent interest: the
set of primes p with I(p) prime has relative natural density 0.

‘T strengthen (4) by showing

hm
P i o]

A(n) < exp(—lognlog log log n/2loglog n)
for all large n. Probably this result is near to best possible. A heuristic
argument which implies that
E(n) > exp {—(1 +o(1))log nlog log log n/log log n}

for infinitely many n is presented. If this conjecture is to be believed, then (5)
fails for every ¢ < 1.
Throughout, the letters p, ¢ will always denote primes.
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TueoreM 1. There is a set of natural numbers S of logarithmic density 1
such that

lim nE(n) =0.

neS,n—w

Proof. We will show the equivalent assertion that for each ¢ > 0 the set
T(e) of n with nE(n) > ¢ has logarithmic density 0. For each prime ¢, let

P(q) = |pprime: p= 1modg, 2 is not a qth power mod p}.

Note that if pe P(q), then g|l(p). By the Prime Ideal Theorem of Landau [6],
the number of members of P(g) not exceeding x is

1 x L0 ( X
glogx *\log®x/
Thus
P p t—1/
) — < H —— =0 ((log X) ").
p<xaritm P~ 1 p<x, peP@ P 1 !

For each ¢> 0 and prime ¢, let T(¢, q) denote the set of n with
nE(n) > ¢ and g fn. Then

1 1 1
Y -<- Y EmM<- ) E®m
neT(e,q),nSx n € neT(¢,q),n<€x € g X, q.4n
1 1 1 1

= o< Zmad ~ pepizeanind
I(d) < x, ¢t1(d) pld=Up) < x.q¥Up)
1 4

& py<xrgrup P—1

We now use the trivial fact that the number of primes p with [(p) = d 1s less
than d. Thus the number of primes p with I(p) < x is less than x? which is
less than the number of primes p < x* with g fI(p) provided x > x,(g). (To
see this last assertion, note that for g = 3, if p# 1 modg, then q } [(p), while
for g =2, if p= 7Tmod8, then 2 fI(p)) Thus for x = x,(g),

(8) > il L=Oq(1(1ogx)““q)

neT(e,q),n<x N & p<x3,q4l(p) p— 1 €
by (7). That is, the logarithmic density of T(g, ¢) is O for any choice of ¢, g.
But
%) T(e) = T(e, q)gN,

so that the upper logarithmic density of T(g) is at most 1/gq for any ¢, q. It
thus follows that the logarithmic density of T'(¢) is O for any &, which was to
be proved.



On primitive divisors of Mersenne numbers 359

CoroLLArY 1. limsupnE(n) = .

Proof. If not, then there is a number M such that nE(n) < M for all n.
Then from (2)
(10) tlogx< ) E(n) = ¥ E(n)+ Yy E(n)

n<x n<x,nE(n)<1/4 n<x,nE(m>1/4

1 M
) 7t Y  —=(+o(1)logx,

n<x n<x, neT(1/4) N
a contradiction.
CoroLLARY 2. There is an infinite sequence of integers n on which
n(logn)'?/2* E(n) is bounded.
Proof. From Odoni [7],

7 x X
l=— +0 ( )
p< x,zz:n(p) 24log x log? x
Using this in (8) with ¢ = 2, we have for x > 2

! < 1(log x)7124

neT,2),nsxh &

uniformly for any ¢> 0. Thus if ¢, is a sufficiently large constant and
£ = cy4(logx)" 1724, then for x > 2

Y 1l/n<itlogx.

‘ neT'(s,Z),bn <x

Thus for x > x,, there are at least x4 values of odd n < x such that
n¢ T(e, 2), that is, -

"E(") < cqa(logx)™1712* L ey (logn)~ 17724,
CoroLLARY 3. Let 6(n) | O arbitrarily slowly. Then the set of n with

nE (n) < (logn)~%»
has logarithmic density 1.

Proof. This result follows immediately from (8) and (9).

Our last corollary of Theorem 1 requires a little more work. It is a
quantified version of Corollary 1.’

CoroLLARY 4. There is an infinite sequence of integers n for which

RE(n) = exp {1 +0(1))/loglogn}.
Proof. Let t > 2 be arbitrary. We apply (7), (8), (9) for each prime g < ¢,
so that for any ¢ O<e< |,
1 1 P

1 2 -<-2 1l +([19)" ' logx.

neT(e),n<x N €<t p<x3 p“l gs<t
re¢Plg)
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From Lagarias and Odlyzko [5], we have for each & > 0 an x,(d) such that
for all x > x0(d) and primes g < (log x)'/°~?, ‘
g—1 x ( x )
l=——+04| —— )
p5x§¢r(q) q logx *\log? x

Thus uniformly for g < (log x)'/7,

1

pSx, p¢Pq) p X p<x, peP@)

-1
= Llog log x+0O(logq).
q
It thus follows that uniformly for each g < (logx)'”,
(12) I1 b _ (log x)@~ 1 gob).
p<xpeP@ P~ 1

Let ¢ =\/10g log x. Then
[14 = exp {(1+0(1)) /log log x }

qst

and from (12),

Y 11 ;}—QI=logxexp{—(1+0(1))~/10glogx}.
< <x3 P—
st l”’é\P(q)

Thus from (11), -

Y ~1—< %logxexp {—(1+0(1)/loglogx}.

n<x,neT{e) n

We apply this inequality with ¢ = 1/4. If M (x) is the maximum value of
nE(n) for n < x, then from (10) we have

tlogx < (F+M(x)exp {—(1 +o(1))\/loglogx})log X,

so that

M(x) > exp {(1 +0(1))/loglog x}.

Thus our result is established.
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THEOREM 2. For all large n,
Z 1/d < exp(—lognlogloglogn/2loglogn).
d|27-1,d>n
Proof. Recall that we have denoted the sum in the theorem A(n). For
each m|n, let

A= Y 1/d

Kdy=m,d>n
so that _ l
A(n) = Y An(n).
. min
Theorem 1 in [8] asserts that there is an x, such that for all x = x, and
any m,

" 3+logloglogx
<x: ld)=m} < - '
# {d<x: I(d)=m] »xexp( o8 X Toglog x

Thus by partial summation,

@®

il 1 .
A= | = Z 1dx
J X n<d<x idy=m
n
1”1
—cxp(—logx
x

}

A

3+logloglogx dx
J 2loglog x

| 3+logloglogn 1
< 2 - d
(log n)”exp ( logn 2loglogn xlog? x x

n

3+logloglog n)

= xpl —1
lognexp( ogn 3loglogn

for all n = x; = x,. Therefore

3+logloglog n)

A(m) =Y A,(n) < d(n)log nexp(—ibgn >loglogn

mn
for n > x,, where d(n) is the number of divisors of n. Using the well-known
fact that - _

d (n) s 2(1 +o(1))logn/log_logn’

we have :
A(n) < exp(—lognlogloglogn/2loglogn)

for all large n, which is what we wanted to show.
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In [8] and in several papers mentioned there, a heuristic argument is
presented that implies for each x > 3 there is an n = n(x) < x such that

#{d < x: I(d) = n} > xexp{—(1+0(1))log x log log log x/log log x! .
It therefore would follow that
E(n) = exp {—(1+0(1))log x log log log x/log log x}.

It does not seem unreasonable to ask also that for an unbounded set of x we
have n(x) = x!7°", It thus would follow that for infinitely many n,

E(n) = exp {—(1+0(1))log nlogloglog n/loglogn}.

I conjecture that this is the true maximal order of E(n) and also that
Theorem 2 can be strengthened to

A(n) < exp {— (1 +0(1))log nlog log log n/log log n}
for all n.

THEOREM 3. There is a positive constant cs such that

Y E(n) <(e’—cs+o0(1)logx.

nsXx

Proof. Let ¢ > 0 be arbitrarily small, but fixed. Let
A(e) = {p: l(p) < p"/*7*}.
Thus the number of pe A(g) with p < x is O(x!/**9), Write

(13) Y E(m= Y 1/d=S8,+8,,

n<x dy<€x
where in S, each d is divisible by some prime pe A(e) with p> x and in §,
the remaining d’s are considered. If d is counted by S,, then d is of the form
pd; where pe A(e), p> x, and l(d,) < x. Thus by (1)

(14) Si<( Y UYp(Y 1d)<x"logx=o(l).

pedA(e), p>x d)y€x

We now consider S,. Note that for every d counted by S,, if p|d, then
I(p) < x and I(p) > p"/?* 2% so that p < x*!7%,
For each prime g, let

w,m=" 3y L

pln, i p) = Omodyg

We have
(135) S, =830+821+S2,
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where

in S;0,° eachd has Y w,(d=0

g> v'x

in §,,, each d has Y wd)=1,
q>vx

in §,,, eachd has ) w,(d)>2
q>y";

Let P(m) denote the largest prime factor of m and let

ce(x) = n pllp—1).

psx2(1+8), p(py > Vx

Then
(16) Ce = 11m 1n:fc6 (x) > 1.

To see (16), note that it is a consequence of the Bomb1er1~V1nogradov
theorem and the Brun-Titchmarsh inequality (see Goldfeld [3]) that there
are positive constants c;, ¢g with

z

12c'@'logz

p<z, P(p—~1)>z1/2+¢q
for all large z. (In fact, from recent work of Fouvry, we can take
c; > 1/6.) But

Y o 1=0("%),

p<z, lp<zl/2=cy
so that
— V4
1> ¥ 1= T i(ate)i-
Pz, PUEN>2124E7  pga Pp-1)>21/2%¢1  pgzup<zl/2-e7 0gz

We apply this estimate for x' ™ < z < x where ¢, = 2¢,/(1+2¢,). For z in
this interval, z'/**7 > /%, so that

1 1 1

- ) —dz 2 —c¢glog(l—cg)+0(1),
p<x, P(l(p))>vx P xi- c9<p<z p
1=¢9  Puen>vx

which implies (16) with cg = (1 —c,)” .

We have
1
(17)  S,0< ) 7= Il __p_l = e'cg(x)” ' (1+e+0(1))log x,
pli=p<x2(1+e) 2<psx2(t+ +g P~
lp ) <vx Piip) <vx

by Mertens’ theorem.
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Let
c10(X) = Z 1/p.

pex2(1+0)
PU(p) > Vx

Thus €1 ~ ¢4 (x) as x— . If d is counted by S, ;, then d is of the form
pd; where p < x***9, P(I(p)) > \/x, and d, is counted by S, . Thus by (17),

crol(x) €’

(18) S,1 <€10(X)S20 € e () (1+e+o(1)logx
_ e’ log cg(x)
=) (1+e+o0(1)logx.

Suppose_d is counted by S, ,. Then d has two prime factors p,, p, with
P(I(p)) > /. Since I(d) < x, we have P(I(p,)) = P(I(p,)). Therefore

1 1
S,, < ( ")
2 (q;& Zzu +g P1 Pz) ’(“')éxd

P ,pz x
P({pN=PHp))=¢

. Ly Ly
(s 5 Heexs(z( 5, 0) e
g>x p$x2(1+8)p : g>vx 1<me2(1+8)m

P({pn) =q m = lmodq

2
< ( Z,,(ligi) )Iogx< x "2 ]og? x = o(1).

q> Vx

Putting this estimate in with (15), (16), (17), and (18), we have

e‘y

e (1+e+o0(1))]ogx

(19) S, <(1+loges ()

7

< (1+logc6)~§—(1 +e+o(l)logx
6

= (e’ —cs)(1+&e+0(1))logx

where c¢g = e”(cs— 1 —logcg)/ce > 0. Since ¢ > 0 is arbitrary, our theorem
follows from (13), (14), and (19).

THEOREM 4.

xlogloglog x)

< x: is prime; =
# {p < x: l(p) is prime} 0(10gx10glogx
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Proof. From Brun’s method, the number of primes p < x such that
p—1 is divisible by no prime from the interval I:= [loglogx, (log x)/7] is

xlogloglog x
0 : :
log xloglog x

Thus we need only consider primes p < x such that p—1 is divisible by at
least one gel. For each qel, let N, denote the number of p < x such that
I(p) is prime and p= 1 modg. Thus 1f p is counted by N, then either I(p) =

or 2 is a gth power mod p. As in the proof of Corollary 4 of Theorem 1, we
may use the results of Lagarias and Odlyzko [5] to show that

1 X X
s_____ —_—
(20 Ne q(q—l)logx*”o(qzlogzx)

uniformly for each ¢ in I Thﬁs

X
N =
qZE, 1 0(logxloglogx)’

which implies our theorem.

Remark. Assuming the Extended Riemann Hypothesis (ERH) it is
possible to show that

#{p < x: I(p) is prime} = 0(%(%) '

This result is accomplished by cHanging I in the above proof to [log x, x'/5]
and using the fact that the ERH implies (20) holds uniformly for g < x!/® (see
Hooley [4], Ch. 3), Presumably, the “true” order of magnitude of
#{p<x: l(p) is prime} is x/log?x.

CoroLLARY. There is a set P of primes of relative logarithmic density 1
such that

lim pE(p) =
pelP.p+w
Proof. This result will follow if we can show
21) Y. E(p) = o(loglog x).

pPSx

For if (21) holds and &> 0 is arbitrary, we have, using the notation of
Theorem 1,

1<1 Y E(p) = o(loglog x).

peT(e), pSx P peT(e), psx

Thus all we need do is show (21).
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(22)

C. Pomerance

We first note that

E(p) = Z )3 d -1

Udy= q|d= Hg) = g=p9—

{2—~ o 2, () -

Next note that since 2 —1 has fewer than p prime factors and they are all
1 mod p, we have

5 R Z__O(logp)

Wq)y= pq 1 l<p

Thus from (22)

2
Ep = T 1+0(1og2p)_

Kg=p p

It follows that

Y Ep=Y ( y 1'-+0(1°g22p))= v lioq

p<x p<x \lg)=p p up<x 4
Wg)prime

[
< ) E+O(1) = 0 ((log loglog x)*)
q$x3

l{g)prime

where we use Theorem 4 for the last estimate. This shows (21) and thus the
theorem.

{1]
[2]
(3]
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