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ON LOCALLY REPEATED VALUES
OF CERTAIN ARITHMETIC FUNCTIONS. III

PAUL ERDOS, CARL POMERANCE AND ANDRAS SARKOZY

ABSTRACT. Let d(n) denote the number of natural divisors of n. It is shown

that the number of n < z with d(n) = d(n+1) is O(z/+/loglog z). In addition,
certain related problems and results are presented.

1. Introduction. Let v(n) denote the number of distinct prime factors of n.
Our main result in this paper is that the number of n < z with v(n) = v(n + 1)
is O(z/+/loglogz). We obtain the same result for the equations Q(n) = Q(n + 1)
and d(n) = d(n + 1), where Q(n) is the number of prime factors of n counted with
multiplicity and d(n) is the divisor function.

A few years ago, Heath-Brown (7] proved that d(n) = d(n+1) has at least order of
magnitude z/(log z)” solutions n < z and that the same is true for Q(n) = Q(n+1).
(It is not clear if the method goes through for v(n) = v(n+1).) In the second paper
in this series [4], we showed that the number of n < z for which |v(n) —v(n+1)| <3
is at least of order of magnitude z/+/loglog z and obtained the same result for Q(n).
For d(n), we have the analogous result for those n < z for which d(n) = 2¢d(n + 1)
for some integer ¢ with |7| < 3.

Very recently, Hildebrand (8], combining the methods of [4] and [7], showed that
d(n) = d(n + 1) has at least order of magnitude z/(loglog z)® solutions n < z and
similarly for Q(n) = Q(n + 1). Assuming a quantitative form of the prime k-tuples
conjecture in Hildebrand’s paper gives order of magnitude z/+/loglogz solutions,
which would then be best possible, in light of the main results below.

The situation for other common arithmetic functions can be markedly different.
In the second paper of this series we showed that the number of n < z for which
$(n) = d(n + 1) is less than z/exp((logz)'/3) for all large z, where ¢ denotes
Euler’s function. The same result holds for the sum of the divisors function o(n).

An estimate just a little weaker than our main result can be immediately obtained
from a theorem of Barban and Vinogradov (see Elliott [2, Theorem 20.1]) on the
joint distribution of v(n) and v(n + 1). Namely, from this theorem, the number of
n<zwithv(n)=v(n+1)is

( zlogloglog )
Vioglog zloglogloglogz /
We thank R. R. Hall and G. Tenenbaum for this observation.

It seems interesting, though, to remove the logloglog z/logloglogleg = factor,
not only for esthetic reasons, but because z//log log z is almost certainly the correct
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order of magnitude. In fact, in the second paper in this series we conjectured that
there is a positive constant ¢ such that the number of n < z with v(n) = v(n +1)
is asymptotic to cz//loglogz.

It might be interesting to see if the methods of this paper can be used to obtain
a sharper error term in the Barban-Vinogradov theorem and thus prove an analog
of the LeVeque conjecture for joint distributions of additive arithmetic functions
(or more modestly, just for v(n), v(n + 1)).

In the first paper of this series [3] we considered the equation n+v(n) = m+v(m)
for n # m. The method for treating the equation v(n) = v(n + 1) can be used to
get an upper bound for the number of solutions of n+v(n) = m+wv(m). This result
and several other problems suggested by our first paper in this series are discussed
in §3.

Finally we wish to mention that P. T. Bateman and C. A. Spiro [1] have given
a heuristic argument for the main theorem in this paper.

We shall use the letter p to denote primes. By P(n) and p(n), respectively, we
shall mean the largest and smallest prime factor of n for n > 1; we let P(1) =
p(1) = 1. The constants ¢y, cs,... are all positive and absolute.

2. The equation v(n) = v(n+1). In this section we establish our main result.
THEOREM 2.1. The number of n < z with v(n) = v(n+1) is O(z//loglog z).

PROOF. Let N denote the set of n with v(n) =v(n+1) and 2'/3 <n <z — 1.
It suffices to prove the O-estimate for |N|. Given n € N, let us define the integers
a,b, k.l by
n+1=ak, P(a)<p(k), a<z® ap(k)>z'/3,
n==bl, Pb)<p(l), b<z'3  bpl)>z/C.

We shall assume that p(k) < p(l), the case p(k) > p(l) being similar.
For 1 < y < z'/3, let N(y) denote the number of n € N with y < p(k) < y°.

Thus if y; = 2%, we have

I/\ I/\

(2.1) NI <D N(y,).

=1
If 7 is so large that y3 < 2, then N(y,) = 0, so we really only have a finite sum in
(2.1).
We now turn our attention to estimating N(y). If n is counted by N(y), then
the numbers a, b, k£, | defined above satisfy

ak—bl=1, ak<z, v(ak)=v(bl), P(a)<pk)<y?,
y<pk)<p(l), a<z'/3 b<a® a>a3/pk) >3 /yP.

Since all of the primes in k,[ are at least y, we have

(2.2)

log z log z
v(k) < Togy’ v(l) < Togy’
so that
logz
(2.3) lv(b) — v(a)| <

log Y
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We now fix the integers a,b appearing in (2.2) and count the number of pairs
k,l there can be. Let kg, [y denote the unique integers which satisfy

ako — blg =1, 0<ky<b, 0<lp<a.

Thus if k,[ satisfy (2.2) we have some integer m with

(24) k=bm+ko, l=am+l, 0<m< &%7 p((bm + ko) (am + lo)) > y.
Thus it suffices to count the number of m satisfying (2.4). This is easily done by
using either Brun’s method or Selberg’s sieve (e.g., see Halberstam and Richert (5,
Theorem 3.1, p. 101]; note that a < z!/3, b < z1/3 by (2.2)) which gives that the
number of such m is at most

C1T
$(a)$(b) log y
for some absolute constant c;.
Thus from (2.2) and (2.3) we have
c1x
N(y) < —
L. B sk

P(a)<y® Iv(b)—v(a)|<logz/logy

(2.5) 1T 1
= log2y Z ¢( ) Z Z ¢
>g1/3 Jy3 [t—v(a)|<logz/logy p<g!/3
P( )<y’ v(b)=t

The inner sum on b is at most

1 1 1 1
il 2 <¢(p) 5 e T )

t

p<z!/3
t
1 4 1 c3logz
== P < (loglogz + ¢yt < —28%
t! p<§/3 (p—1)2] — t!( &8 2) < Vioglogz

where for the last inequality we used Stirling’s formula and then replaced the ex-
pression in ¢ with its maximal value. Using this estimate in (2.5), we have

cazlog? z 1
2.6 NQ) € ——7—7— ’
(2.6) ) Toglogz log3 y a>§/y3 ¢(a)
P(a)<y®

To estimate this sum we prove the following lemma.
LEMMA. There is an absolute constant cs such that if u > 0 and v > 2, then

we have
logu
E 1 .
¢ <c5 ogvexp( 210gy>

n>u
P(n )<'u
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PROOF. Let 0 = 1/(2logv). Note that if p < v, then p” < \/e. We have

1 1 ne _i p0'+1
2 o) = w ¢(n>‘uaH<”(p—1)<p—pv>>

n>u P(n)<v p<v
P(n)<v
B pcr-}—l B pa
<u’ ¢ exp _ <<u’? exp -
2 5o G—7) 25

1
=u"%exp Z 5(1 + O(ologp))

p<v
=u" % exp(loglogv + O(1))

1
<<u %logv=1logvexp | — osu ,
2logv

which proves the lemma.
Using the lemma in (2.6), we have

) < cexlog?z ox <_log(z1/3/y3)).
~ Vloglogzlog?y 6logy

Recalling that y; = 237’ this gives

CeT 1,
N(Z/J') < *10—;@32] exp <_6(3J 1— 3)) .

Putting this estimate into (2.1) we have our theorem.

REMARKS. The above proof can be made to go through if we replace v(n) =
v(n+ 1) with d(n) = d(n+1). To do this we first show that the quadruple a, b, k,
appearing in the proof can also be assumed to satisfy

(2.7) (a, k) = (b,1) =1, k, ! square-free.

N(

Indeed, the n for which these properties fail are negligible. We next replace (2.3)
with
logz
logy’ 7
The inner sum in (2.5) now reads Zsz,/S’d(b):tW(b))_l. To estimate this, let s(b)
denote the largest square-full divisor of b. Then

1 1
20 2 500
<z 8 square-iu <z

d(b)=t d(s)lt s(b)=s
d(b)=t

1 1
< oo X

——+ =2 for some integer [i| <

8 square-full b'gz‘/3/s
v(b')=log,(t/d(s))
log z 1 log z
<< —— << .
loglogz Z @(s) loglog =

s square-full
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The situation for 2(n) = Q(n + 1) can be handled by similar methods. It is
slightly easier than the d(n) = d(n + 1) case, though, since here it is not necessary
to establish (2.7) nor is it necessary to change the form of (2.3).

3. The equation n + v(n) = m + v(m). In the first paper in this series we
gave two proofs that the equation in the title of this section has infinitely many
solutions n # m. The first, relatively simple proof uses the auxiliary function

gin) = Y 1,

m<n
m+v(m)>n
the connection being that if g(n) > g(n + 1), then there are two integers mi,mq
with m1 + v(m;) = ma + v(ma) = n + 1. The other, more complicated proof
actually obtains a decent lower bound for the function

Fz)=#{(mn):m<n<z,m+v(m)=n+v(n)};

we show F(z) > z - exp(—4000log log z logloglog z) for all large x. We conjectured
that F(z) ~ c7z for some positive constant c.

In this section we state some new problems and results concerning the functions
g(n) and F(z). First we record the following upper bound for F(z).

THEOREM 3.1. F(z) = O(z).

This theorem can be proved by the general method of Theorem 2.1. The idea is
to replace the equation v(n) — v(n + 1) = 0 with the equation v(n — 1) — v(n) =1,
where ¢ is an arbitrary positive integer. One then follows the general outline of
the proof of Theorem 2.1, but with many new details, to prove that the number of
solutions n < z corresponding to a given 7 < (loglog z)3/* is at most

c d exp | — ot

8 /loglog z P loglogz )’
where cg, cg are positive, absolute constants. For (loglogz)3/4 < ¢ < 100loglog z,
we use the uniform estimate z - exp(—cgy/loglogz) and for 7 > 100loglog z,

we use the uniform estimate O(z/log”z). Summing these estimates for 7 <
(14 0(1))logz/loglog z then gives F(z) = O(z).

COROLLARY. There is a positive constant cio such that for all large z, the
number of distinct integers below x of the form n + v(n) is at least cioz.

We remark that if it could be shown that the set of distinct integers of the form
n + v(n) has upper density less than 1, a corollary would be that F(z) >> z.

Concerning the function g(n) defined above, it is easy to see that the average
order of g(n) is loglogn + O(1). We also have the following result.

THEOREM 3.2. The normal order of g(n) is loglogn.
PROOF. For each € > 0, let

ge(n) = Z L.

m<n—(14¢)loglogn
m+4v(m)>n
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Using the Hardy-Ramanujan inequality (6] for the number of n < z with v(n) =t
it is not hard to show that for any € > 0, there is some § > 0 such that

(3.1) de << z/(logz)°.

n<z

Thus the set of n with g.(n) > 0 has density 0 and so g(n) < (1 + ¢)loglogn
on a set of density 1. From (3.1) and the fact that the average order of g(n) is
loglogn+ O(1), it follows that g(n) > (1 —€)loglog n on a set of density 1 for each
fixed € < 0. This proves the theorem.

It seems much harder to say something more precise about the normal behavior
of g(n). However, one can prove by the above method that for each € > 0 there is
some K such that the lower density of the set of n with

loglogn — K+/loglogn < g(n) < loglogn + K+/loglogn

is at least 1 —e. The first author believes it likely that (g(n) —loglogn)//loglogn
has a normal distribution in asymptotic density. However, the second and third
authors believe rather that g(n) = loglogn+o(/Ioglogn) on a set of density 1. To
settle this dispute one might estimate the second moment of g(n), but this seems
to be not so easy.

The minimal order of g(n) is also an interesting problem. The first author has
called n a “barrier” if m+v(m) < n for all m < n. Thus n is a barrier if and only if
g(n) = 1. We conjecture that there are infinitely many barriers, that is, the minimal
order of g(n) is 1. We can prove that the minimal order of g(n) is O(logloglogn).
This is done largely by arranging via the sieve that the numbers just below n should
be free of primes in the interval [(loglogn)?,exp(logn/(loglogn)®)].

Concerning the maximal order of g(n), it is easy to see by the Chinese remainder
theorem and by the prime number theorem that

2logn )1/2

g(n) > (1+0(1)) <m

for infinitely many n. This is probably close to being best possible. The completely

trivial upper bound is |

: ogn

o) < (1+o(1) 20

for all n. This can be rather easily improved to (3 + o(1))logn/loglogn, but
further improvements seem difficult.

Let h(n) denote the number of solutions of m + v(m) = n. Clearly, h(n) <
g(n — 1), but we cannot prove a better upper bound for h(n) than what we get for
g(n). Probably h(n) is unbounded, but this too seems difficult. The best we can do
in this direction is that h(n) > 2 infinitely often—this is of course the main result
of the first paper in this series.
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