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Euler’s ϕ function: ϕ(n) is the number of integers m ∈ [1, n]

with m coprime to n.

Or, it is the order of the unit group of the ring Z/nZ.

Euler: If a is coprime to n, then

aϕ(n) ≡ 1 (mod n).
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Euler’s theorem is the basis of the RSA Cryptosystem:

If integers E, D satisfy ED ≡ 1 (mod ϕ(n)), then

aED ≡ a (mod n)

for every integer a coprime to n. (In fact, this holds for all

integers a if n is squarefree, such as the product of two

different large primes.)

Encrypt message “a”: b = aE (mod n).

Decrypt: a = bD (mod n).

To encrypt, one should know E, n. To decrypt, D as well.
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Note that it is easy to compute aE (mod n) given a, E, n and

similarly it is easy to compute bD (mod n).

Further, given ϕ(n), it is easy to come up with pairs E, D with

ED ≡ 1 (mod ϕ(n)). Indeed, keep choosing random numbers D

until one is found that is coprime to ϕ(n), and then use

Euclid’s algorithm to find E.

As a public-key system, E, n are released to the public, but D is

kept secret. Then anyone can send you encrypted messages

that only you can read.
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The security of the RSA Cryptosystem is connected to our

ability to compute ϕ(n):

For p prime, ϕ(p) = p − 1; more generally,

ϕ(pk) = pk − pk−1 = pk(1 − 1/p).

By the Chinese Remainder Theorem,

ϕ(n) = n
∏

p prime
p|n

(

1 − 1

p

)

.
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So, knowing the prime factorization of n, one can compute

ϕ(n) rapidly—in deterministic polynomial time.

What about the converse? Given n and ϕ(n) can one compute

the prime factorization of n in deterministic polynomial time?

Yes, if n = pq, where p, q are different primes, since

ϕ(n) = (p − 1)(q − 1), so that n − 1 − ϕ(n) = p + q.

In general, the Extended Riemann Hypothesis implies that

there is a deterministic, polynomial time algorithm to compute

the prime factorization of n, given n and ϕ(n).
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A random polynomial time algorithm to get a nontrivial

factorization:

We may assume ϕ(n) < n − 1 and that n and ϕ(n) are coprime.

Write ϕ(n) = 2sm, where m is odd.

Choose a at random from [1, n − 1]. We may assume a and n

are coprime.

Note that

aϕ(n) − 1 = (am − 1)(am + 1)(a2m + 1) · · · (a2s−1m + 1).

Fact: n divides the product, but the chance that n divides a

factor is at most 1/2.
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Some natural questions to ask about a function from N to N:

1. What is ϕ(n) on average? That is, what can be said about
∑

n≤x

ϕ(n)

as x grows?

2. What is typically true about the size of ϕ(n)?

3. What about extremes for ϕ(n)?

4. What is true on average or typically about ϕ(n)

arithmetically?
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Euler’s function on average

The chance that two random integers are both divisible by the

prime p is 1/p2. So, the chance that no prime p divides both

should be

α :=
∏

p prime

(

1 − 1

p2

)

.

We have

1 − 1

p2
=

(

p2

p2 − 1

)−1

=

(

1 +
1

p2
+

1

p4
+ · · ·

)−1

,

so that

α =





∞
∑

n=1

1

n2





−1

=
1

ζ(2)
=

6

π2
.
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Thus, the probability that two random integers are coprime is

6/π2.

Another interpretation: Choose a lattice point (m, n) at

random; the probability that it is “visible” is 6/π2.

Using these thoughts it is easy to see that

∑

n≤x

ϕ(n) ∼ 3

π2
x2

as x → ∞.
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Extreme values of ϕ(n) are also fairly easy:

lim sup
ϕ(n)

n
= 1,

lim inf
ϕ(n)

n
= 0,

in fact,

lim inf
ϕ(n)

n/ log logn
= e−γ.
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Clearly ϕ(n)/n jumps around a bit: if n has only large prime

factors, the ratio is close to 1, but if n has many small prime

factors, it is close to 0.

One can ask for a “distribution function”. That is, let u be a

real variable in [0,1] and consider

{n : ϕ(n)/n ≤ u}.

Does this set have an asymptotic density D(u), and if so, how

does D(u) vary with u?

Schoenberg, 1928: D(u) exists, it is strictly monotone, and

varies continuously with u. It has an infinite one-sided

derivative on a dense subset of [0,1].
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Let ω(n) denote the number of primes p with p | n.

For example, ω(1) = 0, ω(100) = 2, ω(1001) = 3.

Hardy and Ramanujan, 1917: Normally ω(n) ≈ log logn. That

is, for each ε > 0, the set of n with

(1 − ε) log logn < ω(n) < (1 + ε) log logn

has asymptotic density 1.

Erdős and Kac, 1939 : For each real number u, the set

{n : ω(n) ≤ log logn + u
√

log logn}
has asymptotic density

1√
2π

∫ u

−∞
e−x2/2 dx,

the Gaussian normal distribution.
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What can be said about ω(ϕ(n))?

Erdős and P, 1985: For each real number u, the set
{

n : ω(ϕ(n)) ≤ 1

2
(log logn)2 +

u√
3
(log logn)3/2

}

has asymptotic density G(u).

13



Euler’s function and groups

Burnside, Dickson, Szele: There is exactly one isomorphism

class for groups of order n precisely when n and ϕ(n) are

coprime.

Erdős, 1948: The number of integers n in [1, x] with n coprime

to ϕ(n) is
(

e−γ + o(1)
) x

log log log x

as x → ∞.
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Carmichael’s conjecture

R. D. Carmichael conjectured that ϕ is never 1 to 1. That is,

for each n there is some m 6= n with ϕ(m) = ϕ(n).

For example: If n is odd, let ϕ(2n) = ϕ(n). Or if 2‖n, then

ϕ(n/2) = ϕ(n). If 4 | n, then 3 | n, since otherwise

ϕ(3n/2) = ϕ(n). And if 3‖n, then ϕ(2n/3) = ϕ(n). Etc.

An elementary theorem: If n has the property that p2 | n for

each prime p with p − 1 | n, then n is a counterexample to

Carmichael’s conjecture.

A challenge: prove no number n satisfies the hypothesis!
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Let V (x) denote the number of integers in [1, x] that are values

of ϕ.

Elementary thoughts: 1 is the only odd value of ϕ.

14 is the first even number that’s not a value.

The next is 26.

Do we expect V (x) ∼ 1
2x? Or V (x) ∼ cx? Or V (x) = o(x)?
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Idea: Most numbers have many different prime factors, so

most values of ϕ are divisible by a large power of 2. But most

numbers are not divisible by a large power of 2. So V (x) = o(x)

as x → ∞.

Pillai, 1929: There is some c > 0 such that V (x) ≤ x/(logx)c

for all large x.

Erdős, 1935: V (x) = x/(logx)1+o(1) as x → ∞.
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Erdős and Hall, 1973, 1976: There are c1, c2 > 0 such that for

all large x,

x

log x
exp

(

c1(log log log x)2
)

≤ V (x) ≤ x

log x
exp

(

c2(log log x)1/2
)

.

Maier and P, 1988: There is a number c > 0 such that as

x → ∞,

V (x) =
x

log x
exp

(

(c + o(1))(log log log x)2
)

.

Ford, 1998: Found secondary factors so as to have the correct

order of magnitude of V (x).

We still don’t have an asymptotic formula for V (x), nor do we

know even that V (2x) ∼ 2V (x) as x → ∞.
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Sierpiński’s conjecture

For each integer k ≥ 2 there is some number v such that

ϕ(n) = v has exactly k solutions n.

Ford, 1999: Yes. In fact, a positive proportion of ϕ values

satisfy this. (The proportion depends on k.)

Ford went on to prove in the case k = 1 (Carmichael’s

conjecture), that if there is just one value v with a unique

pre-image, than a positive proportion of all values have a

unique pre-image.

19



So, we’ve seen that most numbers are not values of ϕ, maybe

no number is a value exactly once, and for each k ≥ 2 there are

numbers v which are a value exactly k times.

How large can k be as a function of v?

Erdős, 1935: There is some α > 0 such that for infinitely many

numbers v, the equation ϕ(n) = v has at least vα solutions.
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Idea of proof: There is some c > 0 such that a positive

proportion of the primes p ≤ y1+c have all prime factors of p − 1

at most y. (Uses Brun’s sieve method.) Now take subsets of

these primes with product below ey. If n is one of these

products, then ϕ(n) has prime factors all below y. There are

many such n’s, but not many numbers below ey with all prime

factors below y. So, some value is inordinately popular.

The current record has c > 2, and there are infinitely many

values v of ϕ with more than v0.7 pre-images.

It is conjectured that c can be arbitrarily large and that the

exponent 0.7 can be replaced with any number < 1.
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Lehmer’s question

If n is prime, then ϕ(n) | n − 1. Can ϕ(n) be a proper divisor of

n − 1?

Little is known. Though we’ve searched, we know no such

number. Failing a proof that there are none, can we at least

show there are few of them? Yes, but we don’t know that they

are eventually sparser than the set of squares!

Just in: Banks, Güloğlu, and Nevans have shown that the

number of such n in [1, x] is, for all large x, at most

x1/2/(log x)1/8.
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Carmichael’s function

Recall that ϕ(n) is the order of the unit group of Z/nZ. Let

λ(n) denote the exponent of this group.

That is, λ(n) is the least positive integer l such that

al ≡ 1 (mod n)

for every integer a coprime to n.

Since the unit group is cyclic when n = p is a prime, we have

λ(p) = p − 1. In general, λ(pa) = ϕ(pa) except when

p = 2, a ≥ 3, when λ(2a) = 1
2ϕ(2a). And

n = p
a1
1 . . . p

ak
k implies λ(n) = lcm[λ(p

a1
1 ), . . . , λ(p

ak
k )].
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One can ask, like with Lehmer’s question: can λ(n) divide n − 1

for n composite? It is easy to see that if λ(n) | n − 1, then

an ≡ a (mod n)

for every integer a.

For example, n = 561. It is 3× 11× 17, and lcm[2,10,16] = 80,

which is a divisor of 560.

Such composite numbers are called Carmichael numbers.

Alford, Granville, P, 1994: There are infinitely many Carmichael

numbers.
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Euler chains

Starting with n, consider the sequence

n, ϕ(n), ϕ(ϕ(n)), . . . .

Eventually you reach 1 and there the sequence becomes

constant.

Let k(n) be the number of steps to reach 1.

For example, k(1) = 0, k(2) = 1, k(3) = 2, k(100) = 6, etc.

Pillai, 1929 For all n, k(n) ≤ logn/ log 2 and this is attained

when n is a power of 2. Further, k(2 · 3j) = j + 1 and this gives

the minimal order of k(n), namely logn/ log 3.
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Let K(n) be the totally additive function

(K(ab) = K(a) + K(b)) such that K(2) = 1 and

K(p) = K(p − 1) for each odd prime p. Then K(n) is the

number of even terms in the Euler chain for n, so K(n) = k(n)

or k(n) − 1. (Essentially, Shapiro, 1943.)

Erdős, Granville, P, Spiro, 1990. Conditionally on the

Elliott–Halberstam conjecture, there is some α > 0 such that

k(n) ∼ α logn on a set of asymptotic density 1.

Here,

α = lim
x→∞

1

x

∑

p≤x

K(p),

but we do not know how to prove unconditionally that this

limit exists.
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Luca, P, 2007. The product of all of the distinct primes that

divide some member of the Euler chain for n exceeds

n(1−ε) log logn/ log log logn for all large n in a set of asymptotic

density 1.

This result can be used to show that for almost all n, the

degree D(n) of the smallest algebraic number field that

contains the nth roots of unity and which can be reached by a

sequence of prime-degree radical Galois extensions, has D(n)

greater than any fixed power of n.
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We know very little about “Carmichael chains” where we

iterate λ to get to 1.

Consider “reverse” Euler chains, where given n we try to find

n1 with ϕ(n1) = n and continue with this. There is an infinite

such chain if and only if n is in the range of each iterate of ϕ.

Luca, P, 2008. The number n is in the range of each iterate of

ϕ if and only if n = 1 or is of the form 2a3b with a > 0.

It’s possible to show that if λ(n) | n, then n is in the range of

each iterate of λ. There are more than x0.7 such numbers

n ≤ x. Is n = 10 in the range of each iterate of λ?
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Further problems

Consider the function U which sends n to the isomorphism

class of the unit group of Z/nZ.

What about the range of this function? That is, how does the

number of unit groups with order in [1, x] compare with the

total number of abelian groups with order in [1, x]?

Is Carmichael’s conjecture true for U(n)? What about

Sierpiński’s conjecture?

These and other questions are addressed by Bayless, 2008.
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