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ON DIVISORS OF SUMS OF INTEGERS, III

CARL POMERANCE, A. SARKOZY AND C. L. STEWART

In this paper we show that \i A\, Aι,...,Ak are "dense" sets of
integers, then there is a sum a,\ + #2 H V &k w *th aι € A \ 9 ci2 €
A2,...,akeAk that is divisible by a "small" prime.

1. Let P{ή) and p(n) denote the greatest and smallest prime factor
of n, respectively. Recently in several papers, Balog, Erdόs, Maier,
Sarkozy, and Stewart have studied problems of the following type:
if A\,...,Ak are "dense" sets of positive integers, then what can be
said about the arithmetical properties of the sums a\ H h % with
a,\ G A\,...,ak G Akl In particular, Balog and Sarkόzy proved that
there is a sum a\+ci2 (#i G A\9 aι G A2) for which P(a\+aι) is "small",
i.e., all the prime factors of a\ +aι are small. On the other hand, Balog
and Sarkόzy and Sarkόzy and Stewart studied the existence of a sum
CL\ Λ h % for which P(a\ H h ak) is large.

In this paper we study p(a\ H \- ak). Our goal is to show that
if A\,..., Ak are sets of positive integers then there exists a sum a\ +

h cik with a\ G A\,..., ak € Ak that is divisible by a "small" prime.
In the most interesting special case, namely A\ = = Ak, there are
sums CL\ Λ Vak divisible by /c, so that p(a\ H h ak) < k. In order
to exclude such trivial cases, we shall ask that the "small" prime factor
of d\ H h ak also exceeds some prescribed bound V.

In §3 we will study the case when the geometric mean of the cardi-
nalities of the sets Ax- c {1,..., N} is between \fN and N. The crucial
tool will be the large sieve. In §4 we will extend the range (when k > 2)
by studying the case min, \At\ > Nι/k+ε. Here Gallagher's larger sieve
will be used. The results in §§3 and 4 do not give especially good re-
sults when the sets A\,...,Ak are very "dense". In §5, we will give an
essentially best possible result for the small prime factors of the sums
d\ Λ h ak in the case when

(\AX\ \Ak\)ι/k > Nexp(-clogklogN/loglogN)

for a certain positive constant c. Finally in §§6 and 7 we will construct
sets so that none of the sums a\ H \- ak has a small prime factor.
In particular, in §6 we will discuss the conjecture of Ostmann [6] that
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there do not exist infinite sets of positive integers A\, A2 such that
A\+ A2 differs from the set of primes by at most a finite set.

The constants c\, Cι,... appearing in different sections are indepen-
dent from each other, so that, for example, C\ in §3 and C\ in §4 are
not necessarily the same.

2. In this section, for the convenience of the reader, we collect the
lemmas of [8]. Primary references for the first three lemmas and a
proof of the fourth may be found there. Further lemmas in this paper
will be presented as needed in subsequent sections.

LEMMA 1 (Cauchy-Davenport). Let p be a prime number and let A,
B be subsets ofZ/pZ. Then

LEMMA 2 (Large sieve). Let A be a set of integers in the interval
[M + 1, AT + JV]. For each prime p let v(p) denote the number of
residue classes mod p which contain a member of A. Then for any
positive number Q we have

where L = J2q<Q TiP\q(P ~~ v(p))lv(p), the dash indicating the sum is
over square-free positive integers q.

LEMMA 3 (Gallagher's larger sieve). With the same notation as in
Lemma 2, ifS is a finite set of primes, then

\A\< (-logN

V
provided the denominator is positive.

LEMMA 4. Let p, k be integers with k > 2 and p > 1 -f [k - \)k.
Then

m m | | [ 11 =
D - > ) •
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where D is the set ofXeRk with

JCI H h xir < 1 H and — < xx < 1 for i = 1,..., fc

3. In this section we study the situation when the geometric mean
of the sets of integers considered exceeds y/N.

THEOREM 1. Let N be a positive integer, let A\, A2 be non-empty
subsets of{\,..., N} and let T = (\Aχ \ \A2\)1/2. Let S be a set of prime
numbers, let Q be a positive integer, and let J denote the number of
square-free integers up to Q divisible only by the primes in S. If

(3.1) TJ>N + Q2,

then there is some prime p e S such that each residue class mod p
contains a member of the sum set A\+ A2.

Proof. For / = 1,2 and for each prime p let Vi(p) denote the number
of residue classes mod/? that contain an element of Af. For each
Q > 1, Lemma 2 implies

p - i

for / = 1,2 where the dash indicates the sum is over square-free posi-
tive integers q. Thus

(3.2) T<{N + Q2)/H,

where

From the Cauchy-Schwarz inequality we have

1/2

P

Assume now that for every prime p € S there is a residue class
mod p that contains no member of A\ + A2. Then from Lemma 1 we
have

<P
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for every prime p e S. We now apply Lemma 4 with k = 2 and
jCj = Vi{p)/p. If q is divisible only by primes in S we thus have

1/2

Using this in (3.3) we get H > / , so that (3.2) contradicts (3.1). Thus
there is some prime p eS such that each residue class mod p contains
a member of A\ + A2.

COROLLARY 1. If V > 5.5 and

(3.4)

then there is some prime p with V< p < 2V such that every residue
class modp contains a member of A\ + Aι.

Proof. We apply Theorem 1 with S the set of primes in (K2V] and
Q = 2V. Then

by Rosser and Schoenfeld [6]. Thus (3.4) implies (3.1).

REMARKS. Clearly (3.4) implies T » y/NlogN, so the corollary
is only applicable in this case. It should be noted that the corollary
generalizes Theorem 2 of Balog and Sarkόzy [3].

COROLLARY 2. Let V be a positive integer. There is a positive num-
ber c\, effectively computable in terms ofV, such that if

(3.5)

then there is a prime p with

V<p<cxN/T

such that every residue class mod/? contains a member ofA\+A2.

Proof. There are positive constants <?2> C3 effectively computable in
terms of V such that if Q > c2 and if S is the set of primes between
V and Q, then J> c^Q (where / is as defined in the theorem). Let

c\ = max{c2,2/c3}, Q = C\N/T.
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Then (3.5) implies Q2 < N, so that

TJ> c3TQ = cxc3N >2N>N + Q2.

Thus the theorem implies the corollary.

We now generalize the situation of Theorem 1 to where more than
two sets of integers are involved. Rather than giving a general result,
we content ourselves with a result analogous to Corollary 2.

THEOREM 2. Let 0 < e < 1, let V and N be positive integers, let
Aχ,...,Ak be non-empty subsets of {\,...,N} where k > 3, and let
T = (|^! I \AkI) χlk. There exist positive numbers c4, c5, c6 effectively
computable in terms ofV, k, ε such that ifN>c4 and

(3.6) T>

then there is a prime p with

V<p< c6(N/T)/(\og(2N/T))k-2-*

such that each residue class mod/? contains a member of the sum set
Ax+ - + Ak.

Proof. For / = l,...,fc and each prime p, let i/, (p) denote the
number of residue classes mod p that contain an element of A\. Thus,
as in the proof of Theorem 1, we have (3.2) for any positive number
Q, where now

( k \ ι / k

»- Π Σ ' Π ( ^ )
V=l<7<β P\9

Using Holder's inequality k — 1 times, we get

Xlk

q<Q p\q \i=\

Suppose now that for each prime p with V < p < Q there is some
residue class mod/? that contains no member of A\ H h Ak. Then
by an iteration of Lemma 1, for each prime p with V < p < Q we
have
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Thus with Lemma 4 applied to x, = Vi{p)/p for / = l,...,kwe have

p Λ\l/k k

-2)1 P
-\>k-\-ε,

where the last inequality requires p > Cη = Cη{k,ε). Thus from (3.7)
and our assumption, we have

(3.8) H > χ;* ]J(k - 1 - β) =

where the star indicates a sum over square-free integers not divisible
by any prime smaller than the maximum of V and cη. Note that ω{q)
denotes the number of prime factors of q.

To estimate the last sum in (3.8) we use the following lemma.

LEMMA 5. Let 2 < y < exp((logx)2/5), let r > 0, and let z be a
complex number with \z\ < r. If* denotes a sum over square-free
integers n free of prime factors below y, then

zω[n) = g{V. z)x{\ogx)z~λ + Or(x\(logxy-2(logyγ-z\)
n<x

where

Proof. The proof follows from the method of AUadi [1] and Selberg
[10]. In AUadi, the same sum is estimated but without the restric-
tion that n be square-free. In Selberg, the same sum is estimated but
without the restriction that n be free of prime factors below y.

We now apply Lemma 5 with r = fc— 1, z = fc—1— ε, x = Q, and
y = max{ίfc7}. We thus deduce from (3.8) that there are positive
constants c8 = cg(ϊffe,ε) and c9 = c9{Vktε) such that if Q > c8 we
have

(3.9) H>

We now choose c^ > 2k/c$ so large that if

(3.10) (2 = ^ / ( 1 0 8 ^ 1
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we have

1 IN
(3.11) Q>c% and l o g β > ^ l o g ^ .

Thus from (3.9), (3.10), and (3.11) we have

* N < *^τ< IT
2 '

< <
H ~ c9Q(logQ)k-2-* c6c9

Putting this last inequality into (3.2) we get (using (3.9), (3.10), and
(3.11))

2 ^ 2Q < 2k~l-c6N

H ~ c9{\ogQ)k-2-* ~ c9T(ΐog(2N/T))2(k-2-*)'

Thus since c$ > 2k/c9,

T< c6N
ι/2/(log(2N/T))k~2-ε < TV2/3

for N > c4 = c4(Kk, ε). Hence 2N/T > N1'3, so that

(3.12) T< cβ3
kNι/2/{logN)k-2~ε.

Thus if we let c5 = cβ3
k, then (3.12) contradicts (3.6) which proves

the theorem.

4 Theorems 1 and 2 covered the case when the cardinalities of
the given sets are greater than Nιl2. In this section we are going to
study the case when all the cardinalities are greater than Nχ/k+ε (only
when k > 3 will we obtain something new). Perhaps the conclusion
of Theorem 3 holds when we assume only that all the cardinalities
are greater than Nε, but we have not been able to prove this. On the
other hand, as will be shown in §6, it is not enough to assume that
the cardinalities are greater than clogiV/loglogiV for some positive
constant c.

THEOREM 3. Let ε be a positive real number, let V and N be positive
integers and let AX)...tAk be non-empty subsets of{ 1,...,N}. There
exists a positive number c\ effectively computable in terms ofV, k, and
ε such that ifN> cx and

(4.1)

then there is a prime p with

(4.2). V<p<Nx'k+ε

such that every residue class mod p contains a member ofA\ H
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Proof. From Lemma 3, for any Q > 1

(43) \Λ,\< lQgN + Σ logp/u.{p)

provided the denominator is positive and where &v(p) has the same
meaning as in the previous section. Assume that for each prime p in
the range (4.2), there is some residue class modp that is not repre-
sented in the sum set A\ Λ h Ak. Thus from Lemma 1,

for every prime p in the range (4.2). Thus from Lemma 4 we have

1 log/7 _ logp J ^ 1 log/? k

( ) " kp hu*w/p~ p Ί + ί*
For p > c2 = Ciiy.kyε) we have p > V and

Thus

(4.4)

V<p<Q

>-logiV +

> -logiV + (ik - β/2)(logβ - c3)

where C3 = c^Vk, ε) and we use Theorem 425 in [5].
Choose Q = Nι/k+e and note that we may assume that 0 < ε < 1.

Then for N > c4 = c4(ίfΛ;,ε), (4.4) implies that the average of the
denominators in (4.3) is at least (ek/2)logN. Thus there exists some
i such that the denominator in (4.3) is at least (εk/2)\o%N and for
this / we have

for ΛΓ > C5(Jffcβ), using the prime number theorem. This estimate
contradicts (4.1) for N> C\{\ζk, ε) and thus proves the theorem.
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5. If the sets A\,...,Ak a r e "dense", the previous results are not
very sharp as the following result shows. Later in this section we shall
show that Theorem 4 is essentially the best possible result for "dense"
sets.

THEOREM 4. Let a be a positive real number, let V and N be positive
integers and let A\,...,Ak be non-empty subsets of {1,...,N}. There
exist positive numbers C\ and c2 which are effectively computable in
terms ofV, k, and ε such that ifN>c\ and

(5.1) T = {\Aι\...\Ak\)ι'k>Nexp{-(l-ε)logklogN/loslogN},

then there is some prime p with

V<P<c2 + ^ | log(2N/T) loglog(2N/T)

such that each residue class mod/? has a member in A\Λ h A^.

Proof. Let Q be a positive number. With &V(/J) as before, the Chi-
nese Remainder Theorem gives that

(5.2) \Aι\<N Π Vj^r+ Π
V<p<Q V<p<Q

for ι = 1,...,&. Put

(5.3) Q = λ + l ± i log(2ΛΓ/Γ) loglog(2ΛΓ/Γ)

where λ is a positive constant which shall be chosen later. In the
following, all numbered constants C3, C4,... depend effectively on V,
k, and e, only. Plainly we may assume 0 < e < 1.

From (5.1),

N
— < exp{(l - ε) log/c log iV/log log TV}

and so for N > c3 we have

Q<λ + {l-ε2/2)logN.

Therefore by the prime number theorem, for N> C4 exp(3Λ,/ε2),

Π p<N>
V<p<Q

and so by (5.2)

\M<2N
V<p<Q
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for/= \,...,k. Thus

(5.4) T<2N

Suppose now that for each prime p with V < p < Q, there is a
residue class mod p that contains no member of A\ Λ VA^. We shall
show that this assumption leads to a contradiction for λ sufficiently
large. From Lemma 1, for each prime p with V< p < Q we have

Thus (5.4) leads, via the arithmetic mean-geometric mean inequality
and Mertens' theorem to

(5.5)
V<P<Q Λ v y J

-k+2

Solving (5.5) for π(Q) we get

π(Q) < j ^ log(2N/T) + cβ + kloglogQ.

Recall from (5.3) that if λ is large, then so is Q. Thus if λ > c7, we
have

and so the prime number theorem gives

Q < \^log(2N/T)loglog(2N/T)

for λ > c% > Cη. Since this inequality is incompatible with (5.3),
our assumption that each prime p with V < p < Q has a residue
class containing no member of A\ Λ V A^ must be false. Thus the
theorem is proved with ci = eg.

THEOREM 5. Let ε be a positive real number and let k > 2 be an
integer. There exist positive numbers eg, C\Q, which are effectively com-
putable in terms ofk and ε, such that if N is a positive integer with
N> eg and t is a real number with

(5.6) iVexp(-(l -ε)logfclogiγ/loglogiV) < t < N,
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then there exists a set A c {1,..., N} such that

(5.7) t/2 < \A\ < 3tk

and none of the sums a\Λ Ya^ {where a\t...,ajc€A) has a prime
factor p with

(5 8) ^ < p l l l

Proof. Let r(n, q) denote the least non-negative residue of nmodq.
Define the positive integer Q by

(5.9) N
k<p<Q * k<p<Q+l *

and let

A = {a < N: 0 < r(a, P) < j for all p with k < p < Q}.

Thus for each prime p with k < p < Q, A has members in at most
[p/k] residue classes mod p. By the Chinese Remainder Theorem, we
have

(5.10) \A\~N Π
k<p<Q

[P/k]
P π

k<p<Q

From (5.6) and (5.9) we have

kπ(Q)-π(k)< rτ P ,N

so that
π(Q) - π(λ) < (1 - ε) logN/loglogiV

Thus if N > c\ i = Cn (fc, ε), the prime number theorem gives

k<p<Q

Thus from (5.10),

k ψ \ ψ
k<P<Q k<p<Q

so that (5.7) follows from (5.9).
Clearly, by the definition of A, no member of kA is divisible by any

prime p with k < p < Q. Thus it suffices to show that Q is greater
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than the right side of (5.8) for an appropriate choice of CJQ. By (5.7)
it suffices to show that

, , i n „ 1 - β/2 Έ 2N Λ λ IN
( 5 n ) Q> Ί^IΓ og~ og og~T ~ Cl2-
But by (5.9) we have

(5.12) .Og2f<.og(2

Using the prime number theorem, (5.11) can be easily derived from
(5.12) by separately treating the cases 2N/t < c\s9 2N/t > C15.

6. Note that Corollary 2 of Theorem 1 implies that if A, B are
subsets of {1,...,7V} and every member of A + B is prime, then
\A\ \B\ = 0{N). If we take A = {1}, B = {p - I: p < N prime},
then \A\ \B\ ~ N/logN9 so that this result is close to best possible.
There is a related conjecture due to Ostmann [6]. He conjectured that
there do not exist infinite sets A, B of positive integers such that A+B
differs from the set of primes by only a finite set. Of course if such
sets exist then for all large N,

(6.1) \A(N)\\B(N)\> N/logN

where A{N) =An[l,N], B{N) =5n[l,N].
In this connection we are able to prove the following result.

THEOREM 6. Let N and I be positive integers with I < log TV. There
is an effectively computable constant C\ such that ifN>c\, then there
exist A,B c{l,...,N} with \B\ = I,

and every member of A + B is prime.

Proof. Let C\ be so large that if N > C\ then

N
π{N)-\o$N> logΛΓ
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Note then that
(N){π(N) - 1) (π(N) - I + 1)m/(",:})-"-

(N/logN)1 _ N
- lNι~ι ~~ l(\ogN)r

Thus the theorem will follow from the following lemma. Indeed we
take P the set of primes in [1, N], A the set in the lemma shifted down
by 1 and B the set in the lemma shifted up by 1. (Before the shifts we
only know A c [2, N], B c [0, N - 2], so the shifts put A9Bia[l, N].)

LEMMA 6. Let N be a positive integer and let P be a non-empty
subset of {I,..., N}. Let I be an integer with Γ < / < \P\. Then there
is a set Ac P and a set of non-negative integers B such that

A+BCP, Ml

This lemma can be found in [4]. For the convenience of the reader,
we repeat the proof here.

Proof of the lemma. There are ('^') /-element subsets of P. To each
such subset {p\,...,/?/} with p\ < - < Pi, associate the / - 1-element
subset {p2-~P\>..*>Pι-p\) of {1,..., JV—1}. Thus there is some/-1-
element subset {/*i,...,/*/_i} associated to at least k > ('^'VO^/)
/-element subsets of P. Let αi,. . . ,α^ denote the least elements of
these k different /-element subsets associated to {/?!,...,A/_i}. Thus
#1, . . . , α& are distinct members of P. The lemma follows with A =
{αi,..:,α*}, B = {O,hϊ,...,hl-ι}.

REMARKS. We expect that Theorem 6 cannot be substantially im-
proved. In particular if min{fc, /} > 2, then we conjecture that for
every ε > 0, kl < N/(\ogN)2~ε for N large in terms of e. Perhaps even
kl = O(N/(\ogN)2). Such results, as a comparison with (6.1) reveals,
would imply the truth of the Ostmann conjecture. Further, we expect
that if min{k, 1} > logN (or indeed even 2 log N/ log log N) then there
are members of A + B with arbitrarily many distinct prime factors as
N ->oo.

On the other hand, if 0 < ε < 1 and we choose

/ = [(l-δ)logΛr/loglogΛα

then Theorem 6 implies there are sets A, B c {l,...,N} with \A\ >
\B\> I and such that every member of A + B is prime, provided that
N is sufficiently large in terms of ε.
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Finally note that in the theorem it is possible to also require A+B c
[N/2, N], but then we must replace the lower bound for \A\ with, say,
\A\ = k > N/l(2\o%N)1. To see this, choose P in Lemma 6 as the set
of primes in [N/2, N],

7. In the last section we showed there exist sets A,B,c {1,..., N}
such that \A\ > \B\ > log N/ log log N and all members of A + B are
prime. In this section we consider the case A = B. Now, of course,
we cannot prohibit even members of the sum set 2A, so instead we
look for an example where the members of 2A are twice a prime. The
following result almost achieves this goal. The proof uses very little
about the primes—only that they are fairly numerous.

T H E O R E M 7. For all large N there is a set Ac {[N/4], ...,N} with

(7.1) |.4|

and each sum a + a! with a,af eA and aψa1 is of the form 2p where
p is prime.

This theorem follows easily from the following lemma, which is
a slight sharpening of a lemma in Szemeredi [11]. This lemma of
Szemeredi has become known as the "Cube Lemma", see page 44 of
the Graham, Rothschild, Spencer book "Ramsey Theory". Thanks are
due to Paul Erdόs and Joel Spencer for the latter reference.

LEMMA 7. IfN is large, B c {1,..., N} with

(7.2) \B\ >

and we put

(7.3) /
.10 "*]Qg{3N/\B\)\-

then there exist positive integers y9xχ9...9xι with xt Φ Xj for i Φ j and

(7.4)

To derive Theorem 7 from Lemma 7, we choose B to be the set of
integers of the form 2p where p is prime and N/2 <2p < N. From
(7.4), y E B so y is even. Put

• + X\, . . . , ηΓ + J
Z
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Then (7.1) follows easily from (7.3) and a crude estimate for the num-
ber of primes between N/4 and N/2, while a + af = 2p for a,af e A,
aφa1 holds by (7.4).

Proof of Lemma 7. It suffices to show the existence of sets B$,..., 2?/
and distinct positive integers JCI, ..., X\ such that

(7.5) Bo = B,

(7.6) Bk + {0,xk}cBk_x forfc=l,...,/,

(7.7) \Bk\>\B\2k/(3Nf~ι forfc=l,...,/.

In fact, if BQ,...,BI, X\,...,xι satisfy these conditions, then by (7.5)
and (7.6), (7.4) holds for any y e Bh while (7.3) and (7.7) imply £/
is not empty. This then will complete the proof of Lemma 7.

We are going to construct BQ9...9BI9X\,...9XI recursively. Let BQ =
B. Assume now that 0 < k < I — 1 and that BQ, ..., Bk and, in the
case k > 0, x\,..., xk have already been defined. For 1 < d < N - 1
let f(Bk, d) denote the number of solutions of

b-b1 = d, where b, b1 e Bk.

Then in order to define Bk+χ and xk+\, we need an estimate for

(7.8) Af = max/(£*,</)

where the maximum is over all d with 1 < d < N-1, d £ {x\,..., xk}.
Clearly, for all d we have f(Bk, d) <\Bk\. Also

(7.9)

since b - b' e { 1 , . . . , N - 1} for any pair b, b1 e Bk with b > b1. If we
majorize f(Bk,d) by \Bk\ for d € {x\,...,xk} and by M otherwise,
(7.9) implies

< k\Bk\ + {N - 1 - k)M< k\Bk\ + NM,
\ * /

so that

(7.10) M> ^((\Bk\
2 - \Bk\) - 2k\Bk\) = \M β\Bk\ - 1 - l

From (7.3), (7.7), and a simple calculation, we have (for N larger than
some absolute and computable constant)
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so that (7.10) and (7.7) imply

_ 1 I μ»|* V_ \BΓ
i n M>_L

3N ~ 3N

Let xk+ι G {1,..., N - 1} - {x\,..., xk} denote an integer for which
the maximum in (7.8) is attained and let

Bk+ι = {beBk:b + xk+ι e Bk}.

Thus (7.6) holds for k + 1 and since |2ίfc+il = Λf, (7.11) implies (7.7)
holds for k+1. This completes the proof of the existence of Bo,... ,Bh

X\,...,Xι with the desired properties, so that Lemma 7 is proved.

REMARK. It is possible to show there is a set of primes P* with no
three in arithmetic progression and such that the number of members
of P* up to x is greater than x/eCyJXo%x for a certain positive constant
c. The proof of Theorem 7 shows that for every large N there is a set
of integers A c [N/A, N] with \A\ > log log TV and such that if a,afEA
with a Φ a\ then a + a1 = 2p for some prime p e P*. However, since
no three members of P* are in arithmetic progression, it follows that
either 2a or 2a! is not of the form 2q for q e P*. Thus there is at
most one a e A that is also in P*. We conclude that the seemingly
mild restriction in Theorem 7 that a Φ a' will probably be difficult to
remove. At least, an attempt to remove it must use more properties
of the set of all primes than we have used.

It is probable that the circle method can be used to prove that
for every fixed k there are distinct primes P\,. .,pk such that each
Pi + Pj is twice a prime. We expect that the largest set of primes in
[N/4, N] with each double sum twice a prime is of order of magni-
tude log TV/ log log N, but we do not expect this will be proved anytime
soon.

REFERENCES

[1] K. Alladi, Distribution of v(ή) in the sieve of Eratosthenes, Quart. J. Math.
(Oxford Ser.), 33 (1982), 129-148.

[2] A. Balog and A. Sarkόzy, On sums of sequences of integers, I, Acta Arith., 44
(1984), 73-86.

[3] , On sums of sequences of integers, II, Acta Math. Acad. Sci. Hungar., 44
(1984), 169-179.

[4] P. Erdόs, C. L. Stewart, and R. Tijdeman, Some Diophantine equations with
many solutions, Compositio Math., to appear.



ON DIVISORS OF SUMS OF INTEGERS, III 379

[5] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5-th
ed., Oxford, 1979.

[6] H. Ostmann, Additive Zahlentheorie, Springer Verlag, 1956.
[7] J. B. Rosser and L. Schoenfeld, Approximate formulas for some functions of

prime numbers, Illinois J. Math., 6 (1962), 64-94.
[8] A. Sarkόzy and C. L. Stewart, On divisors of sums of integers, I, Acta Math.

Acad. Sci. Hungar., 48 (1986), 147-154.
[9] , On divisors of sums of integers, II, J. Reine Angew. Math., 365 (1986),

171-191.
[10] A. Selberg, Note on a paper by L. G. Sathe, J. Indian Math. Soc, 18 (1954),

83-87.
[11] E. Szemeredi, On sets of integers containing no four elements in arithmetic pro-

gression, Acta Math. Acad. Sci. Hungar., 20 (1969), 89-104.

Received November 24, 1986 and in revised form June 2, 1987. The first and second
authors' research was supported in part by an NSF grant. The third author's research
was supported in part by an NSERC grant.

UNIVERSITY OF GEORGIA

ATHENS, GA 30602

MATHEMATICS INSTITUTE OF THE HUNGARIAN ACADEMY OF SCIENCE

BUDAPEST, HUNGARY

AND

UNIVERSITY OF WATERLOO

WATERLOO, ONTARIO, CANADA N2L 3G1






