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THE DISTRIBUTION OF SMOOTH NUMBERS
IN ARITHMETIC PROGRESSIONS
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(Communicated by William Adams)

ABSTRACT. We estimate the number of integers # up to x in the arithmetic
progression a (modg) with n free of prime factors exceeding y . For a wide
range of the variables x,y, g, and a we show that this number is about
x/(qu*) , where u =logx/logy .

1. INTRODUCTION

We say a natural number # is y-smooth if every prime factor p of n satisfies
p <y. Let y(x, y) denote the number of y-smooth integers up to x . Thanks
to many researchers in this century, we now know a great deal about the function
w(x, y). Less studied is the function y(x, y; g, a) which denotes the number
of y-smooth integers n» < x with n = a (modgq). It is the object of this
paper to get reasonable estimate for y(x, y; g, a) for a wide range of the four
variables.

Before stating the precise result we obtain, we briefly review some prior work.
It is known that

(1.1) y(x,y)~pu)x, u=logx/logy,

uniformly in a large portion of the x,y plane. Here, p is the continuous
solution to the differential difference equation up’(u) = —p(u—1) for u > 1,
with the initial condition p(x) =1 for u < 1. Results of this nature are due to
Dickman, Buchstab and de Bruijn. The largest x, y region for which we know
(1.1) is due to Hildebrand [Hi]:

y > exp{(log log x)*3+¢}
for any fixed ¢ > 0. For (1.1) to be useful, it would be good to know estimates
for p(u). This is provided by de Bruijn [de B]:
(1.2) p(u) = exp{—u(logu + log log(u + 1) + O(1))}
for u > 1. (In the cited paper, a more precise estimate of p(u) is given.)
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What do we expect for w(x, y; g, a)? For this quantity to be nonzero it is
necessary that no prime factor of (a, q) exceed y. If this occurs, then

(x,y;q9,a)= < d | a )

Ve ve 9=V 9 @ e @)

Thus we may as well assume that (a, g) = 1. Let y,(x, y) denote the number
of y-smooth integers n < x with (n,g) = 1. Then one might expect these
¥q(x, y) integers n to be roughly equally distributed in the ¢(g) residue classes
a (modgq) with (a, g) = 1. Thus a natural function with which to compare
v(x,y;q,a) is ﬁc//q (x,y). Recently, Fouvry and Tenenbaum [F-T] have

shown that

(1.3) w(x,y;q9,a)= ﬁy/q(x, Y)(1 + Oy(e=1(loe)

1/2

)

uniformly for

(1.4)

x>3, exp{e(loglogx)’}<y<x, 1<g<(logx)?, (a,q)=1
where c;, c; are positive, absolute constants and 4 > 0 is arbitrary. (They
also have a similar result when g < e©(°¢»)'"”* ) Further, they show that

_9() log log(gy) log log x
(15) v, y) = 28y (x, p) (14 0, (CEREDIOEIEY ) )

if
x > xo(€), exp{(loglogx)’***} <y <x,
logy 1—¢
< | —————— .
log log(g + 2) < <log(u - 1))

In particular, (1.5) holds under hypothesis (1.4).
In another recent paper, Granville [G] has obtained (1.3) with a weaker error
term, but in a range much wider than (1.4). In particular, he shows

(1.7) w(x,y;q,a)=a(%5wq(x,y) (1+0(%))

(1.6)

uniformly holds in the range
2<y<x, 1<g<min{x,y*}, (a,9)=1.
Here, « is any fixed positive quantity. Thus (1.7) contains the asymptotic result
1
VixX,y;,4,a)~ —=W¥Y,xX,y

as x — o0, logg/logy — 0.

In this paper, we do not get an asymptotic estimate for y(x, y; q, a), but
rather, upper and lower bounds. Note that by combining (1.1)-(1.3) and (1.5),
one has

(18)  y(x,;q,a) =7 exp{~u(logu +log log(u+ 1) + O(1))}
in the range (1.4). By (1.7), this result continues to hold for values of g satis-

fying (1.6) and g < y*. We are able to show that the double inequality of (1.8)
holds for a still larger range.
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Theorem. For each ¢ >0 and all x,y, q, a satisfying

(1.9) x>2,  exp{(loglogx)’} <y < x¥3¢,

1 < g <minf{y*?~°, (x/»)**%},  (a,9) =1,
we have
(1.10) vix,y;q9,a)= gexp{—u(logu +log logu + O(1))},

where u = logx/logy . The constants implied by the O notation depend at most
on the choice of ¢ .

The proof falls naturally into two cases: the upper bound implicit in (1.10)
and the lower bound. The upper bound result rests strongly on [F2] in which a
stronger result is proved for a somewhat narrower range. Our proof of the lower
bound implicit in (1.10) bears some similarity to the method in [F1]. In partic-
ular, we too show that the case u > 2 follows from the case u < 2. However,
our proof also introduces new elements including the Weyl-Hooley estimation
of incomplete Kloosterman sums, the lower bound in the fundamental lemma
of the sieve and a combinatorial argument reminiscent of [CEP].

Finally, we mention that in [G], Granville, using the theorem above, has
shown that

1
xy ; 3a X = x’
w(x,y;4q,a) q)(q)wq( y)

for x,y, q, and a satisfying (1.9) and, in fact, in the expanded region where
the lower bound on y is replaced with y > 2.

2. THE UPPER BOUND

In this section we establish the upper bound implicit in the theorem. We
begin by stating the following result from Friedlander [F2].

Lemma 2.1. If (a,q) =1, x > q%y’, and y > exp{(logx)*/°}, then

X logq>
xX,y;4,a <L = Uu—4 - —=— ’
y(x,y;4q,a) qp< fogy

where u =logx/logy.
Using (1.2) we have that

p (u —4- l"—g€> = exp{—u(logu + log logu + O(1))}
logy
for g,y satisfying (1.9). Thus Lemma 2.1 gives us the upper bound in the
theorem for
exp{(log x)*°} <y < x'/8.
Our task in the remainder of this section is to expand this interval to
exp{(log log x)?} <y < x*/3~°.

The range x!'/8 < y < x2/3-¢ is basically trivial since w(x,y;q, a) is
majorized by the number of integers » < x in the residue class a (modgq).
Thus X

‘/’(X,y;q,a)ﬁa*'l,
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which gives the upper bound in the theorem when u is bounded from infinity
and from 1.

We now consider the interval exp{(log logx)?} < y < exp{(logx)*3}. We
shall use an argument similar to that of Friedlander’s for Lemma 2.1. Our
proof, in fact, works for y up to x!/18logx byt not beyond. So we still need
the more precise Lemma 2.1, at least for the range x!/loglogx < 3 < x1/8

Let P(n) denote the largest prime factor of n. If x/y3 < n < x and
P(n) <y, then n has at least one factorization as m/ where x/y3 < m < x/y?.

Thus
X
'//(X,J/;q,a)sll/<)7,y;q,a)+ Z Z 1
H<m<%  I<x/m
yP(m)S; ml=a (mod q)
(2.1) (m, g)=1
X X
< -3 —+1]).
sv(Fo)r T ()
x/y3<m<x/y*
P(m)<y
Now
1
) (_X_H) <Xy L
mq q m
x/y}<m<x/y* x[y3<m<x/y?
(2.2) P(m)<y P(m)<y
2
x [yx/y?,y) , [ 1
SZE{*——;/—J)Z_-F ey t—zc//(t,y)dt .

Using the fact that (1.2) and the Hildebrand region of validity of (1.1) imply
w(t,y)=t- exp{—u(logu +log logu + O(1))}

uniformly for x/y3 < ¢t < x/y?, exp{(log logx)?} <y < x!/* (where u =
logx/logy), we have from (2.1) and (2.2) that

x/y*
w(x,y59,a)< ()% +2§+2i

d exp{—u(logu + log logu + O(1))}
q x/y3 t

_ xlogy

exp{—u(logu + log logu + O(1))}.

This inequality gives the upper bound we are looking for provided logy =
exp{O(u)}, which holds if y < x!/loglogx

3. THE LOWER BOUND
We may suppose ¢ in the theorem satisfies 0 < ¢ < 1/10. Fix J as ¢/4
and assume y2~% < x. Consider a number m! < x where

(3.1) Y29 sm< y2-28

and every prime p|m satisfies y*/2 <p <y, ptq.

The number of representations of n < x in the form ml, where m satisfies
(3.1), is at most

4/
(3.2) (1 + -25—“) < s
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for some constant c¢5. Indeed the factor / of »n has all of the prime factors
of n below y%/2 so it is determined by its prime factors exceeding y%/2. But
n has at most 2u/d such prime factors and / can have at most 4/J of them,
since [ < x/m < y?.

From (3.2) we have

(33) vx, i, @) 2wy v (2, v g, am)
m

where m satisfies (3.1) and m7m =1 (modgq). For any fixed m let w =x/m,
b = am . Note that (3.1) implies y2~2% < w < y?>~9. Thus

y< w(z—za)—' < w(z—zsr‘ < w23t ,

and

(w /) WI=0) > (y1=2)4/(1=0) 5 4/3-45 _ 4/3=2 > g
From these inequalities we see that w, y, g, and b satisfy the hypothesis of
the theorem (with ¢ replaced with &' = &/3) and y>~% > w. Butif ¢’ = ¢'/4,
we have y2=9 > y2=0 > .

Suppose the theorem holds when y2~¢ > x . In this case the theorem asserts
that w(x, y;q,a) > x/q. The remaining case y>~¢ < x would thus follow
from using this estimate on the right side of (3.3) and a lower bound for ) 1/m.
That is, we need only show two things: the case y>~¢ > x and the following
lemma.

Lemma 3.1. If 0 <6 < 1, exp{(log logx)?} <y, y?° < x, then

> 7711— > exp{—u(logu + log logu + Os(1))},

m

where m satisfies (3.1) and u =1logx/logy .

4. PROOF OF LEMMA 3.1

We divide the proof into two cases: 2 —J < u < e3%, u > e3/%_ In the first

case, let
k:= [;2(”_5—2] +3>1.

Suppose m is a product of k not necessarily distinct primes p with y%/2 <
p < y(+1/k)/2 and ptq. Then

k62 o u—246 _ _X

m>y >y

5 °
X
y2—26 :

m < yKHDO/2 < u=2425 _

That is, such a number m satisfies (3.1). Thus
(4.1) > 1/m > S¥/k!,

where S is the sum 5 1/p where p runs over the primes in (y%/2, y(1+1/k)3/2]
which do not divide g. Since u < e3¢ implies k = O;5(1), we have S >5 1,
so that (4.1) gives

> 1/m>5 1> exp{-u(logu + log logu + O(1))} .
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We now assume u > e3/%. Consider integers m = m;m, where m; is
composed of v; := [u — 2] not necessarily distinct primes p with

(4.2) y'mlee < p <y, ptq,

and m, is composed of v, not necessarily distinct primes p with
(4.3) Y2 < p <y | piq,

where v, = v,(m,) is that integer such that

4.4 -182 o X 02

(4.4) y s =Y

We have to check that such integers m = m;m; satisfy (cf. (3.1))

y2-3 <mg< y2
We first note that
2 2u
4. < f4 =T
(4.5) 2_vz<3+5+610gu<u

To see this note that m; < y*~% = x/y? by (4.2), so that v, > 2 follows at
once from (4.4). On the other hand,

X

(1—-1/logu) (u—3)(1—1/logu)
m; > y" gU) > > y—_3+u/logu

b

so that (4.4) implies
log(x/m;y?~9) [+ 14+6+u/logu

Uy < 1+—————10g(y5/2) < 5/2
—3+2+—2L<3+3+—23<u
B 6 dlogu 6 3 ’

using 0 <& < 1, u> €39, Thus we have (4.5).
We are now in a position to confirm that m = m;m;, satisfies (3.1). Indeed,
from (4.3) and (4.4) we have
m > myy"°’? > J%

while from (4.3)-(4.5) we have

m < myyP+0812 — gy (0= 1)8/20,8/2),(02/1)5)2
§/2.6/2 _ _ X
< yz—ay Y= y%"

Since u > €3/ > 10, the intervals (4.2) and (4.3) are disjoint. Thus
1 1 1 1
4, —> =Y =Y —
( 6) zm_zmlmz Zml my
where m;, m, run over the numbers described above. Let S> denote the sum
S>1/p where p satisfies (4.3). Then
S2 =<1 / u,
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using exp{(log logx)?} <y and u > e3¢ . Indeed,

S = log log(y(!*!/%%/2) — log log(y°/?) + O(exp{~(logy)**~*}) +0(5 15/2)

_ 1 6/5—2¢ 1
= log (1 + ;> + O(exp{~(log log x) })+0(5 5/2) .

We conclude from (4.5) that uniformly for each m; we have

1 Sy
(4.7) — > L = exp{-O(u/9)} = exp{~Os(u)} .
my ’U2
Further, if S} is the sum ) 1/p where p satisfies (4.2), we have
1
Si~ logu

uniformly for exp{(log logx)?} <y. Thus

Uy
(4.8) L > i‘— = exp{—u(logu + log logu + O(1))}.
m ’Ul!

Combining (4.6)—(4.8), we have our result.

5. THE CASE y?7% > x
We begin by stating three technical results.

Lemma 5.1 (the lower bound in the fundamental lemma of the sieve). Let
D, z>1 andlet q be a positive integer. Let

log D
P, = D, s = .
I]I;[z log z

ptq

Then there is a sequence {A4}3>, of “sieving weights” such that for each positive
integer [,

Yodg=1 if(I,P)=1, Y A:<0 if(l,P)>1,
d|l d|l

|[Ag| <1 foralld, A =0 foralld > D and for all dtP,,

Z (H “)) (1+0(™)).

p|Py

For example, see Lemma 5 in [F-I]. Actually this result is implicit in [H-R]
with the better error term O(s~).

Lemma 5.2 (the Erdos-Turdn inequality). Let H > 1 and let {an}2,, {xa}32,
be real sequences with each a, >0 and > a, < oco. Then

> any (xn) <7 Za,, + Z > aqe(hxy)

h<H n
holds uniformly, where w(6) =0 —[0]— 1 and e(6) := €2

For example, see Iwaniec [I, Lemma 6] or Laborde [L].
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Lemma 5.3 (incomplete Kloosterman sums). If 4 < B and q is a positive
integer, then

> e(Z) <« b0 b, 924
A<m<B q
(m,q)=1
for any n >0, where m denotes the inverse of m (modgq) .
For example, see Hooley [Ho, Lemma 1].
Finally, we need the following simple inequalities:
(5.1) Yoth,e)<> ddY 1<) H=1(g9)H
h<H dlg h<H dlq
dlh
(h, q) / i1 0))
. < — =
(5.2) > - <t(a)+ = dt =1(q)(1 +log H),

h<H

where 7(¢) denotes the number of natural divisors of ¢ .

We can now proceed with the proof of the lower bound in the theorem when
y2=9 > x (where d =¢/4). Let sop > 1 be an absolute constant so large that the
factor 1+ O(e*) in Lemma 5.1 is at least 1/2. Let P, denote the product

of the primes p < y%/% , ptq. Consider integers n = ml < x , where
(5.3) x/ly<m<y, (m,P)=1, ml =a (modgq).

Note that these conditions imply P(n) < y. The number of representations
of n < x as ml in this fashion is at most the number of divisors of n free
of prime factors below /% . But n < x < y?, so that n has at most 253/6
prlme factors that can possibly be used to make up m. Thus »n has at most

2251/5 = O5(1) representations as m/ . Thus
(5.4) w(x,v:4,a)>5 ) 1
mi<x

where the star indicates the sum is over pairs m, [ satisfying (5.3). By Lemma
5.1, with D = y%/% and z = y%/5 , we have

Y1z Y Y=Y A Y1

mi<x mi<x d|m d,q)=1 ki<x/d
x/y<m<y ki=ad(q)
mi=a(q) x/(dy)<k<y/d

Z Z x adk ad k
d,q)=1 x/(dy)<k<y/d
(5.5) (k q) i

X _tiz 1
q(d,q>=1d p k
W (@) o (7))
(dq)l P dka 4 9
=M—-R, say,
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where a bar over a number denotes the inverse modulo ¢ and Z(d) denotes a
sum over integers k satisfying x/(dy) < k < y/d and (k,q) =1. We view
M as the main term in (5.5) and R as the error term.

To estimate E(d) 1/k in the main term, note first that by sieving with the
prime factors of ¢, we have

Y o1= @H 0(1(q)).
- k<t
(k,q)=1

Thus by partial summation we have, uniformly for every d < D,

@1 _¢(q) 7(q) dy
Ek: = qlog +0( P )

Using this together with Lemma 5.1 (and log D/log z = sp) , we get

M___x(ﬂ(Pq)(1+0(e—so))¢(‘1) +0< q( )ZM‘ I)

q P, -

Lx (P | (ny(q)> xp(gP), ¥
> — +0 > log —.
=29 qP q 4 gP, °x

Using Mertens’ theorem to estimate ¢(qF,;)/qF, , we have

x dlogy x

5.6 M> .
(5.6 61s0‘2§logy q

Thus to complete the proof it will be sufficient to show that the error term R
in (5.5) is o(x/q).
If g <y'/2, we have trivially that for any H with D< H <y

R« Z g < ylogD < ylogx

d<D
3/2 1-3¢/2
_ yqlogx < y3/?logx < X logx _ 0 ({) .
q q q q

We thus may assume that g > y1/2.
From Lemma 5.2 we have that for any H with D< H <y

LY Eki(d){”’ (deq‘ aZ_E) - (lijm

d<D
(d,l])=1
@ [ xh adkh
s« X e TG
dd<D h<H/d k dkq q
(sq):

>

h<H/d

1 (d) ( agfh)‘
e (- -
h p q
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The factor e(x%/dkq) is smooth in the variable k and so partial summation
is appropriate for the first inner sum:

T, (ﬂ) . (_aﬁFh)
p dkq q
=e(ﬁ> Z(d)e _adkh
ya) 4 q
v/d T%
+27i —f—f——e <ﬁ> (d)e _adkh dt
x/dy di’q k<t q

< (1 + Xf’_) max
q tSy/d

< (1+5) o, q)( ey XY

for any # > 0, using Lemma 5.3 for the last step.
From (5.7) we thus have for any # > 0 (using Lemma 5.3 for the second

inner sum),
Ry TA%+ 5 5 (142 o) (a4 )
d<D h<H/d 9
yH 1j24n 4 ¥
H+Z(1+logd+d>‘t(q)(q +dq ,

d<D
by (5.1) and (5.2). Thus for any n >0,

2H
lo D+ }
& q?

Recall that D = y9/% < y9 . Using (g)log’y <, " for any 1 >0, we have

D
R <, yF +1(q) {Dq”“"log H+ Jélog Dlog H + ——— q1/2 n

1+d 2
y 2 12 Y yH H
R Ky T +y {yq q+_q1/2+ pe
»2
m+s ) Y 2, Y YH H
<y {H+q 773 1/2+ 7|

We now choose n =9J/4=¢/16 and
g [a  ifg > y3,
C Ly 2, ifyl2<q <y

Recalling the hypotheses of the theorem, it is now easily seen that R = o(x/q) .
This result with (5.4)-(5.6) completes the proof.

ACKNOWLEDGMENT

We thank the referee for several helpful suggestions and the Institute for
Advanced Study for its hospitality during the completion of our work on this
paper. The first author would like to thank the University of Georgia for its
hospitality during the commencement of the work on this paper.



[de B]
[CEP]
[F-T]
[F1]

[F2]
[F-T]

[G]
[H-R]
[Hi]

[Ho]
]
L]

SMOOTH NUMBERS IN ARITHMETIC PROGRESSION 43
REFERENCES

N. G. de Bruijn, The asymptotic behavior of a function occurring in the theory of primes, J.
Indian Math. Soc. (NS) 15 (1951), 25-32.

E. R. Canfield, P. Erdos, and C. Pomerance, On a problem of Oppenheim concerning “Fac-
torisatio Numerorum,” J. Number Theory 17 (1983), 1-28.

E. Fouvry and G. Tenenbaum, Entiers sans grand facteur premier en progressions arith-
métiques, Proc. London Math. Soc. (2) (to appear).

J. B. Friedlander, Integers without large prime factors, Nederl. Akad. Wetensch. Proc. Ser
A 76 (1973), 443-451.

—, Integers without large prime factors. 11, Acta Arith. 39 (1981), 53-57.

J. B. Friedlander and H. Iwaniec, On Bombieri’s asymptotic sieve, Ann. Scuola Norm. Sup.
Pisa Cl. Sci. (4) 5 (1978), 719-756.

A. Granville, Integers, without large prime factors, in arithmetic progressions, Acta Math.
(to appear).

H. Halberstam and H. E. Richert, Sieve methods, Academic Press, London and New York,
1974.

A. Hildebrand, On the number of positive integers < x and free of prime factors >y, J.
Number Theory 22 (1986), 289-307.

C. Hooley, On the Brun-Titchmarsh theorem, J. Reine Angew. Math. 255 (1972), 60-79.
H. Iwaniec, On the Brun-Titchmarsh theorem, J. Math. Soc. Japan 34 (1982), 95-123.

M. Laborde, Nombres presque-premiers dans de petits intervalles, Sém. de Théorie des Nom-
bres, Bordeaux, 1977-1978, exp. no. 15.

MATHEMATICAL INSTITUTE, HUNGARIAN ACADEMY OF SCIENCES, REALTANODA U. 13-15,
H-1053 BUDAPEST, HUNGARY

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF GEORGIA, ATHENS, GEORGIA 30602



