
Algorithmic Number Theory
MSRI Publications
Volume 44, 2008

Smooth numbers and the quadratic sieve
CARL POMERANCE

ABSTRACT. This article gives a gentle introduction to factoring large integers
via the quadratic sieve algorithm. The conjectured complexity is worked out
in some detail.

When faced with a large number n to factor, what do you do first? You might
say, “Look at the last digit,” with the idea of cheaply pulling out possible factors
of 2 and 5. Sure, and more generally, you can test for divisibility cheaply by all
of the very small primes. So it may as well be assumed that the number n has no
small prime factors, say below log n. Since it is also cheap to test for probable
primeness, say through the strong probable prime test, and then actually prove
primality as in [Schoof 2008] in the case that you become convinced n is prime,
it also may as well be assumed that the number n is composite.

Trial division is a factoring method (and in the extreme, a primality test) that
involves sequentially trying n for divisibility by the consecutive primes. This
method was invoked above for the removal of the small prime factors of n. The
only thing stopping us from continuing beyond the somewhat arbitrary cut off
of log n is the enormous time that would be spent if the smallest prime factor
of n is fairly large. For example, if n were a modulus being used in the RSA
cryptosystem, then as current protocols dictate, n would be the product of two
primes of the same order of magnitude. In this case, factoring n by trial division
would take roughly n1=2 steps. This already is an enormous calculation if n has
thirty decimal digits, and for numbers only slightly longer, the calculation is not
possible at this time by the human race and all of their computers.

Difference of squares. We have long known however that trial division is not
the only game in town for factoring. Take the number 8051 for example. This
number is composite and not divisible by any prime up to its logarithm. One
can see instantly (if one looks) that it is 8100 � 49, that is,

8051 D 902
� 72:

69

70 CARL POMERANCE

Thus, we can use algebra to factor 8051 as a difference of squares. It is .90 �

7/� .90 C 7/, or 83 � 97. Every odd composite can be factored as a difference
of squares (an easy exercise), so why don’t we use this method instead of trial
division?

Let us try again on the number n D 1649. Again, 1649 is composite, but not
divisible by any prime up to its logarithm. What worked with 8051 was to take
the first square above 8051, namely 902, and then notice that 902 � 8051 D 49,
where 49 is recognized as a square. It would seem in general that one could
walk through the sequence x2 �n with x D dn1=2e; dn1=2eC1; : : : , looking for
squares. With n D 1649 we have

412
� n D 32;

422
� n D 115;

432
� n D 200;

.1/

and so on, with no squares in immediate sight.
Despite this failure, the three equations (1) may in fact be already used to

factor n. Note that while neither 32 nor 200 is a square, their product is a
square: 6400 D 802. Thus, since

412
� 32 .mod n/;

432
� 200 .mod n/;

we have 412 � 432 � 802 .mod n/, that is,

.41 � 43/2 � 802 .mod n/: .2/

We have found a solution to a2 � b2 .mod n/. Is this interesting? There
are surely plenty of uninteresting pairs a; b with a2 � b2 .mod n/. Namely,
take any value of a and let b D ˙a. Have we exhausted all solutions with this
enumeration? Well no, since factoring n as a difference of squares would give
a pair a; b with b ¤ ˙a. Further, any pair a; b with

a2
� b2 .mod n/; b 6� ˙a .mod n/ .3/

must lead to a nontrivial factorization of n, via gcd.a � b; n/. Indeed, (3) im-
plies that n divides .a � b/.a C b/, but divides neither factor, so both gcd.a �

b; n/; gcd.a C b; n/ must be nontrivial factors of n. Moreover, gcd’s are simple
to compute via Euclid’s algorithm of replacing the larger member of gcd.u; v/
by its residue modulo the smaller member, until one member reaches 0. Finally,
if n has at least two different odd prime factors, then it turns out that at least half
of the solutions to a2 � b2 .mod n/ with ab coprime to n also have b 6� ˙a

.mod n/, that is, (3) is satisfied. The proof: For an odd prime power pu, the
congruence y2 � 1 .mod pu/ has exactly 2 solutions, so since n is divisible by

SMOOTH NUMBERS AND THE QUADRATIC SIEVE 71

at least two different odd primes, the congruence y2 � 1 .mod n/ has at least
4 solutions. Label these values of y as y1;y2; : : : ;ys , where y1 D 1;y2 D �1.
Then a complete enumeration of the pairs of residues a; b modulo n that are
coprime to n and satisfy

a2
� b2 .mod n/

consists of all pairs a;yia, where a runs over residues coprime to n and i takes
the values 1; : : : ; s. Two of these pairs have i D 1; 2 and s �2 (out of s) of these
pairs have i D 3; : : : ; s. The latter pairs satisfy (3), and since s � 4, we are done.

So, I repeat the question, is our solution to (2) interesting? Here, we have
a D 114 D 41 � 43 mod n and b D 80. Yes, we do have a; b satisfying (3), so
yes this is an interesting pair. We now compute gcd.114 � 80; 1649/. The first
step of Euclid gives gcd.34; 17/, and the second step gives 17. That is, 17 is a
divisor of 1649. Division reveals the cofactor, it is 97, and a couple of primality
tests show that our factorization is complete. Actually, since we have previously
checked that 1649 has no prime factors up to its logarithm, about 7:4, we already
know that 17 and 97 have no prime factors below their square roots, and so are
both prime.

If we had actually waded through the sequence in (1) looking for a square, we
would have had to go all the way to 572 �n D 402, and clearly in this example,
trial division would have been superior. In general, trying to factor a number
as a difference of squares is inferior to trial division for most numbers. But by
altering n by multiplying it by small odd numbers, one can then skew things
so that in the worst case the time spent is only about n1=3 steps, essentially a
factoring method of R. S. Lehman. For example, if one tries to factor 5�1649 D

8245 by a difference of squares, the first try works, namely 8245 D 912 � 62 D

97�85. Taking the gcd of the factors with 1649 reveals the factorization we are
looking for.

A crucial lemma. These thoughts lead down a different road. We would like
to pursue what looked like perhaps fortuitous good luck with the equations in
(1). If one were to try and describe what we did as an algorithm that works
for a general number n, the part where we pick out the first and third of the
equations to get the right sides to multiply to a square looks a bit suspect. In
general we have this sequence of integers x2 � n as x runs starting above n1=2

and we wish to pick out a subsequence with product a square. Surely we should
not be expected to examine all subsequences, since the number of these grows
exponentially.

Let us look at a probabilistic model for this problem. We are presented with
a random sequence of integers in the interval Œ1;X � and we wish to stop the
sequence as soon as some non-empty subsequence has product a square. After
how many terms do we expect to stop, how do we recognize when to stop, and

72 CARL POMERANCE

how do we find the subsequence? The answers to these questions involve smooth
numbers.

A number m is smooth if all of its prime factors are small. Specifically, we
say m is B-smooth if all of its prime factors are � B. The first observation is
that if a number in our sequence is not smooth, then it is unlikely it will be used
in a subsequence with product a square. Indeed, if the number m is divisible by
the large prime p, then if m is to be used in the square subsequence, then there
necessarily must be at least one other term m0 in the subsequence which also is
divisible by p. (This other term m0 may be m itself, that is, perhaps p2jm.) But
given that p is large, multiples of p will be few and far between, and finding
this mate for m will not be easy. So, say we agree to choose some cut off B,
and discard any number from the sequence that is not B-smooth. Let us look
at the numbers that are not discarded, these B-smooth numbers. The following
lemma is crucial.

LEMMA. If m1;m2; : : : ;mk are positive B-smooth integers, and if k > �.B/

.where �.B/ denotes the number of primes in the interval Œ1;B�/, then some
non-empty subsequence of .mi/ has product a square.

PROOF. For a B-smooth number m, look at its exponent vector v.m/. This is a
simple concept. If m has the prime factorization

m D

�.B/Y
iD1

p
vi

i ;

where pi is the i th prime number and each exponent vi is a nonnegative integer,
then v.m/D .v1; v2; : : : ; v�.B//. Then a subsequence mi1

; : : : ;mit
has product

a square if and only if v.mi1
/C : : :C v.mit

/ has all even entries. That is, if
and only if this sum of vectors is the 0-vector mod 2. Now the vector space
F

�.B/
2

, where F 2 is the finite field with 2 elements, has dimension �.B/. And
we have k >�.B/ vectors. So this sequence of vectors is linearly dependent in
this vector space. However, a linear dependency when the field of scalars is F 2

is exactly the same as a subsequence sum being the 0-vector. �

This proof suggests an answer to our algorithmic question of how to find the
subsequence. The proof uses linear algebra, and this subject is rife with algo-
rithms. Actually, there is really only one algorithm that is taught in beginning
linear algebra classes, namely Gaussian reduction of a matrix, and then there
are many, many applications of this one technique. Well, now we have another
application. With a collection of smooth numbers, form their exponent vectors,
reduce these modulo 2, and then use Gaussian reduction to find a nonempty
subsequence with sum the 0-vector modulo 2.

SMOOTH NUMBERS AND THE QUADRATIC SIEVE 73

In particular, we shall find the concept of an exponent vector very useful in
the sequel. Note that knowledge of the complete exponent vector of a number m

is essentially equivalent to knowledge of the complete prime factorization of m.
Also note that though in the proof of the lemma we wrote out exponent vectors
in traditional vector notation, doing so in general may itself be an exponentially
huge problem, even if we “know” what the vector is. Luckily, exponent vectors
are sparse creatures with most entries being zero, so that one can work with
them modulo 2 in a more compact notation that merely indicates where the odd
entries are.

A proto-algorithm. So now we have a proto-algorithm. We are given a number
n which is composite, has no prime factors up to its logarithm, and is not a power.
We insist that n not be a power in order to ensure that n is divisible by at least
two different odd primes. It is easy to check if a number is a power by taking
roots via Newton’s method, and for close calls to integers, exponentiating that
integer to see if n is a power of it. Our goal is to find a nontrivial factorization
of n.

1. Choose a parameter B, and examine the numbers x2�n for B-smooth values,
where x runs through the integers starting at dn1=2e.

2. When you have more than �.B/ numbers x with x2 � n being B-smooth,
form the exponent vectors of these B-smooth numbers, and use linear algebra
to find a subsequence x2

1
�n; : : : ;x2

t �n which has product a square, say A2.
3. From the exponent vectors of the numbers x2

i �n, we can produce the prime
factorization of A, and thus find the least nonnegative residue of A mod-
ulo n, call it a. Find too the least nonnegative residue of the product x1 : : :xt

modulo n, call it b.
4. We have a2 � b2 .mod n/. If a 6� ˙b .mod n/, then compute gcd.a�b; n/.

Otherwise, return to step 1, find additional smooth values of x2�n, find a new
linear dependency in step 2, and attempt once again to assemble congruent
squares to factor n.

There are clearly a few gaps in this proto-algorithm. One is a specification of the
number B. Another is a fuller description of how one examines a number for B-
smoothness, namely how one recognizes a B-smooth number when presented
with one.

Recognizing smooth numbers. Let us look at the second gap first, namely
the recognition of B-smooth numbers. Trial division is a candidate for a good
method, even though it is very slow as a worst-case factorization algorithm. The
point is that B-smooth numbers are very far from the worst-case of trial division,
in fact they approach the best case. There are fewer than B primes up to B, so

74 CARL POMERANCE

there are very few trials to make. In fact the number of trial divisions is at most
the maximum of log2 n and �.B/.

But we can do better. Let us review the sieve of Eratosthenes. One starts
with a list of the numbers from 2 to some bound X . Then one recognizes 2, the
first unmarked number, as prime, and crosses off every second number starting
at 4, since these are all divisible by 2 and hence not prime. The next unmarked
number is 3, which is the next prime, and then every third number is crossed
off after 3, and so on. If one completes this with primes up to X 1=2, then every
remaining unmarked number is prime. But we are not so interested in the un-
marked numbers, rather the marked ones. In fact, the more marked a number the
better, since it is then divisible by many small primes. This sieve procedure can
rather easily be made completely rigorous. Indeed, interpret making a “mark”
as taking the number in the relevant location and replacing it with its quotient
by the prime being sieved. In addition, sieve by higher powers of the primes as
well, again dividing by the underlying prime. If one does this procedure with
the primes up to B and their higher powers, the B-smooth numbers up to X are
detected by locations that have been transformed into the number 1. The time
to do this is proportional to X times the sum of the reciprocals of the primes
up to B and their powers up to X . This sum, as we will see in (4), is about
log log B. Thus, in time proportional to X log log B (for B at least 16, say, to
have log log B > 1) we can locate all of the B-smooth numbers up to X . That
is, per number, we are spending only about log log B steps on average. This
count compares with about B steps per number for trial division, a very dra-
matic comparison indeed. Further, there is a trick for reducing the complexity
of the individual steps in the sieve involving the subtraction of low-precision
logarithms to simulate the division. So it is a win-win for sieving.

However, we are not so interested in locating smooth numbers in the interval
from 2 to X , but rather in the polynomial sequence x2 �n as x runs. This is not
a big hurdle, and essentially the same argument works. What makes the sieve of
Eratosthenes work is the regular places in the sequence where we see a multiple
of p. This holds as well for any polynomial sequence. One solves the quadratic
congruence x2 � n � 0 .mod p/. For p > 2 there are either no solutions, 2
solutions, or in the case that pjn, just 1 solution. Of course the generic cases
are 0 and 2 solutions, and each should occur roughly half the time. If there are
no solutions, then there is no sieving at all. If there are 2 solutions, say a1; a2,
where a2

i � n � 0 .mod p/, then we find the multiples of the prime p in the
sequence for each x � ai .mod p/, where i D 1; 2. For example, say n � 4

.mod 7/, so that a1 D 2; a2 D 5. Then the values of x where 7 divides x2 � n

can be found in quite regular places, namely those values of x that are congruent
to 2 or 5 modulo 7. After an initial value is found that is 2 (mod 7), one can

SMOOTH NUMBERS AND THE QUADRATIC SIEVE 75

find the remaining places in this residue class by adding 7’s sequentially to the
location number, and similarly for the 5 (mod 7) residue class. One has a similar
result for higher powers of p and also for the special case p D 2. As with the
sieve of Eratosthenes above, the number of steps we will spend per polynomial
value is proportional to just log log B. That is, it takes about as much time to tell
if a value is smooth as it does just to look at the value, as long as we amortize
the time over many members of the polynomial sequence. So this is how we
recognize B-smooth values of x2 � n: we use a quadratic sieve.

An optimization problem. Next, in our proto-algorithm, there should be some
guidance on the choice of the parameter B. Of course, we would like to choose
B optimally, that is, we should choose a value of B which minimizes the time
spent to factor n. This optimization problem must balance two principal forces.
On the one hand, if B is chosen very small, then we do not have to find very
many B-smooths in the sieve, and the matrix we will be dealing with will be
small. But numbers that are B-smooth with a very small value of B are very
sparsely distributed among the natural numbers, and so we may have to traverse
a very long sequence of x values to get even one B-smooth value of x2 � n,
much less the requisite number of them. On the other hand, if B is chosen large,
then B-smooth numbers are fairly common, and perhaps we will not have such
a hard time finding them in the polynomial sequence x2 � n. But, we will need
to find a great many of them for large B, and the matrix we will be dealing with
will be large.

So, the optimization problem must balance these conflicting forces. To solve
this problem, we should have a measure of the likelihood that a value x2 � n is
B-smooth. This in fact is a very hard problem in analytic number theory, one
that is essentially unsolved in the interesting ranges. However, the number n we
are trying to factor may not be up on the latest research results! That is, perhaps
we should be more concerned with what is true rather than what is provable, at
least for the design of a practical algorithm. This is where heuristics enter the
fray. Let us assume that a polynomial value is just as likely to be smooth as a
random number of the same magnitude. This assumption has been roughly borne
out in practice with the quadratic sieve algorithm, as well as other factorization
methods such as the number field sieve; see the survey [Stevenhagen 2008].

What is the order of magnitude of our polynomial values? If x runs in the
interval

Œn1=2; n1=2
C n"�;

where 0< " < 1=2, then the numbers x2 � n are all smaller than approximately
2n1=2C". Let X be this bound, and let us ask for the chance that a random
number up to X is B-smooth.

76 CARL POMERANCE

An analytic tidbit. In analytic number theory we use the notation .X;B/ for
the counting function of the B-smooth numbers in the interval Œ1;X �. That is,

 .X;B/D #fm W 1 � m � X; m is B-smoothg:

Let us try our hand at estimating this function in the special case that B D X 1=2.
We can do this by an inclusion-exclusion, with a single exclusion, since no
number up to X is divisible by two primes >X 1=2. Thus,

 .X;X 1=2/D bX c �

X
X 1=2<p�X

bX=pc;

where p runs over primes in the stated interval. This identity uses the fact that
there are exactly bX=pc multiples of p in the interval Œ1;X �. And the multiples
of p are definitely not x1=2-smooth, so must be excluded. By removing the floor
functions in the above display, we create an error bounded by �.X /, so that the
prime number theorem implies that

 .X;X 1=2/D X

�
1 �

X
X 1=2<p�X

1=p

�
C O.X= log X /:

We now use a theorem of Mertens stating that we haveX
p�t

1=p D log log t C C C O.1= log t/; .4/

for a particular constant C . This theorem predates the prime number theorem,
but can also be derived from it. Using (4) we obtainX

X 1=2<p�X

1=p D

X
p�X

1=p �

X
p�X 1=2

1=p

D log log X � log log.X 1=2/C O
�
1= log.X 1=2/

�
D log 2 C O.1= log X /:

We thus have

 .X;X 1=2/D .1 � log 2/X C O.X= log X /;

so that
 .X;X 1=2/

X
� 1 � log 2 as X ! 1:

For example, about 30% of all numbers have no prime factors above their square
root. It may seem surprising that such a large proportion of numbers can be built
out of so few primes.

SMOOTH NUMBERS AND THE QUADRATIC SIEVE 77

The uu philosophy. In fact one can easily see that the exact same argument
shows that

 .X;X 1=u/

X
� 1 � log u

for each fixed value of u in the interval Œ1; 2�. But what of larger values of u?
Here we have the celebrated result of K. Dickman that

 .X;X 1=u/

X
� �.u/ .5/

for each fixed u � 1, where �.u/ is the Dickman–de Bruijn function. This func-
tion is defined as the continuous solution to the differential difference equation
u�0.u/D��.u�1/ for u>1, with initial condition �.u/�1 on the interval Œ0; 1�.
The function �.u/ is always positive, and as u grows, it decays to 0 roughly like
u�u. A result of E. R. Canfield, P. Erdős, and myself is that even if u is not
fixed, we still have something like (5) holding. Namely, for X ! 1;u ! 1

subject to X 1=u > .log X /1C", we have

 .X;X 1=u/

X
D u�.1Co.1//u; .6/

for any fixed " > 0.

The choice of the smoothness bound. Let B D X 1=u. Then X= .X;X 1=u/

is approximately equal to the reciprocal of the probability that a random inte-
ger up to X is B-smooth (it is exactly this reciprocal if X is an integer), and
so X= .X;X 1=u/ is about equal to the expected number of random trials of
choosing numbers in Œ1;X � to find one which is B-smooth. However, we would
like to have about �.B/ numbers that are B-smooth and sieving allows us to
spend about log log B steps per candidate, so the expected number of steps to
find our requisite stable of B-smooths is about �.B/.log log B/X= .X;X 1=u/.
Our goal is to minimize this expression. It is a bit ungainly, but if we make the
rough approximations �.B/ log log B � X 1=u, X= .X;X 1=u/ � uu, we are
looking at the simpler expression

X 1=uuu:

We would like to choose u so as to minimize this expression. Take logarithms:
so we are to minimize

1

u
log X C u log u:

The derivative is 0 when u2.log uC1/D log X . Taking the log of this equation,
we find that log u �

1
2

log log X , so that

u � .2 log X= log log X /1=2

78 CARL POMERANCE

and
B D exp

�
.2�1=2

C o.1//.log X log log X /1=2
�
: .7/

This calculation allows us not only to find the key parameter B, but also to
estimate the running time. With B given by (7), we have

X 1=uuu
D exp

�
.21=2

C o.1//.log X log log X /1=2
�
; .8/

and so this expression stands as the number of steps to find the requisite number
of B-smooth values. Recall that X D 2n1=2C" in our proto-algorithm, so that
the expression in (8) is of the form no.1/. That is, we do not need to take " as
fixed in the expression for X ; it may tend to 0 slowly. Letting X D n1=2Co.1/,
we get

B D exp
�
.1=2 C o.1//.log n log log n/1=2

�
;

X 1=uuu
D exp

�
.1 C o.1//.log n log log n/1=2

�
;

where the second expression is the number of steps to do the sieving to find the
requisite number of B-smooth polynomial values.

A general principle, a moral, and three bullets. The heuristic analysis above
is instructive in that it can serve, in an almost intact manner, for many factoring
algorithms. What may change is the number X , which is the bound on the
auxiliary numbers that are examined for smoothness. In the quadratic sieve
algorithm, we have X just a little above n1=2. In the number field sieve, this
bound on auxiliary numbers is much smaller, it is of the form no.1/. Smaller
numbers are much more likely to be smooth than larger numbers, and this gen-
eral principle “explains” the asymptotic superiority of the number field sieve
over the quadratic sieve; see [Stevenhagen 2008].

Our story has a moral. Smooth numbers are not an artifact, they were forced
upon us once we decided to combine auxiliary numbers to make a square. In
fact for random numbers this is a theorem of mine: the bound in (8), of X 1=uuu

for the depth of the search for random auxiliary numbers below X to form a
square, is tight. So the heuristic passage to B-smooth numbers is justified —
one is unlikely to be able to assemble a square from random numbers below X

in fewer choices than the bound in (8), even if one does not restrict to B-smooth
numbers with B the bound in (7).

There are several important points about smooth numbers that make them
indispensable in many number-theoretic algorithms:

� Smooth numbers have a simple multiplicative structure.
� Smooth numbers are easy to recognize.
� Smooth numbers are surprisingly numerous.

See [Granville 2008] in this volume for much more about smooth numbers.

SMOOTH NUMBERS AND THE QUADRATIC SIEVE 79

Gaussian reduction. If Gaussian reduction is used on the final matrix, our com-
plexity bound is ruined. In fact, our matrix will be about B�B, and the bound for
the number of steps to reduce such a matrix is about B3. With B given as in (8),
the time for the matrix step is then about exp..3=2 C o.1//.log n log log n/1=2/,
which then would be the dominant step in the algorithm, and would indicate that
perhaps a smaller value of B than in (8) would be in order.

There are several thoughts about the matrix issue. First, Gaussian reduction,
though it may be the only trick in the beginning undergraduate linear algebra
book, is not the only trick we have. There are in fact fast asymptotic meth-
ods, that are practical as well. I refer to the Wiedemann coordinate recurrence
method, the Lanczos method, etc. These reduce the complexity to the shape
B2Co.1/, and so the total asymptotic, heuristic complexity of the quadratic sieve
becomes, as first intimated above, exp..1 C o.1//.log n log log n/1=2/. Also,
Gaussian reduction is not quite as expensive as its complexity estimate indicates.
In practice, the matrix starts out as quite sparse, and so for awhile fill-in can be
avoided. And, the arithmetic in the matrix is binary, so a programmer may
exploit this, using say a 32-bit word size in the computer, and so process 32
matrix entries at once.

The matrix poses another problem as well, and that is the space that is needed
to store it and process it. This space problem is mitigated by using a sparse
encoding of the matrix, namely a list of where the 1’s are in the matrix. This
sparse encoding might be used at the start until the matrix can be cut down to
size somewhat.

In practice, people have found that it pays to slightly deoptimize B on the
low side. This in essence is a concession to the matrix problem, both to the
space required and the time required. While sieving can easily be distributed to
many unextraordinary processors, no one knows how to do this efficiently with
the matrix, and so this final step might well hog the memory and time of a large
expensive computer.

Conclusion. The quadratic sieve is a deterministic factoring algorithm with
conjectured complexity

exp..1 C o.1//.log n log log n/1=2/:

It is currently the algorithm of choice for “hard” composites with about 20 to
120 digits. (By “hard” I mean that the number does not have a small prime factor
that could be discovered by trial division or the elliptic curve method, nor does
the number succumb easily to other special methods such as the p �1 factoring
method or the special number field sieve.) For larger numbers, the number field
sieve moves to the front, but this “viability border” between the quadratic sieve
and the number field sieve is not very well defined, and shifts as new computer

80 CARL POMERANCE

architectures come on line and when new variations of the underlying methods
are developed.

There are many variations of the quadratic sieve which speed it up con-
siderably (but do not change the asymptotic complexity estimate of exp..1 C

o.1//.log n log log n/1=2/; that is, the variations only affect the “o.1/”). The
most important of these variations is the idea of using multiple polynomials,
due to J. Davis and P. Montgomery.

Essentially all of the practical factoring methods beyond trial division are
heuristic, though the elliptic curve method is “almost” rigorous. The fastest,
rigorous factoring algorithm is a probabilistic method of H. W. Lenstra and me,
with expected complexity exp..1 C o.1//.log n log log n/1=2/, namely the same
as for the quadratic sieve (though here a “fatter” o.1/makes the rigorous method
inferior in practice). The fastest, rigorous deterministic factoring algorithm is
due to J. Pollard and to V. Strassen, with a complexity of n1=4Co.1/.

We refer to [Crandall and Pomerance 2005] and [Granville 2008] for further
reading on this, and for references to original papers and other surveys.

Acknowledgements. I am indebted to John Voight for the careful notes he took
at my lecture, and to Lancelot Pecquet, who offered numerous improvements for
an earlier version of this article. This article was written while I was a member
of the Technical Staff at Bell Laboratories.

References

[Crandall and Pomerance 2005] R. Crandall and C. Pomerance, Prime numbers, 2nd
ed., Springer-Verlag, New York, 2005.

[Granville 2008] A. Granville, “Smooth numbers: computational number theory and
beyond”, pp. 267–323 in Surveys in algorithmic number theory, edited by J. P. Buhler
and P. Stevenhagen, Math. Sci. Res. Inst. Publ. 44, Cambridge University Press, New
York, 2008.

[Pomerance 1996] C. Pomerance, “A tale of two sieves”, Notices Amer. Math. Soc.
43:12 (1996), 1473–1485.

[Schoof 2008] R. J. Schoof, “Four primality testing algorithms”, pp. 101–125 in
Surveys in algorithmic number theory, edited by J. P. Buhler and P. Stevenhagen,
Math. Sci. Res. Inst. Publ. 44, Cambridge University Press, New York, 2008.

[Stevenhagen 2008] P. Stevenhagen, “The number field sieve”, pp. 83–100 in Surveys
in algorithmic number theory, edited by J. P. Buhler and P. Stevenhagen, Math. Sci.
Res. Inst. Publ. 44, Cambridge University Press, New York, 2008.

SMOOTH NUMBERS AND THE QUADRATIC SIEVE 81

CARL POMERANCE
DEPARTMENT OF MATHEMATICS
DARTMOUTH COLLEGE
HANOVER, NH 03755-3551
(603) 646-2415

carl.pomerance@dartmouth.edu

