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UNUSUALLY LARGE GAPS BETWEEN CONSECUTIVE PRIMES

HELMUT MAIER AND CARL POMERANCE

ABSTRACT. Let G(x) denote the largest gap between consecutive primes below
x . In a series of papers from 1935 to 1963, Erdds, Rankin, and Schonhage
showed that

G(x) > (c+o(1)) logxloglogxloglogloglogx(logloglogx)"z,

where ¢ = ¢’ and y is Euler’s constant. Here, this result is shown with ¢ =
coe” where ¢y = 1.31256... is the solution of the equation 4/c0—e_4/c0 =3.
The principal new tool used is a result of independent interest, namely, a mean
value theorem for generalized twin primes lying in a residue class with a large
modulus.

1. INTRODUCTION

Let G(x) denote the largest gap between consecutive primes below x . More
precisely, _for x >2, Gx):= maxp<x(p' —p), where p,p’ are consecutive
primes.

Cramér [2] conjectured that lim sup G(x)/logzx = 1, while Shanks [15]
made the stronger conjecture that G(x) ~ log2 X, but we are still a long way
from proving these statements. Concerning upper bounds, the best that is
known is a very recent of Lou and Yao [8]: G(x) < x"13* for every ¢ > 0.

Since the prime number theorem immediately gives G(x) > (1+o0(1))logx,
one might think that establishing the lower bound implicit in Shanks’ conjecture
is not too hard. However, the best that is known is

(1.1) G(x) > (¢ +o(1)) logxloglogxloglogloglogx(logloglogx)_z,

where y is Euler’s constant. The result (1.1) is due to Rankin [13] in 1963.
Erdos [3] had already obtained (1.1) without the loglogloglogx factor and
with an inexplicit constant factor in 1935. Rankin [12] obtained (1.1) with the
constant 1/3 in 1938, while Schonhage [14] in 1963 proved (1.1) with the con-
stant ¢’ /2. Known now as the Erdés-Rankin problem, this paper is concerned
with improving (1.1).

All of the cited lower bound attacks on G(x) have done so via the Jacobsthal
function j(n), the maximal gap between consecutive integers coprime to 7.
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202 H. MAIER AND C. POMERANCE

Thus if J(x) :=max,., j(n), then it is easy to see that for x > 7,
(1.2) G(x) > J(x).

Thus (1.1) is shown by proving the same inequality for J(x).

From sieve methods it is easy to show that J(x) < (log x)K for some K.
The best that is known along these lines is J(x) < log2 X , a result of Iwaniec
[6].

In this paper we show that if ¢, = 1.31256... is the solution of the equation
(1.3) 4fc,—e Vo =3,
then
(1.4) J(x) > (coey + 0(1)) log x loglog x loglogloglog x (log log logx)_z,

and so, via (1.2), we have the same lower bound for G(x).

It is disappointing that we are only able to improve on the constant factor in
(1.1). However, unlike the earlier improvements on the constant factor, which
essentially just used sharper analytic tools in the basic argument, the proof of
(1.4) involves a new idea. This idea, if combined with a strong form of the
prime k-tuples conjecture, supports the assertion
(1.5) J(x)> logx(loglogx)2+o(l).

In fact; we conjecture that equality holds in (1.5). This, of course, would not
contradict Cramér’s conjecture, since presumably much is lost in the inequality
(1.2).

The prime k-tuples conjecture is itself a generalization of the still unproved
twin prime conjecture. However, there has been progress on problems of this
type of a statistical nature. For example, Montgomery and Vaughan [10], using
a variant of the Hardy-Littlewood circle method, have shown the existence of
a positive constant J > 0 such that the number of even numbers up to x that
are not the sum of 2 primes is at most x'7%. of course, the still unproved
conjecture of Goldbach is that every even number exceeding 2 is the sum of
2 primes. The method of Montgomery and Vaughan would also show that the
number of even numbers up to x that are not the difference of 2 primes below
2x is at most x'7%.

The principal technical difficulty in this paper is the establishment of a similar
result where the primes are restricted to an arithmetic progression. Specifically,
if T(x,n,!, M) denotes the number of primes p < x with p =/ mod M
and p + n prime, then we show there is some absolute constant ¢, > 0 such
that

Z Z max T(x,n,l,M)—aOT(x’n) p=1

(1.6) n<x 2M§x" (I, M)=(n+l, M)=1 v(M) p|Mn p-2

n=0 mod p>2

<g xz(logx)_E
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for any E, where p denotes a prime, o is the twin prime constant

(1.7) a, :=2H1—’(1’—‘22)=1.3203...

and
1

TOom = 2 Togklogle A

1<k<x

It should be pointed out that Lavrik [7] already achieved a result similar to
(1.6) but with a much smaller range of the moduli M, too small for our pur-
poses. Our proof follows the general outline of the argument in Montgomery
and Vaughan [10]. In one respect our task is simpler—we do not need to treat
a possible exceptional character corresponding to a Siegel zero with any special
finesse, using only Siegel’s theorem. However, in other respects our argument
is considerably more involved than that of [10].

The paper is organized as follows. In §2 we outline the basic argument. §3
presents a slightly different version of (1.6) and a key consequence. In §4 we
show how these theorems are used to prove our main result (1.4). §5 cleans up
some details from §2. The remainder of the paper, §6-12, is used to establish
the results described in §3.

Concerning notation, the letter p shall always denote a prime. The letters g
and r (without a subscript) also represent primes through §5, after which they
represent natural numbers.

2. THE BASIC ARGUMENT

The prime factors of an integer n are said to sieve out a set S if there is
a residue class a, mod p for each prime p|n such that each s € S satisfies
at least one of the congruences s = a, mod p. Let j'(n) denote the largest
integer such that the prime factors of n sieve out {1,2,..., j'(n)}. From
the Chinese Remainder Theorem one easily gets that j'(n) = j(n) — 1. With
a change of notation from the introduction, our principal result (1.4) follows
from the following theorem. Let P(x) denote the product of the primes up to
X.

Theorem 2.1. With c, given by (1.3), we have

j(P(x)) > (coey +o(1))x logxlogloglogx(loglogx)_z.

Indeed, using the prime number theorem in the form log P(x) ~ x , Theorem
2.1 immediately implies (1.4).

We now introduce some notation. Let 1 < ¢’ < ¢, be arbitrarily close to ¢,
but fixed. Let ¢”, & be fixed so that

= ¢ < 0<£<1
T1l-¢ O 2’
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Let
U:=cex logxlogloglogx(loglogx)_2 ,
z:=x/loglogx,
y :=exp{(1 — ¢)log x logloglog x/loglog x}.

To prove Theorem 2.1 it will be sufficient to show that for x sufficiently
large, the prime factors of P(x) sieve out the integers in [1, U]. We show this
by choosing

a,= 0 for every prime p € (¥, z],
a,=1 for every prime p <y,

and a, “optimally” for every prime p € (z, x]. It is in this last interval that
our argument parts company from previous attacks.

We shall call the deletion of the integersin [1, U] that are 0 mod p for some
p € (v, z], the first sieving, and we shall call the set of remaining integers in
[1, U], the first residual set. Similarly, we call the deletion of the integers from
the first residual set that are 1 mod p for some p < y, the second sieving, and
we shall call the set of remaining integers the second residual set. The heart of
our argument will be with the third sieving, or the removal of the integers from
the second residual set which are a, mod p for some p € (z, x]. We must
prove that the a, can be so chosen that for x large enough, this third sieving
can sieve out the second residual set.

The first residual set is evidently the disjoint union R(n) UR,, where R,
is the set of integers in [1, U] divisible by some prime p > z and R, is the
set of integers in [1, U] divisible by no prime exceeding y .

Let R be the members of the second residual set that are in R(l) and let R’
be the members of the second residual set that are in R, . Thus

R= |J R,,

m<U/z

where

(2.1) R, ={mp:z<p<U/m,(mp-1,P(y)) =1},
and

(2.2) R':={n§U:p|n=>p§y,q|n—1=>q>y}.

The estimation of |R| and |R’|, where || denotes cardinality, is somewhat
more difficult than in Rankin [13], but can be handled by standard sieve argu-
ments. In §5 we will show

’
C X n X

(2.3) IR| ~ 1 —¢elogx =¢ logx’

X

2.4 Rl« ———.
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To complete the proof we must show that the primes in [z, x] can sieve out
RUR'. The traditional argument is to use each prime in (z, x] to delete a
single member of RUR’. Since there are (1 + o(1))x/logx primesin (z, x],
if we had chosen ¢, = 1 so that ¢” < 1, then (2.3) and (2.4) show that this
strategy will succeed. What we will show below is that for a certain positive
proportion of the primes in (z, x], we can remove two members of R U R
and so we may choose ¢, somewhat larger than 1.

If RUR’ can be viewed as a random set of residues mod g for each prime
q € (z, x] and these are “independent events” for the different values of ¢,
then we would expect to be able to remove (log x)”o(l) members of RUR' for
a positive proportion of these ¢ ’s. If such an argument could be made rigorous
we would have a proof of (1.5).

However, the set RUR’ is not random. For a fixed prime ¢ € (z, x], we do
not and cannot show there are even two members of RUR’ that are congruent
mod ¢ . In fact, we cannot even show there are two members of the first residual
set R(l) U R(z) that are congruent mod g (for a fixed g not too close to the
lower end of (z, x]). What we do show is of a statistical nature: for most
primes g € (z, x] there are many pairs of members of R that are congruent
mod q.

To show that for most primes ¢ there are many pairs of members of R(1) that
are congruent mod ¢ is standard and follows from the same arguments that
show the exceptional set in Goldbach’s conjecture is small. What is needed now
though is that a fair number of these pairs (in fact, the expected number) survive
the second sieving. This can be accomplished by standard sieve techniques once
one knows that there are the proper number of congruent pairs mod g (for
most ¢) that also satisfy a side congruence with a relatively large modulus.
These results are the new tools we apply to the Erdos-Rankin problem and are
properly described in the next section.

3. GENERALIZED TWIN PRIMES IN ARITHMETIC PROGRESSIONS

Fix some arbitrary, positive numbers 4, B. For a given large number N,
let x,, x, satisfy

_N
(log N)*

If n is a positive integer, let

<x,<x,<N, Xy =X 2

(log N)B

T(n) ={x, <p < x,—n:p+nisprime},
where, as usual, p denotes a prime. Further, if /, M are positive integers, let
T(n,l, M)={p eT(n): p=ImodM}.
Thus we will only be interested in T(n, /, M) when

(3.1) n=0 mod2, (I,M)=(n+l,M)=1.
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Let T(n,!, M)=|T(n, !, M)| and let

1
Tm)= > logklog(k + 1)’

x,<k<x,—n
A heuristic argument suggests that when (3.1) holds,
a,T'(n) p—1
o(M) 11 p-2
p>2
where o is given by (1.7). Thus define R(n, [, M) by the equation

a,T(n) p—1
T(n,l, M)= (;(M) |er 1)—_—2+R(n,l,M),

T(n, 1, M)~

p>2
and let
R(n, M) = mlax|R(n, [, M),

where [/ satisfies (3.1). Let Z = N, where ¢, is a certain absolute, positive
constant, which will be specitied in §9. The major tool that we shall employ is
the following result.

Theorem 3.1. For any E >0 we have

Y SR, M) <, 5 N(logN) "

n<N M<Z
n=0mod 2

Let Y satisfy 1.5<Y < Z'"? andlet 7= (long/z)/(log Y). Let
S(n, m)={p € T(n): ((mp —1)(mp' — 1), P(Y)) =1, wherep' =p+n},
S(n, m)=|S(n, m)|,

where recall that P(¢) is the product of the primes up to ¢.

In §12 we shall use sieve methods and Theorem 3.1 to prove the following
result.

Theorem 3.2. Let D > 0, E > 0 be arbitrary, but fixed. Then for all even
n < N, but for at most O(N(log N)_D ) exceptions, we have

(3.2)
p—1 p-3 p—4
wmeon{ 5 (1,591 55
p|2n>,2rn) I(
S(1+0((er)" + (logN) E+ Y "logN)),

for every positive integer m < N, m =0mod2. The O constants depend only
on the choice of A, B, D, E.
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We shall be primarily interested in the special case n = kq , where k is small
and g is prime. Let A", B' > 0 be arbitrary, but fixed, and let x|, x, satisfy

(3.3) N <X <X <N, Xoxz D
(log N) (log N)

If m is an even integer, p is a prime with x;, < p < x,, and k is an even
integer, let

S'(m, p, k) =1|{q prime: x| < q <x,,peS(kq, m)}|.
Also let

1

/

T'p, k)= Z ,logulog(p + ku)’
2

X <usx

We have the following result.

Theorem 3.3. Let D, E, F > 0 be arbitrary, but fixed. Then for all primes p
with x, < p < x,, but for at most O(N(log N )—D) exceptions, we have ( where
r denotes a prime)

r—1 -3
S'm,p, k=o' (0, k) | ] =5 | | [] ==
r—2 r—2

rlk rtkm

r>2 r<Y

“(1+0((e7) " + (log N) " + Y ' log )

for all integers m, k with 1 <m <N, 1< |k| < (logN)", m=k=0mod2
and (mp — 1, P(Y)) = 1. The implied constants depend only on A', B', D,
E, F.

The proof of Theorem 3.3 follows the same lines as that of Theorem 3.2 in
that it is a routine sieve argument based on a deeper result analogous to Theorem
3.1. We shall not present the details since the proof would introduce no new
ideas and, in fact, Theorem 3.3 is not crucial for our major result on large gaps
between consecutive primes. Indeed, the upper bound sieve immediately gives
(for Y >1logN)

/ / r—1 r—3
Sm,p. <T@, 0| [[-= || Il
rlk rtkm
r>2 r<Y

[ / 2
« 27X k*m
log’ NlogY ¢(k)p(km)’
which would be sufficient for us to show (1.4) for some choice of ¢, > 1. To
achieve the value of ¢, given by (1.3), we use Theorem 3.3.

4. THE THIRD SIEVING

In this section we show how the primes in (z, x] can be used to sieve out
the residual set RUR’ left after the second sieving. The idea is to use a certain
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positive proportion of the primes in (z, x] to sieve out two residues each from
RUR'.

We begin with an ideal situation, which we show later in this section to be a
good approximation to what really exists.

Definition 4.1. Say that a graph G is N-colored if there is a function y from
the edge set of G to {1,..., N}.

We think of 1, ..., N as different colors and x(E) as the color of the edge
E.

Definition 4.2. Say an N-colored graph G is K-uniform if K|N and there are
integers S, T such that

(i) each colorin {1,..., N} is assigned to exactly S edges of G,
(ii) foreach i=1,..., K and each vertex V' in G, there are exactly 7/K
edges E coincident at V' with colorin ((i — 1)N/K, iN/K].

Thus each vertex of G has valence T .

Theorem 4.1. Say G is a K-uniform, N-colored graph with cN vertices, where
¢ > 1. Then thereis a set of B mutually noncoincident edges with distinct colors

such that
B>ﬂ I —ex ——£+—8—
4 PL~¢ K]

Proof. Let §, T be as in Definition 4.2. Let B, be the largest collection of
mutually noncoincident edges of G with distinct colors in (0, N/K]. After
B,, ..., B,_, have been chosen and i < K, let B; be the largest collection of
edges of G with distinct colors in ((i — 1)N/K, iN/K] such that the members
of B, U---UB,; are mutually noncoincident. Let B, be such that |B,| = B;N

and let

(4.1) B=pB+ "+ B
To prove the theorem it will suffice to show that
c 4 8
(4.2) B>Z(1—exp(-—z+?7<—>>.

Note that since G has ¢N vertices, each with valence T, and G has NS
edges, it follows that

(4.3) S = %cT.
We next show that for i=1, ..., K we have
(4.4) (BN + -+ BN) 2L+ BNS > LNS.

Indeed, consider the 7‘<—NS edges of G with color in ((i — 1)N/K, iN/K].
Since B, is maximal, each of these edges not in B, is either coincident with
some member of B, U---UB,; or is of the same color as some member of B, .
Thus each of these #NS — B;N edges is “blocked” for reason of coincidence
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or reason of color. But an edge E in B, U--- U B, is coincident at each
one of its vertices with either 7/K or T/K — 1 other edges with color in
((i = 1)N/K, iN/K] depending on whether £ € B, U---UB,_, or E € B;.
Thus each edge of B, U---UB, blocks for reason of coincidence at most 27°/K
edges. In addition, each edge of B; blocks S — 1 other edges, which have the
same color. Thus we have (4.4).

Using (4.1) and (4.3), from (4.4) we have

(4.5) 4 —4p, ., — - —4B +cKB, >c, i=1,..., K.
Using (4.5) with i = K (so that the inequality reads 48 +cKf, > c), we have
By > (c—4p)/cK . By using (4.5) sequentially for i=K -1, K—-2,..., we

inductively have that

c—4B (cK +4\’ .
cK cK ’ J

c—4B [ (cK +4\*
bz—3 (( cK > ”)’
so that

(4.6) : B> (1 - (clil-{+~4>"‘> .

Since (1+1/x)* >e'™/® for x >0, we have

cK +4\* L+ 4 (cK/9)4/c S plI=2/eK)3c
cK - cK

which when put in (4.6) gives (4.2) and the theorem.

B, >

Thus from (4.1),

=0,...,K-1

b

In our applications the situation is not as ideal as in Definition 4.2 and
Theorem 4.1. We now give versions, Definition 4.2' and Theorem 4.1", which
we can apply directly to our problem. The proof of Theorem 4.1', which
we omit, may be obtained from the proof of Theorem 4.1 with a few minor
modifications.

Definition 4.2’ . Let K be a positive integer and let C > 0, § > 0 be arbitrary.
Say an N-colored graph G with M vertices is (K, C, d)-uniform if there are
numbers S, T, such that

(i) but for at most 6 N exceptions, each color in {1, ..., N} is assigned to
between (1 —6)S and (1 +J)S edges of G,

(ii) if we let n(V, i) denote the number of edges coincident at the ver-
tex V with color in ((i — 1)N/K, iN/K], then n(V,i) < CT/K for each
i =1,...,K and, but for at most M exceptional vertices V', we have
(1-0)T/K<nV,i)<(1+d6)T/K foreach i=1,...,K.

Note that if K|N,thena (K, C, 0)-uniform N-colored graph is K-uniform.
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Theorem 4.1'. Let C > 0, n > 0 be arbitrary. There is a number K(C, n)
such that for each integer K > K(C, n) there is some 6 = 6(C, n, K) > 0 with
the property that each (K, C, &)-uniform, N-colored graph with cN vertices,
where ¢ > 1, has a set of B mutually noncoincident edges with distinct colors,

where
B> (1- n)c—4A—, (1 — exp (—g)) .

It remains to be seen what such a result has to do with large gaps between
consecutive primes. In the next section we will show (Theorem 5.1) that with
R,, defined by (2.1), then uniformly for

(4.7) l<ms 08X
(loglog x)
we have
U r—2 2
(48)  IR,|= o | T ;=7 | (1 + Otexn(~(loglog x)")),
r<y
rtm

where r denotes a prime. Define

_ N r—1
"m = mloglog x :rl|_r£ r—2

r>2
for m even and r, = 0 for m odd. Then a simple calculation from (4.8)
shows that if m satisfies (4.7), then
X

U
(4.9) R, |=cr, Togx

(1 + O(exp(—(log logx)l/z))).

We shall define a graph whose vertex set is R, . To describe the edges, first

let
ky = H r,

r<log log log x
so that for x large we have k, < (loglogx)lJre

primes ¢ in the interval

(E) (%)

Note that this interval has length r, x and that the union of these invervals for
m satisfying (4.7) is

/
((l— Z rj)x,x]c(z,x]c(z,x]
j<log x/(loglog x)*

. Let Q,, denote the set of
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for large x, where (cf. (5.2))

x logloglog x
= (4 — )28 757
(4-2) loglog x
Thus the various Q,, are disjoint sets of primes in (z', x] with
X 1
(4.10) Q= s <1+0<_10gx>>'

Let G,, be the graph with vertex set R, and such that mp, mp' € R, are
connected by an edge if and only if |p’ — p| = 09 for some prime g € Q,,
Define the “color” of an edge by the prime ¢, so that G, is a |Q, |-colored
graph.

In the notation of §3, if x, = z, x, = U/m, then the set of edges of G,, with
color g corresponds to S(kyq, m) Thus from Theorem 3.2 with N = xlogx

Y =y, but for O(x/(log x)z) exceptional primes g € Q,, , the number of edges
of G,, with color g is s(m, q)(1 + 0((10gx)_cl/4)) , where

@ U r—1
stm )= 20 (1 -k -2) | T 75

(log x)?

r—3 r—4
H , =2 H r—2
r|(kygm) —1 rt(kygm)”’ —kygm
<

We wish to show that for most primes ¢ € Q,,, s(m, g) does not depend
very strongly on g . To accomplish this, recall the definition of k. If we define

we have

Yo=Y, ¥ o1

9€Q,, r 9€Q,,
rl(kogm)*~1
1 1
-y Ty
r<(log x)? 9€Q,, r>(log x)* q9€Q,,
rl(kogm) ) -1 rl(koqm)z—l
Q|
< 2 it Y
rS(logx) r>(logx)

r>loglog log x

logloglogx /
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It thus follows that but for 0(|Q,,|) values of g € Q,, , we have

sim. =50 (10 romge)) -

where

o7 U r—1 r—4

mezms (@) = [
(logx)” \m rl(ky » m) r—2 rtk,m r-2

r>2 r<y

Let Q'm be the set of primes g such that the number of edges of G,, of color
g lies in the interval

1 1
[S(m) (1 - 10g108108x) > S(m) (l * logloglogxﬂ )

/
Thus |Q, | ~ |Qm| . Also note that for any g € Q,,, the number of edges of
G,, of color g is O(S(m)).
For a given mp € R, , the number of edges of G, that contain mp is
exactly, in the notation of §3,
(4.11) S'(m,p, ky)+S'(m,p, —ky),

where x; , x; are the end points of the interval defining Q,, . To make sure
that m(p £+ kyq) are in the interval (mz, U], we restrict this discussion of the
valency of mp to those mp € R, with

(4.12) mz+ mx(loglogx)2 <mp<U- mx(loglogx)z.

Thus from Theorem 3.3 and (4.11) but for O(x/(logx)3) values of mp € R,

that satisfy (4.12), there are S’(m)(l+0((logx)_c'/ 4)) edges of G,, that contain
mp , where

S’(m):=2a0r’”x Hr—l H r—3

2 —
log"x | i " 2
r>2 r<y

Further if K is an arbitrary, fixed natural number, then but for O(x/(log x)3)
values of mp € R, that satisfy (4.12), there are
28 (m)(1 +O((logx)™"*)

edges of G,, that contain mp with color in

. m . m—1
(4.13) ((l-k(l;l)rm—z;rj)x, (l+-llzrm—zlrj) x}
j= Jj=

foreach i =1, ..., K. Also note that even if mp € R, does not satisfy (4.12)

or is one of the O(x/(log x)3) exceptions, then we still have that the number
of edges of G,, that contain mp and have color in (4.13) is O(%S'(m)).
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Thus, while the graph G,, may not be a K-uniform, |Q,,|-colored graph, it
is “approximately” K-uniform. That is, but for o(|Q,,|) colors, each color ap-
pears on (1+ o(1))S(m) edges and any exceptional color appears on O(S(m))
edges. In addition, for all but o(|R,|) vertices, the number of edges contain-
ing it with color in any particular one of K equal subintervals of colors is
(1+o0(1)%S '(m) and any exceptional vertex is contained on O(%S'(m)) edges
with colors in that subinterval.

Thus there is some absolute constant C > 0 such that for any positive integer
K and any § > 0, the graph G, is (K, C, d)-uniform for all m satisfying
(4.7), provided x is sufficiently large depending on the choice of K and 4.
It thus follows from (4.9), (4.10), and Theorem 4.1’ that for any # > 0, for
all integers m satisfying (4.7) and for all sufficiently large x depending on the
choice of 7, G, contains at least

(4.14) g .o =merx
) m* 4logx

mutually noncoincident edges. Since ¢’ < ¢, it follows that

(1-e¥)

"

1+ 54—(1 —e Yy s ",
so that there is some # > 0 such that
/" "
4.15) -~ (1-7) (1+%(1-e“‘/” )) >

This is the value of # chosen in (4.14).

The third sieving begins by using at least B, primes in Q,, to sieve out
at least 2B, members of R, as guaranteed above. Since by (4.10) we may
assume |Q,,| > (1 —n)r, x/logx, if we use the remaining primes in Q,, to
sieve out just one member of R, then we can cover at least

IQ,| - B,,+2B, =1Q,|+B,
1_ 1 _ "
> L= mryx (1+%(1 —e e ))

log x

numbers. But by (4.15) and (4.9), we thus can completely sieve out R, with
the primes in Q,, .
We still must sieve out those R,, with m > logx/(loglog x)4 and all of R .
From Theorem 5.1 it follows that
x logloglog x
> R~ 3 o Toex
. log x loglog x
m>log x /(log log x)

(where, of course, m < U/z). Also from Theorem 5.3 we have IR| <
1+¢

x/(logx) *°. However, the remaining primes with which we have left to sieve
are the primes in (z, z'] and there are
1
~(4- g)xloglog ogXx
log x loglog x

primes in this interval. Thus we may complete the sieving.
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5. THE SECOND RESIDUAL SET

In this section we prove the estimates for |R| and |R'| in (2.3) and (2.4),
where R, R’ are defined in §2.

Theorem 5.1. With U, z, y as defined in §2, then uniformly for integers

lgmgﬁ(l_L),
z log x

we have (where r denotes a prime and R,, is defined in (2.1))

U r—2 1/2
Ryl = ios ,<Hyr—1 (1+ O(exp(-(loglogx)'"%)).
rim

Proof. This result follows immediately from Theorem 2.6’ in Halberstam and
Richert [5].

Theorem 5.2. With R defined in §2, we have

¢ x
IR| ~ ——

1 —¢elogx’
Proof. Let w = (U/z)(1 — 1/logx). First note that

U U X
Z R, | < Z mlogx<< 0<logx)'

2 -
w<m<U/z w<m<U/z IOg x

Thus from Theorem 5.1 we have

X
|R| = Z |Rm| +o0 <EX—>

m<w
2\m
U 1 r—2 X
=(1+o(1 — ( )
(5.1) ( ( ))logx”;l)mrsl—lyr—l log x
2lm rtm

r—2 r—1 r=2 r o
Hr—1= (H r )(H r—llr—l)Ne”l(;)gy

2<r<y

by Mertens’ theorem. Also, by standard arguments,

(5.2) 3 %H ::; ~ aiologw.
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Putting these estimates into (5.1) we have
Ulogw X
R|=(1 )= A
IR| = (1+0f ))eylogylogx +o (logx) ’
which was to be proved.
Theorem 5.3. With R’ defined in §2, we have

X

(logx)1+£ :
)1+e

IR'| <

Proof. Suppose n € R and n > x/(logx . Further suppose # is divisible
by a prime factor p > yl/ 2 Note that the number of n € R’ that do not satisfy
both of these conditions is at most (from de Bruijn [1])

X 12, _ (I+o(1))x
— twU,y )_W’

(logx)
where w(s, t) is the number of integers n < s with P*(n) <t and where
P*(n) denotes the largest prime factor of n. Thus we may consider only
values of n € R’ of the form mp where p is prime, yl/2 <p<y,

X U +
————<m< —5, P (m<y.
For each m satisfying (5.3) we ask how many primes p < U/m there are,

such that (mp — 1, P(y)) = 1. From Theorem 4.2 in [5] this count is

U/m r Uloglog x
L T—7—7— < ,
log(U/m)logy 1 r—=1" mlog’y

(5.3)

rlm
r prime

since log(U/m) > logy . Furthermore, from de Bruijn [1], 3°1/m where m
—1
satisfies (5.3) is (logx)™*'™® ) Thus

l1—e¢

2
IR'| < Uloglogx(logx)™"* (logy) > + x(logx)~
< x(logx)™' "%,

which was to be proved.

6. PROOF OF THEOREM 3.1—APPLICATION OF THE CIRCLE METHOD

We apply the circle method of Hardy and Littlewood in a manner that re-
sembles that of Montgomery and Vaughan [10] in many respects. As usual,
let

2mit

e(t)y=e"", et) =e(t/k).
Set (recalling the notation of §3) for any real number «

(6.1) S yl@)=Y ea), S@)=5 (a)= Y el

x,<p<x, x,<p<x,
p=lmod M
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Then by orthogonality,
1

(6.2) T(n,l, M) =/ S; y(a)S(a)e(na)da.

o b

To dissect the unit interval we now put

(6.3) P=2Z=N“, Q=Nz?=nN'".
For 1<a<qg<P with (a,q)=1, let

a 1 a 1

Mg,a)=|--—,-+—|,
4. a) [q 9@’ 9 qQ

a so-called major arc. Let M be the union of the major arcs and let m be the

set of those a with Q"1 <a<l+ Q—1 , a ¢ M. We refer to the connected
components of m as the minor arcs.

We now set
(6.4) T(n,l,M)=T(n,l, M)+ T)(n,I, M),
where
T\(n,l, M) =/ S,’M(a)me(na)da,
(6.5) "

Ty(n, 1, M) = / S, w(@)S(@e(na) da.

It turns out that the minor arc contributions can be considered part of the
error term. Using Bessel’s inequality we have (where T,(n, [, M) is given by
(6.5))

S Ty, 1, M) < / S, y(@PIS(@) da

n<N
n=0 mod2

< (max|S(a)|>2/01 1S, y(@)*da
2

a€Em
(6.6)
S(max|S(a)|) Yool
acm x,<p<x,
p=I/modM

< (rgeaqu(an)z N/M.

To complete the estimate we apply Vinogradov’s fundamental lemma in the
following form.

Lemma 6.1. Suppose 1 <y < x4

any real number a we have

Y _e(pa)

p<x

, 1<q<x/y,and (a,q)=1. Then for

16

a—g|>ilog X
al) vy '

<<(1+x
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This result follows immediately from Theorem 16.1 in Montgomery [9] by a
partial summation to remove the A-factor and a second partial summation (as
in the proof of Corollary 16.2 in [9]) to pass from a/q to «.

By Dirichlet’s approximation theorem, for any o there are integers a, g
with 1 <¢<Q, (a,q)=1 and |a—a/q| £ 1/9Q. If a € m, then we may
assume also that ¢ > P. Thus

la—a/ql <1/9Q < 1/PQ=1/N,

so that from Lemma 6.1 applied to x = x, and y = x,/Q and againto x = x,,
y=x,/Q we get

IS(a)] < 1/Qx, log16x2 < Np~'2 log16 N.

Using this estimate in (6.6) we have

Yo YT (n, 1, M)

n<N M<Z
n=0mod2
1/2 1/2
2
(6.7) <Y | X Inm M > 1
M<Z n<N n<N
n=0mod2 n=0mod2
< Z (N3M—1P—l log32 N)1/2N1/2
M<Z

< N?Z'* P72 10g" N = N*Z " 10g'® N.
This estimate shows the minor arcs contribute a negligible amount in Theorem
3.1.
7. THE MAJOR ARCS

We introduce the following notation. For any Dirichlet character x and real
number a we set

(7.1) Sk, = 3 xpe(pa).
x,<p<x,

For positive integers M < Z and q let d = d(M,q) = (M,q), D =
D(M,q)=[M,q]. If M, q are given, let [/, r, a be integers, with (a, q) =
1, al=rmodd. Let c=c(/, r,a) be defined mod D such that
(7.2) c=Ilmod M, ca=rmodyg.

For any character y mod D and any integers a, / with (a,q)=1, (/,d)=1,
we define

(7.3) pax)= Y. e(r/a)X(c,r, a).
e
r=almodd



218 H. MAIER AND C. POMERANCE

We now evaluate the exponential sums S, ,/(a) for a = a/q + n where
l1<a<qg<P and (a,q) = 1. We have for /, M satisfying (3.1) and
sufficiently large N,

S ul@) =) elpa/q)e(pn)

X, <p<x,
p=I/modM
= ) e(sa/g) Y. elpn)
smodg X, <p<x,
(s,q)=1 p=Imod M
s=Imodd p=smodq
= Y er/g) >, eln
(7.4) rmodq X, <p<x,
(r,q)=1 p=c(l,r,a)modD
r=almodd
-1 —
= > elr/gpd) Y (e, r,a) Y. x(pelpn)
rmodg xmodD X, <p<x,
(r,q)=1
r=almodd
-1 —
= ¢(D) Yo oelr/a) D 7, r,a)S(x, n).
rmodgq xmodD
(r,q)=1
r=almodd

We now define V' (n), W(x,n) by
Viny= > e(mn)/logm,
x,<m<x,
S(xg>m) =Vn) +W(xy,,n (X, 1s a principal character),

Sx,m=Wk,n  (X#x)-
Using this notation and (7.3), in (7.4) we have

(7.5)

S ulala+m=eD V) Y etr/d)+oD) Y b, (OW (X, ).
rmodgq xmodD
(r,q)=1
r=almodd

The first sum in (7.5) may be evaluated as follows. Let b, be the largest
divisor of ¢ that is coprime to d and let b = g/d . Thus we always have b |b.
Let b, mod d be defined by b5, = 1 mod d. Thus

Z e(r/q) = Z eq(alblb;+sd)

rmodg smodb
(r,q)=1 (s,b)=1
r=almodd

=e, (albb) Y €

smodb

(s,b))=1
B { u(b)ey(alby), ifb, =b,
o, if b, #b,

= u(b’/b,)e,(alb)).
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Putting this computation into (7.5), we have
(7.6)

S, ula/ga+n)= o(D)” V(b b)ey(alby) + p(D)" Y p (OW (X, 1)
xmodD

By specialization to the case M =1, wehave d =1,b=b,=q, D=4, s0
that
@1 S@arn=2Lvm+—— 3 x@@W .,

¢(q) 9(q)
where 7(y) is the Gaussian sum 7(x) = thodqx(h)eq(h) .

We now obtain from (6.5), (7.6), and (7.7)

(7.8)

T,(n,l, M)= / S, y(@)S@e(na) da

=2 2 / S; m(a/a+n)S(a/q +n)e(n(a/q +n))dn

g<P amodq -
(a,q)=1

=T (n,l,M)+R,(n,l, M)+ Ry(n,l, M)+ Ry(n, 1, M),

xmodg amodgq
(a,q)=1

__ rl/eQ
F(@)T®) / V()W r, me(nn)dn,

(711) Ry(n, 1, M) = Z«»(D‘(Lg;w(q) > 2 "(%)

xmodD(g) amodgq
(a,q)=1

1/¢Q
pa 1) / T (1, me(nn)dr,

1
(112) Ry(n, 1, M):= Y oo Y D e ( )

g<P x;modD(q) amodg
xzmodq (a,q)=1

o (X)TH(@)T(T,)

1/qQ
: / W (x,, 0, Me(nn) dn.
—1/49Q
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It turns out that T1 may be considered a main term, with R, R,, R, being
error terms. Let

(7.13) R,(n,m)= max |IR,(n, 1, M)| fori=1,2,3.
ImodM
(I, M)=(l+n, M)=1

8. THE MAIN TERM

We record the following easy result (see (5.2) in Montgomery and Vaughan
[10]). Note that we have already tacitly evaluated a similar sum in the calcula-
tion preceding (7.6).

Lemma 8.1. If q is squarefree,

qmi= 3 eyfam) = (L) pita, m).

amodg
(a,q)=1

The expression ¢ ,(m) is a Ramanujan sum.
Note that in (7. 9) we may assume ¢ is squarefree and so b,(q) = b(q).
From Lemma 8.1 we have

Y e (ailb(;;l) + %) = Y e, (a(lb'(q)b(q) +n))

(amo)dql (amo)dql
a,q)= a,q)=
8.1 ’
8- = ¢, (10 (@)b(g) + n)
- ( a ) o((q. 16'(@)b(q) + n).
(g,1b'(q)b(q) + n)

Now from (3.1),
(4. 16'()b(q) + n) = (b(q), 1b'(q)b(q) + n)(d(q), Ib'(q)b(q) + n)
= (b(g), n)(d(q), I +n) = (b(q), n),

so that (8.1) and (7.9) imply (using ¢(D(q)) = p(M)p(b(q)) for ¢ squarefree)
(8.2)

X u ((b(q),n))/‘/qQ 2
n,l,M)= vV e(nn)dn.
it ; b(a) ,n))qz(b(q))w(q) g P elnm dn

Since
1 1 1
Vil < —=| D elmn)| < ——r—x
log N xomex, le(n )—lllogN ||;7||
where || | denotes the distance to the nearest integer, we have

1-1/9Q )
/ V(n)|"dn <« qQ.
1/4Q
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Thus

1/4Q ) 1 )

| wremdn = | 1venienm dn+ 0ta0)
-1/qQ 0
— T(n) + 0(qQ).

Using this in (8.2) we have

X 12 (@)u(b(@)e((b(a), n)
@3 h ;,, e

Q 9((b(q), n))q
+o (¢<M> 24 9 6(@)0(@)

The error term in (8.3) is of order

Qlog N (b(q), n)(qg, M) _ QlogN dd

s (9. 1)a. M) QBN 5~ 3~ i

g<P din q

(8.4) d,|Md,
2

< -Qlo—ﬂi——]!r(n)z(M) < NM~'p712

where 7 denotes the divisor function. The sum in the main term in (8.3) is

1 ((b 7 q),n))
Z q)n 2 (b(a) +0(Z 0(@) )

q>P
1 1
+Mn IMn ar 4@ (q)
p—1
= a, H
PIM" d |n q>P (ﬂ
p>2 d, |Md d, Iq
-1
= Qg H p + (0] (
pIMn
p>2
Putting this calculation and (8.4) 1nto (8.3), we get
— ayT'(n D - —1/2
(8.5) Tl(n,l,M)— (D) p.IA}n _2+0(NM tp).
p>2

9. THE FIRST MAJOR ARC ERROR TERM

In this section we show that forany 4, B, E >0,
(9.1) 3" R,(n, M) <, , ; NlogN)™*,
M<Z
where R (n, M) is given by (7.13) and (7.10).
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Recall from §7 that for a fixed M,

D(q)=[M,q], d(q)=(M,q), b(q)=q/d(q),

b,(q) is the largest divisor of ¢ coprime to M and
b(q)bi(g)=1 modd(q).

Note that the presence of the factor ,u(b(q)z /b,(g)) in (7.10) implies we may
consider only those g with b,(q) = b(q). Thus

_ __pbla)
R(n, I, M) = q; 9(D(9))9(q)
by(4)=b(q)

S Y et (@b(g) + n)x(a)T()

xmodg amodg
(a,q9)=1

1/4Q
: / V ()W, e(nn) dn

1/¢Q
02 = ; ——w(D(q))w(q)g;mcx(lb(q)b(q)+n)f(x)
b,(q)=b(q)
1/9Q
: / V() WX, me(nn)dn.,
—1/9Q

where
q

cx(m) = Zx(a)eq(am).

a=1

The following generalization of Lemma 8.1 allows us to evaluate ¢, (m). This
result is Lemma 5.4 in [10].

Lemma 9.1. Let x be a character mod q induced by a primitive character
x" mod r. For any integer m, c,(m) =0, unless r(q, m)lq, in which case

o =7 () st () (atm) 00

The case m =1 is of special interest in Lemma 9.1, giving us the following
well-known result (see Lemma 5.2 in [10]).

Lemma 9.2. Let x be a character mod q induced by a primitive character
X" modr. Then t(x) = u(q/r)x"(q/r)t(x").

Finally we record the following classical result (see [10, Lemma 5.1]).
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Lemma 9.3. If x is a primitive character mod r, then |t(x)| = /7.

We now apply these lemmas to (9.2). Note that the condition b,(q) = b(q)
implies that (b(q), d(q)) = 1, so that (as in §8)

(g, 16'(9)b(q) + n) = (b(q), 1'(q)b(q) + n)(d(q), 16'()b(q) + n)
= (b(g), n)(d(q), [ +n) =(b(q), n),

by (3.1). Thus Lemmas 9.1 and 9.2 imply

) —— [V (@)b(g)+n (q)
cx(1b(a)b(q) +n)T(x) = x ( @. 1 )¢(q/(b

) N S iy (. - * 2
g (r(b(q), n>) X (r(b(q), n)) w(a/nx" @/,

if r(b(q), n)|q and O otherwise. Thus from Lemma 9.3,

e (18 (9)b(q) + m)TCO)| < ¢

and putting this in (9.2), we obtain

) q 1/4Q
R\(n, M) < Z 2(D@)9(@) Z /_ Vimw(x, ’7)"(”’])‘”1

g<P xmodg |V ~1/aQ

1/4Q 1/2

(9.3) ) . — ( V(n))zdn)
;q)(D(q))co(q) szodq /—l/qQ

1/aQ , N\
(/ W (x, n) dn) :
-1/9Q
The first integral on the right of (9.3) may be trivially estimated:
140 ) 1/2 | , 1/2
(/ V() dn) < (/ V() dn)
—1/49Q 0
/2

1
=( Z 1/log2m) < N'"*/logN.

x,<m<x,

(9.4)

If ¥ mod ¢ is induced by the primitive character y* mod r, then W(y, n) =
W(x*, n), so that

1/40 2 1/ /2 )
(9.5) / ‘ |W<x,n>|2dn) s(/ |W<x*,n>|2dn) = W(x").
-1/9Q -1/Q
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Assembling (9.3), (9.4), and (9.5), we have

1

/2
> R M) < oom 30N e 2 W

M<Z M<Z q<P xmodq
(9.6) < N Z St Z Wiy
M<Z q<P xmodg
=NEY Swen Yy
r<P ymodr M<Z k<P/r

where Y denotes a sum over primitive characters.
The sum over M and k is easily estimated as follows:

ryy@Myy vy dd

M<Z k<P/r d\|r d,<Z/d, k<P/r M<Z

dylk dydy|M
<<logZZ Z Z —
d\|rd,<Z/d, k<P/r
d, |k
< log Z log(P/r) Z Z T
d||r d,<Z/d, 4

<<log Zlog(P/r)> 1/r < ()log N.
d|r

Putting this calculation into (9.6) we obtain

(9.7) S Ryn, M) < N 1og NS T T

M<Z r<P ymodr

If 1 <r <P and x is a primitive character mod r, Lemma 4.2 in [10]
implies

) 12
N1
W(x) < / g 2 ) dx
0 x<p<x+Q/2
(9.8) * <Py
<N m @ > ).
x<p<x+Q/2

X, <p<x,



LARGE GAPS BETWEEN CONSECUTIVE PRIMES 225

Now by partial summation,

max E x(p)
0<x<N
x<p<x+Q/2
x,<p§x2

X+h

Zx )logp| ,

<
log N 0<x<N 0<h<Q/2

so that
1/2 x+h

> x(p)logp| ,

. W h+Q
(9.9) (x) < log N nggxzv o<riIzl§()2(/2 h+Q

since 1/(h+ Q) > 1/2Q. By a similar argument we have for the primitive,
principal character

1/2 X+h

(9.10) W (x,) < —h+ Zlogp

log N 0<x<N 0<h<Q/2 h+Q

We now quote a result which we shall use in (9.7) for small values of r.

Lemma 9.4. There is an absolute constant ¢, > 0 such that for any E >0 and
any nonprincipal character x to a modulus not exceeding (logx)E, we have

x+h
Zx(p)logp <E,e hexp(—(logx)l/“_e)
X

for every € >0 and all h with x'7% < h < x. Moreover, for the same range of

h we have
xX+h

S logp = h(1+ O, (exp(~(logx)""*"))).

This result follows from Satz 8.6.2 and the proof of Satz 9.3.2 in Prachar
[11].

Applying Lemma 9.4 with E replaced by E + 4, we have from (9.9) and
(9.10) that '

(9.11) > YW < N exp((logN)'")

1<r< (log N)E+4 xmodr

provided we choose ¢, < ¢,/4.

We now wish to apply Lemma 4.3 in [10] (which is based on Theorem 7 in
Gallagher [4]). To use this result we must impose a second restriction on ¢, .
Thus for some absolute constant ¢, >0 we have (9.11) and, using (9.9),

(9.12) Y Y w <N

1<r<PZ ymodr
X#X
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where 7 is the possible exceptional character (with modulus #). Note that the
range for r in (9.12) is larger than we shall need in (9.7); however, such a long
range is needed in the next two sections.

If % should exist, then (9.8) trivially implies

(9.13) W(z) < N'?
and Siegel’s theorem implies
(9.14) # > (log N)E™
for N sufficiently large.
To complete the proof of (9.1) we use the inequality
(9.15) 7(r) = .
Thus from (9.7) and (9.11)-(9.15), we have
3" R,(n, M) < Nexp(—(log N)'/?)

M<Z
NN Y Y Wy
E+

(log N)E+4<r< pxmodr

< Nexp( (log N)I/S)

N'10gN)F ST ST w(x
1<r<Pymodr

< N(logN) "%,
which is (9.1).

10. THE SECOND MAJOR ARC ERROR TERM

In this section we shall show that for any 4, B, E >0,
(10.1) > Ry(n, M) <, 5 ; N(logN)™",
M<Z
where R,(n, M) is given by (7.13) and (7.11).
The following lemma will allow us to estimate the inner sum in (7.11).

Lemma 10.1. Suppose M, q are natural numbers with q squarefree, D =
(M,q], d=(M,q), b=gq/d, and x is a character mod D. If n, [ satisfy
(3.1), then

Y. P, (0)e,lan)| < br(b),

amodgq
(a,q)=1

where p, (x) is defined in (7.3).
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Proof. From (7.2), (7.3), and Lemma 8.1, we have

q q
= > > e, t,a)e(an+1)

(a,q)=1t=almodd
(t,q)=1
q D
(10.2) = > > x(s)elan+s)
a=1 s=1

s=/modM
. q
- ; x(s)¢((q,"+s))/‘((q,n+s)>
s=Imod M

Note that for s =/ mod M
(g, n+s)=b,n+s)d,n+s)=0b,n+s)d,n+1)=(b,n+s)
from (3.1). Thus from (10.2) we have

q D
Z 1(e,(an)| < Z (b,n+s)
@' 2=1

Il
II MQ-

@-

)

IA
]
M=

Q

I
N

S

Il

S
S

which proves the lemma.

Using the lemma in (7.11) and the kind of calculation as in (9.3)-(9.5), we
have

1/¢Q
/ VW (x, ne(nn)dn

b@)t(b()
(" M<Z (D@)(@) Z a0

q<P

1/2
logNZ )(o(q) Z W)

xmodD(q)

< N'? @ o W),

q<P Mgq xmodD(q)
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where x* is the primitive character that induces y . Thus

> Rynmy <N S

M<Z M<Z q<P xmodD(q
_ arl/2
VY Y w Y Y
DLPZ ymodD M<Z g<P
M, q]=D
1/2 * 7(q)
NI T Y Y Y W
r<PZ ymodr ulPZ/rM<Z q<P
(10.3) (M, ql=ur
3
1/2 * T (ur
<N S w Y ir)
r<PZ ymodr ulPZ
3
12 « T(r) 7 (u)
SNTY X T Y
r<PZ ymodr ulPZ
< N log N Z Z
r<PZ ymodr

Thus using (9.11)-(9.15) (with E + 4 replaced by E +9) in (10.3), we get
(10.1).

11. THE THIRD MAJOR ARC ERROR TERM

In this section we shall show that for any 4, B, E >0

(11.1) > Y R, M)<, 5 N'(logN) ",
n<N M<Z
n=0mod?2

where R;(n, M) is given in (7.12) and (7.13). This estimate will complete the
proof of Theorem 3.1, which is obtained by assembling (6.4), (6.7), (7.8), (8.5),
(9.1), (10.1), and (11.1).

We begin with some algebraic manipulations on the inner sum in (7.12).

Lemma 11.1. Suppose n, |, M satisfy (3.1), q is a natural number, D =
[M,q], x, is a character mod D, yx, is a character mod q induced by the
primitive character x; mod r, and b, is the largest divisor of q coprime to Mr.
Then with p, [(x,) defined by (7.3) and with

q
R:=Y"p, (x))e,(an)Z,(a)T(Xy),
a=1

we have R = 0, unless q/r is squarefree and coprime to r, in which case we

have
R=r Z u(w)w
w|b,

X1 ()5 (n+).

;
ils

s=Imod M
s=—nmodw
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Proof. From Lemma 9.2 we have

(11.2) T(t,) = u(a/rx, a/r)(;)-

Thus R = 0 unless g/r is squarefree and coprime to r; we now assume ¢, r
satisfy these conditions.

As in the proof of Lemma 10.1 we have (where as usual, d = (M, q))

q D
R=Y" Y 7, t,a)e,(an+0T,a)(xy)

t=al/modd

(t,9)=1

q D

(11.3) =3 Y 76e,(an+5)T,(@)T(T,)

a=lsslsn:1;dM

D
= Y TS, (n+917)

s=lsr:(£dM

We now use Lemma 9.1 for ciz(n + 5). This expression will be O unless
r(q, n+s)|q. Since g/r is now assumed coprime to r, this condition is equiv-
alentto (r,n+s)=1. But (3.1) and s =/mod M imply (M,n+s)=1.
Thus we need only consider those s in (11.3) with (g, n+s) = (b,, n+5),
where, recall, b, is the largest divisor of ¢ coprime to Mr.
Thus using (11.2) and Lemma 9.1, (11.3) gives
S= [m

< n+s ) »(q)
(by,n+s)) e(q/(b,, n+5))
(g,n+s)=(b,, n+s

'”((bz,n+s> <rb2,n+s) “(43)7(Z;)
- f (i)

s=1

s=I/mod M
(g,n+s)=(b, ,n+s)

R =

|| Mb
xi

((bz, n+5)u((by, 1+ )1 ((by, n+ TG

= Z ), (n+8)p((by, n+8)u((by, n+5)).
=1

Note that we may drop the restriction (g, n+s) = (b,, n+s), since if this fails
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then (r,n+s)>1 and x,(n+s)=0. Thus

D
R=ry_ % Yo w)T(9)x (n+ 5)p(u)u(u)
ulb, SE[sn‘=l(§dM v|(b,/u,(n+s)/u)
s=—nmodu
D
=ry Y uwlew) > T,(x(n+s)

ulb, v|b,/u s=1

16, vt/ s=Imod M
s=—nmoduv

D

=ry uww Y Z,6)n+s),
wit, s=lmod M
s=—nmodw

which proves the lemma.

Lemma 11.2. If n, D, r are natural numbers with rlD, x is a character
mod D, and y is a primitive character mod r, then S := E?=1 x(Sw(n+s)
is O unless the conductor of x divides r and the conductor of yw divides
r/(r, n) in which case

S| < D ('—r”)
Proof. Since y is primitive, we have

p(in+s)=1®)"" Y. Wlae,an+s),

amodr
so that
D
S=1w@)" Y W@y x(s)e,(aln+s))
(11.4) amodr s=1
=@ ¥ laean), (a2)

amodr
When (a, r) =1 we have

D r

(11.5) (D, aDJr) ~ (r, a) =0

so that Lemma 9.1 implies cx(aD/r) = 0 unless (where cond(y) denotes the
conductor of y)

(11.6) D, := cond(y)|r.
With this assumption, Lemma 9.1 implies
D = ¢(D) L * L *
Cx<ar>_x(a)¢(r)#<Dl>X <Dl>r(X )9

since (11.5) implies

aD/r
(D, aD/r)



LARGE GAPS BETWEEN CONSECUTIVE PRIMES 231

Putting this in (11.4), we have

_txNeD) (r\ «fr ——
5= 2L W)u(ﬁl)x (D—> Y T (@w(ae,(an)

) 17 amodr
- i((%) e (D%) * (DL.) v

since (11.6) implies y ¥ is a character mod r.

Let D, = cond(xy) = cond(y*%). Thus D,|r and Lemma 9.1 implies

¢——_(n) =0 unless
P

(11.7)

r
(r,n)

(11.8) D,|

Thus S = 0 unless both (11.6) and (11.8) hold, which proves the first assertion
of the lemma. Further, with these conditions on D, and D, holding, Lemma
9.1 implies

o =7 (55 ) e <D2<rr w)° <D2(rr ) )

where o is the primitive character mod D, that induces "W . Putting this in
(11.7), we have

s= o s (5)# (m)
r

(@) e X
7 (5:) 7 ()7 (7))

N ) D(r,m) _ . [, m)
5] < YD S0 < [0, SR < oy [T

using (11.6) and (11.8). This completes the proof of the lemma.

so that

Lemma 11.3. With R given in Lemma 11.1 and with M, q < N, we have

|R| < DT}/——C(r, M)\/(r, n)t(b,)loglog N

< gt(g)\/r(r, n)loglog N.

Proof. If wlb,, let ¢'(w) denote that residue modMw with

d(w)y=Imod M, ' (w)=-nmoduw.
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Thus
D
Yo T (n+s)
SEIS;(:dM
S=—nmodw
1 _ <N
(11.9) = S0mw) w(c (W) D w($)T, ()15 (n+5)
4 ymod Mw s=1
1 D
= o070 Z Z WT,)($)x (n+s),
vmodMw s=1

cond('/’hlz)‘ [GAD)

using Lemma 11.2 to restrict the sum on y . Now (b,, r)=1, so the number
of ¥ mod Mw with cond(wyx, x,)|r/(r, n) is

Thus (11.9) and Lemmas 11.1 and 11.2 imply

lRl_’wlzbw (1\14 S, M)D (’r”)

< —’i— (r, M)\/(r, n)t(b,)loglog N,

which proves the lemma.

Using Lemma 11.3 in (7.12), we have

Ry(n, M) < (loglog N) Z 4C) Z\/ r(r, n)

D(q)

qg<P rlg
1/9Q N
/ Wx,, MW (x,y, n)e(nn)dn
x,modD(q) [V —1/4€
Xmodg
cond(x,)=r
< (loglog N) ZD‘; SNV Y WaW ),
q<P rlg x;modD(q)

X,modgq
cond(x,)=r
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where x|, x, are the primitive characters that induce x,, x,. Thus
(11.10)

S Ry(n, M) < (loglog N)* 3 Z U9 Z\/ S ST ww
M<Z M<Zq<P r|q sl[M q] x,mods
Xpmodr

<(oglogN)’ 3= S 2 T(D) Z VIl m) 3 W)W (xy)

DSPZMD q d
Pu-0 o Yomodr
< 3 T (D)
< (loglog N) Z Z Vr(r, n) Z W(x )W (x,)
DLPZ X mods
lr, s]|D X, modr

< (loglog N)* Z Z [’Fr S]St]t)\/ r,n) Z* W ()W (xy)

r,s<PZt<PZ/[r,s] X mods
Xamodr
3
< (logN)’ 3 T[(%]si)\/r(r, n Y W)W ().
r,s<PZ ’ X mods
X modr
Now N
Z V(r’ n) SZ\/EE' SNT(r)
n<N dlr
Thus from (11.10) we have
> Y Ryn, M)
n<N M<ZZ
n=0mod2
9 14(r) 3(s) r,s
< N(log N) Z ———1/2"—2 W(x)W(x,)
r.s<PZ X, mods
X,modr
4 /4 3 3/4
9 T (r)(r,s TS, s *
~ Niogny Y T TS S g yw(ry)
r,s<PZ r X, mods

X,modr

< N(logN) (Z 1/42 W (x )

r<PZ xmodr
We now obtain (11.1) by using in this last estimate (9.11)-(9.15) (with E + 4
replaced by 2F + 19).
12. PROOF OF THEOREM 3.2

Let v(n) denote the number of distinct prime factors of n. We begin with
the following simple corollary of Theorem 3.1. The notation is as defined in §3.

Lemma 12.1. For any E >0 we have

S S 6 YR, M) <, 5 5 N'(logN) ™"
n<N M<Z
n=0mod2
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Proof. Using the trivial estimate R(n, M) < N/M, Theorem 3.1 (with E
replaced by 2F + 36), and the Cauchy-Schwarz inequality, the double sum in
the lemma is at most

1/2 172

> S 36" YR, M) > S R, M)

n<N M<Z n<N M<Z
n=0mod?2 n=0mod?2
1/2
<4 55N (Z 36”(M)N/M) N(log N) 518
M<Z

< Nz(log N)_E ,
which is what we wanted to prove.
The proof of Theorem 3.2 will use Theorem 7.1 in Halberstam and Richert
[5]- Let
A=A(n, m)={(mp - 1)<mp'— D:p'=p+n,peT(n)},
X = X(n m 13— P 1

pln
p>2

Let w = ®, ,, be the multiplicative function such that

2p . 3

m, if pt (nm)” —nm,

14 . 2

—, ifp|(nm)" -1,
wp) =] 72 pl(nm)

D .

PR if plnand p t m,

0, if p|m,

and w(p®) = 0 for a > 1. Since both sides of (3.2) are 0 if nm # 0 mod

3, we may assume nm = 0mod 3 in addition to our usual condition n =
= 0Omod2. Thus 0 < w(p)/p < 2/3 for every prime p, so that 1 <

1/(1 — w(p)/p) <3. Also, if w, z are any numbers with 2 < w < z, then

) @(p)logp _ 5 o8l Z Lo,

w<p<Llz
If d|P(Y),let A,={acA:a=0modd}, R, =|A,| - (w(d)/d)X
Lemma 12.2. If d|P(Y), then |R,| < 2"““R(n, d) + v((nm)* - 1).

Proof. We may assume (d, m) = 1, for otherwise A, = and w(d) =0, so
that R, =0. Write d =efg, where e = (d, n(nm—1)), f=(d,nm+1).
For each natural divisor g, of g, let

Ad,g, ={(mp — 1) (mp' 1) €A,:mp=1lmodeg,, mp' =1 mod felg}
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Also, let
A, ={(mp—1)(mp' - 1) A: p|(e, nm—1) or p'|f}.
We first claim that the sets A d.g, and A:, give a disjoint partition of A, . It is

easily seen that they are disjoint subsets of A ,. Indeed, since d is squarefree
and

(12.1) (mp—1,mp' —1)=(mp—1,n),
it follows that the various Ad, ¢ for g, |d are disjoint. Moreover, if p|e, then

clearly e t mp — 1;if p'|f, then f+mp —1.
To see that the sets Ad’g1 and A;, cover A, let (mp — H(mp' —1) e A,

where p’ = p + n. We must show that if it is not the case that both elmp — 1
and f|mp' — 1, then either p|(e, nm —1) or p'|f. Let g be a prime dividing
e. Then either g|n or glnm — 1. If g|n, then (12.1) implies g|mp — 1. If
glnm—1 and g t mp — 1, then
O=mp —l=mp+mn—1=mpmodg,
so g = p; that is, p|(e, nm —1). Thus p { (e, nm — 1) implies elmp — 1.
Similarly p’ t f implies f|mp' — 1, for if a prime g|f then g|lnm + 1 and so
mp —1=mp' #0mod g implies g|mp’ — 1.
Next we note that if / =1/(g,) satisfies
- ml=1modeg,, m(l+n)=1modfg/g,,
then (/,d)=(/+n,d)=1 and
Ay g ={mp—1)(mp'—1) €A peT(n, (g, d)},
where T(n, I(g,), d) is defined in §3. Thus

A, - 1Ayl =) T(n,1(g,), d)

818
(12.3) 2"®a T(n) « p -1
= 0 +Y R(n,l(g),d).
p>2

Note that since d is squarefree,

2@ o p—1 e 1 ( 1) p—1
1255-2 |5 | | 1 55 (1125
Z — _ )
?(d) 3P 2 P 72 ) \idw? 1) \ o ?
p>2 tn >2
_w(d) p—1
T d gp—Z
p>2

Thus from (12.3) and the definition of X, we have
R,=Y R(n,l(g),d)+|Ayl,
8 g
so that |R,| < 2"®R(n, d) + |A,].
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It remains to show that |A),| < v((nm)> — 1). But this is immediate from
the definition of A; . This completes the proof of the lemma.

We now return to the proof of Theorem 3.2 by applying Theorem 7.1 in [5]
with g=1, z=Y, ¢=Z"*, 1 =1ogé/logY . Thus

S(n, m)=X (]‘[ (1 - %@)) (1+0((en)™)
(12.4) i
+6 Y 3R,
d<Z
d|P(Y)

where |6| < 1 and the constant implied by the O-notation is uniformly bounded
as n, m vary.

Let D > 0 be arbitrary. By Lemma 12.1, the number of even n < N for
which

(12.5) 3" 6"“R(n, M) < N(logN)"? 77>
M<Z

fails is-O(N(log N)_D) . So suppose n < N, n=0mod 2 and (12.5) holds for

n. Then for all m < N with m =0 mod 2 and »nm = 0 mod 3, we have from
Lemma 12.2 that

3 3R < S (6" R, d) + 3"V u((nm)? - 1))

d<z d<Zz
d|P(Y) d|P(Y)
(12.6) <Z6 R(n,d)+v((nm) —1 23
d<Z d<zZ
< N(logN) " 2757% 4 Z(log Z)* 1og N
< N(logN) B7F72,

Putting (12.6) into (12.4), we have (3.2) for all even n < N, except possibly
at most O(N(log N )_D) exceptions, and for all even m < N with m = 0 mod 2
and nm = 0 mod 3. Indeed, the only new errors introduced are the product
of (p —3)/(p —2) over primes p[(nm)2 — 1 with p > Y and the product of
(p —2)/(p — 1) over primes p|(n, m) with p > Y . The error introduced by
including these large primes in the products in (3.2) is a factor 1+O( y™! logN).

Finally recall that (3.2) holds trivially if nm # 0 mod 3. This concludes the
proof of Theorem 3.2.
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