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Abstract

We discuss the smallest algebraic number field which contains the
nth roots of unity and which may be reached from the rational field
Q by a sequence of irreducible, radical, Galois extensions. The degree
D(n) of this field over Q is ϕ(m), where m is the smallest multiple of n
divisible by each prime factor of ϕ(m). The prime factors of m/n are
precisely the primes not dividing n but which do divide some number
in the “Euler chain” ϕ(n), ϕ(ϕ(n)), . . . . For each fixed k, we show
that D(n) > nk on a set of asymptotic density 1.
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1 Introduction

Throughout this paper, all fields which appear are of characteristic zero. Let
K ⊂ L be a field extension (which is always assumed to be of finite degree).
We say L is prime radical over K if L = K[α], where αp ∈ K for some prime
p, and the polynomial f(X) = Xp − αp ∈ K[X] is irreducible. Note that for
such an extension to also be Galois it is necessary and sufficient that the pth
roots of unity lie in L.

The present paper is motivated by the following situation. Every Galois
extension K ⊂ L with solvable Galois group can be decomposed into a chain
of prime cyclic extensions, but these prime cyclic extensions are not neces-
sarily radical. In elementary Galois theory it is shown that if one introduces
to K and L the pth roots of unity for p running over the prime factors of
[L : K], then one has larger fields K ′ ⊂ L′, and here we can indeed find a
chain of prime radical Galois extensions, but these run from K ′ to L′. We
ask if one can find an extension L′′ of L so that there is a chain of prime
radical Galois extensions from K to L′′. In fact this is always the case, which
we record as follows.

Theorem 1. Let K ⊂ L be a Galois extension with solvable Galois group of
characteristic zero fields lying in an algebraically closed field U . There is a
unique minimal extension L ⊂ M ⊂ U such that M can be reached from K
by a finite sequence of prime radical Galois extensions. The field M is the
smallest extension of L in U that contains a primitive pth root of unity for
each prime p | [M : K].

For example, say K = Q and L = Q(ζ23), where in general we let ζn de-
note a primitive nth root of unity. This Galois extension is not only solvable,
it is cyclic. The field L has degree 22 over Q, and there is the intermediate

field A = Q

(

∑10
i=0 ζ3i

23

)

of degree 2 over Q. Clearly every field extension

of degree 2 is prime radical and Galois, so there is no problem here. But
the degree-11 extension from A to L is Galois, so cannot be prime radical,
since the eleventh roots of unity are not present. There is no getting around
an extension of degree eleven at some point, so we throw in the eleventh
roots of 1, giving us a prime radical degree-10 extension B of A. There is
the intermediate field C = A(ζ11 + ζ3

11 + ζ4
11 + ζ5

11 + ζ9
11) of degree 2 over A,

which is clearly prime radical and Galois. However the degree 5-extension
from C to B is prime radical but not Galois since the fifth roots of unity are
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not present. So, we throw them in too obtaining a prime radical extension
D = C(ζ5) which is cyclic of degree 4. Hence, D can be reached from C
by a sequence of two prime radical Galois extensions, each of degree two.
Further, the extension E = D(ζ11) of D is cyclic of degree five, and with the
fifth roots of unity present in D, it follows that it is both prime radical and
Galois. Finally, the extension M = E(ζ23) is a cyclic extension of degree
eleven of E, and with the 11th roots of unity present in E, it is both prime
radical and Galois. So

M = Q(

10
∑

i=0

ζ3i

23)(

4
∑

j=0

ζ3j

11)(ζ5)(ζ11)(ζ23) = Q(ζ1265),

a field of degree 880 over Q, may be reached from Q by a sequence of prime
radical Galois extensions.

Let us consider more generally the case for K = Q(ζn). We shall present
a formula for D(n), the degree of the field M determined in Theorem 1. Let
ϕk(n) be the kth iterate of the Euler function ϕ at n. By convention, we
have ϕ0(n) = n and ϕ1(n) = ϕ(n).

Theorem 2. Let F (n) be the product of the primes that divide
∏

k≥1 ϕk(n)
that do not divide n. Then the field M determined in Theorem 1 with K = Q

and L = Q(ζn) is Q(ζnF (n)), which has degree D(n) = ϕ(nF (n)) over Q.

Some years ago, Hendrik Lenstra communicated these results to one of
us (CP) and asked how large D(n) is for most numbers n. We are now in
a position to answer this question; the following result shows that D(n), for
most positive integers n, grows faster than any fixed power of n.

Theorem 3. For each ε > 0, the set of natural numbers n for which

D(n) > n(1−ε) log log n/ log log log n

has asymptotic density 1.

Note that a quantity similar to F (n) appears in the proof of Pratt [8]
that every prime has a polynomial-time proof of primality. (This result
predates the recent algorithm of Agrawal, Kayal and Saxena that decides in
deterministic polynomial time whether a given number is prime or composite.
The Pratt theorem shows only that a polynomial-time proof of primality
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exists; it does not show how to find it quickly.) In particular, if p is prime,
then Pratt reduces the primality of p to the primality of the prime factors
of F (p). Very recently, Bayless [2] was able to use the methods of this
paper and the Brun–Titchmarsh inequality to show that Theorem 3 holds
for prime numbers (that is, for all prime numbers except those in a set of
relative density 0 within the set of primes). As a consequence he shows that
for any number C > 0, the number of modular multiplications involved in
a Pratt certificate for the prime p exceeds C log p for all but o(π(x)) primes
p ≤ x.

Throughout this paper, we use c0, c1, . . . to denote computable positive
constants and x to denote a positive real number. We also use the Landau
symbols O and o and the Vinogradov symbols � and � with their usual
meanings. We write log x for the maximum of 1 and the natural logarithm
of x. We write p and q for prime numbers.

Acknowledgements. We thank Hendrik Lenstra for asking the question
about the normal size of D(n) and for his help with Section 2. We also thank
Tom Shemanske for some helpful discussions. This paper started during a
very enjoyable visit of the first author to Dartmouth College under a Shapiro
Fellowship in May of 2005. He would like to thank this department for its
hospitality and support.

2 The proofs of Theorem 1 and Theorem 2

We prove two lemmas. The first gives a sufficient condition for an extension
K ⊂ L to be decomposable into a tower of prime radical Galois extensions.

Lemma 4. If K ⊂ L is Galois with solvable Galois group, and ζp ∈ L for
each prime p dividing [L : K], then L can be reached from K by a sequence
of prime radical Galois extensions.

Proof. The proof relies on the well-known fact from Kummer theory that a
cyclic extension of prime degree p of a field K containing a primitive pth root
of 1 is prime radical. We now proceed by induction on [L : K]. If all ζp ∈ K
for prime p | [L : K], we then use the solvability of Gal(L/K) to break up
the extension into a tower of cyclic extensions of prime degrees, and apply
the above well-known fact to each of them. Otherwise, let p be minimal with
ζp 6∈ K. We now break up the extension K ⊂ L into K ⊂ K(ζp) ⊂ L and
deal with each piece inductively. By [K(ζp) : K] < p and the choice of p, the
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above fact applies to the prime degree pieces into which the abelian extension
K ⊂ K(ζp) can be broken up, while the inductive hypothesis applies to
K(ζp) ⊂ L.

The second lemma shows that the condition on pth roots of 1 is necessary.

Lemma 5. If K ⊂ L and L can be reached from K by a finite sequence of
prime radical Galois extensions, then ζp ∈ L for each prime p | [L : K].

Proof. Say the promised sequence of fields is K = K0 ⊂ K1 ⊂ · · · ⊂ Kn = L,
and let p be a prime factor of [L : K]. Then some [Ki+1 : Ki] = p. Since this
extension is radical and Galois, we must have ζp ∈ Ki+1, so that ζp ∈ L.

Lenstra points out to us that if one does not assume the radical extensions
in Lemma 5 to be Galois, but imposes that L/K is Galois, then the conclusion
of Lemma 5 still holds. Indeed, if L/K is Galois, and M is an extension of
L such that we can reach M from K by a finite sequence of prime radical
extensions (not necessarily Galois), then M contains ζp for each prime p |
[L : K]. To see this, let K = K0 ⊂ K1 ⊂ · · · ⊂ Kt = M be a sequence of
prime radical extensions, and let p be a prime dividing [L : K]. The sequence
of fields LKi runs from LK0 = L to LKt = M , so the sequence of degrees
[LKi : Ki] runs from [L : K], when i = 0, to 1, when i = t. Note too that
each extension Ki ⊂ LKi is Galois. Since

[LKi+1 : Ki+1] = [LKi : LKi ∩ Ki+1], (1)

we have each [LKi+1 : Ki+1] | [LKi : Ki]. Thus, there is a largest subscript i
such that p | [LKi : Ki]. Clearly, i < t. We will show that Ki ⊂ Ki+1 ⊂ LKi,
and that [Ki+1 : Ki] = p. Since Ki+1 is prime radical over Ki and LKi is
Galois over Ki, it follows that LKi contains ζp. To see the assertion, note
that (1) implies that

[LKi : Ki] = [LKi : LKi ∩ Ki+1][LKi ∩ Ki+1 : Ki]

= [LKi+1 : Ki+1][LKi ∩ Ki+1 : Ki].

By the choice of i, the left side is divisible by p and the first factor in the
last product is not divisible by p. Thus, the last factor in the last product is
divisible by p. Since LKi ∩ Ki+1 ⊂ Ki+1 and Ki+1/Ki is prime radical, the
extension LKi∩Ki+1/Ki is an extension of degree exactly p and LKi∩Ki+1 =
Ki+1. This proves our assertion, and so the alternate form of Lemma 5.
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We are now ready to prove Theorems 1 and 2.

Proof of Theorem 1. This follows immediately from Lemmas 4 and 5. Indeed,
to obtain M from L, we first adjoin to L = L0 all ζp for p | [L : K]. The
resulting field L1 is still Galois with a solvable group over K. We now adjoin
to L1 all ζp for p | [L1 : L0] and so reach a solvable extension L2 of K. We
continue to iterate the process, noting that if [Li : Li−1] = di, then [Li+1 : Li]
is a divisor of ϕ(di). Thus, the procedure stabilizes at the smallest field
M = Ln which contains all ζp for p | [M : K].

It follows from Lemma 4 that M may be reached from K by a sequence
of prime radical Galois extensions. The minimality, and thus uniqueness of
M follows from Lemma 5.

Proof of Theorem 2. We apply the algorithm described in the proof of The-
orem 1 to K = Q and L = Q(ζn). We obtain M = Q(ζm), where m is the
least multiple of n that is divisible by all primes dividing ϕ(m). It is easy to
see that

m = n
∏

p|ϕk(n) for some k≥1
p - n

p,

and we immediately recognize that m = nF (n). Thus, D(n) = [Q[ζm] : Q] =
ϕ(m) = ϕ(nF (n)).

Using the alternate form of Lemma 5 described before the proof of The-
orem 1 above, we also get the following alternate version of Theorem 1.

Theorem 6. Let K ⊂ L be a finite extension of characteristic zero fields
lying in an algebraically closed field U . Assume that the Galois group of the
normal closure L of L over K (in U) is solvable. There is a unique minimal
Galois extension L ⊂ M in U such that M can be reached from K by a finite
sequence of prime radical extensions. The field M is the smallest extension of
L in U that contains a primitive pth root of unity for each prime p | [M : K].

3 The proof of Theorem 3

3.1 Preliminary results

We recall a result from [4]:
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Proposition 7. There is an absolute constant c1 such that for each prime
p and integer k ≥ 0, the number of integers n ≤ x with p | ϕk(n) is at most
(x/p)(c1 log log x)k.

Let
FK(n) =

∏

0≤k≤K

ϕj(n).

One of our goals will be to establish the following result.

Proposition 8. There is an absolute constant c2 such that for all suffi-
ciently large numbers x, all numbers y ≥ 1 and all integers K ≥ 1, the
number of integers n ≤ x with p2 | FK(n) for some prime p > y is at most
(x/y)K(c2 log log x)2K .

Let Ω(n) denote the number of prime factors of n counted with multiplic-
ity. We will also prove the following result.

Proposition 9. The number of positive integers n ≤ x with the property
that Ω(FK(n)) > 2(5 log log x)K+1 is � (x/ log x)(c1 log log x)K uniformly in
K, where c1 is the constant from Proposition 7.

3.2 Proof of Theorem 3

Let x be a large positive real number and let 0 < ε < 1 be arbitrarily small
and fixed. Put

K = d(1 − ε) log log x/ log log log xe.

Assume n ≤ x, and factor FK(n) as AB, where each prime in A is at most
(log x)3 and each prime in B exceeds (log x)3. Since

(x/ log x)(c1 log log x)K = o(x),

Proposition 9 implies that but for o(x) choices of the positive integer n ≤ x,
we have

A ≤ (log3 x)2(5 log log x)K+1

≤ exp(2(5 log log x)K+2) = xo(1).

By the minimal order of ϕ(m)/m for m ≤ x, we have that each one of the
inequalities ϕj+1(n)/ϕj(n) > 1/(2 log log x) holds. We also may assume that
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n > x/(2 log log x), so that

FK(n) = nK+1
K
∏

i=0

ϕi(n)

n
= nK+1

K
∏

i=0

i−1
∏

j=0

ϕj+1(n)

ϕj(n)

> nK+1/(2 log log x)1+2+···+K > xK+1/(2 log log x)(K+1)(K+2)/2

> xK+1/2

for x sufficiently large. Thus, but for o(x) choices for n ≤ x, we have

B > xK+1/4.

By Proposition 8, the number of n ≤ x with p2 | FK(n) for some prime
number p > log3 x is O(x/ logx). Thus, for all but o(x) choices of n ≤ x, the
number B is squarefree. It is clear that B | nF (n), therefore ϕ(B) | D(n).
From the minimal order of the Euler function, we have

ϕ(B) >
B

2 log log B
>

xK+1/4

2(log(K + 1/4) + log log x)
>

xK+1/4

3 log log x
> xK .

Thus, D(n) > xK holds for all n ≤ x with at most o(x) exceptions, which
completes the proof of the theorem.

3.3 Proofs of the preliminary results

Before we begin the proof of Proposition 8, we establish some helpful nota-
tion. For a positive integer m, let

Pm = {p prime : p ≡ 0 or 1 (mod m)}.

By the Brun–Titchmarsh inequality and partial summation, we have

∑

p∈Pm

p≤x

1

p
≤

c0

ϕ(m)
log log x (2)

for some absolute constant c0 (see Lemma 1 in [3] or formula (3.1) in [4]).
Note that from Theorem 3.5 in [4], we may (and do) take the constant c1

from Proposition 7 equal to 2c0. Let

Sk(x, m) = {n ≤ x : m | ϕk(n)}, Sk(x, m) = #Sk(x, m).
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Lemma 10. For all sufficiently large values of x, if q1 ≤ q2 are primes and
k is any nonnegative integer, then

Sk(x, q1q2) ≤
x

q1q2
(3c0 log log x)2k.

Proof. We proceed by induction on k. The result is clearly true for k = 0.
Assume that the result holds at k. If q1q2 | ϕk+1(n), then either p | ϕk(n) for
some p ∈ Pq1q2

, or p1p2 | ϕk(n) for some p1 ∈ Pq1
and p2 ∈ Pq2

. Thus,

Sk+1(x, q1q2) ≤
∑

p∈Pq1q2

Sk(x, p) +
∑

p1∈Pq1
, p2∈Pq2

Sk(x, p1p2).

Thus, by Proposition 7 and the induction hypothesis, we have that

Sk+1(x, q1q2) ≤
∑

p∈Pq1q2
p≤x

x

p
(c1 log log x)k +

∑

p1∈Pq1
, p2∈Pq2

p1≤x, p2≤x

x

p1p2
(3c0 log log x)2k.

We now use (2), and so get

Sk+1(x, q1q2) ≤
x

ϕ(q1q2)
(c0 log log x)(c1 log log x)k

+
x

ϕ(q1)ϕ(q2)
(c0 log log x)2(3c0 log log x)2k

≤
x

q1q2

(

3c0 log log x(c1 log log x)k + (2c0 log log x)2(3c0 log log x)2k
)

.

Thus, using c1 = 2c0, the inequality at k + 1 follows for all x beyond some
uniform bound. Thus, the lemma has been proved.

We introduce the following notation. Let

SK(x, y) =
⋃

0≤k≤K
p>y, p prime

Sk(x, p2), SK(x, y) = #SK(x, y).

For nonnegative integers k1 and k2 with k1 < k2, and primes q1 and q2, let

Sk1,k2
(x, q1, q2) = {n ≤ x : q1 | ϕk1

(n), q2 | ϕk2
(n)}.

Lemma 11. Suppose that k1, k2 and K are integers with 0 ≤ k1 < k2 ≤ K
and q1 and q2 are primes with q2 > y and q2 not a divisor of ϕk2−k1

(q1). Then

# (Sk1,k2
(x, q1, q2) − SK(x, y)) ≤

x

q1q2

(3c0 log log x)k1+k2.
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Proof. We first show that if ϕj(m) is not divisible by the square of any prime
exceeding y for 0 ≤ j ≤ k − 1, then for each prime q | ϕk(m) with q > y,
there is a prime p | m with q | ϕk(p). Indeed take k = 1. Either there is a
prime p | m with q | ϕ(p) or p2 | m. By the hypothesis, the latter case does
not occur. Thus, the result is true at k = 1. Assume that it is true at k and
assume the hypothesis at k + 1. Then either there is a prime p′ | ϕk(m) with
q | ϕ(p′), or q2 | ϕk(m). Again, the latter case does not occur, so we have
the former case. By the induction hypothesis, there is a prime p | m with
p′ | ϕk(p). Then q | ϕk+1(p), and the assertion always holds.

Suppose that n ∈ Sk1,k2
(x, q1, q2) − SK(x, y), where k1, k2, K, q1 and q2

are as given in the lemma. By the above with m = ϕk1
(n), there is a prime

p | ϕk1
(n) with q2 | ϕk2−k1

(p). By the hypothesis of the lemma, we have
p 6= q1. Thus, pq1 | ϕk1

(n). It follows that

# (Sk1,k2
(x, q1, q2) − SK(x, y)) ≤

∑

p : q2|ϕk2−k1
(p)

Sk1
(x, pq1)

≤
∑

p : q2|ϕk2−k1
(p)

x

pq1

(3c0 log log x)2k1 ,

by Lemma 10. But from the remark on p. 190 of [4], we have

∑

p : q2|ϕk2−k1
(p)

1

p
≤

1

q2

(2c0 log log x)k2−k1.

Putting this inequality in the prior one gives the lemma.

Proof of Proposition 8. The count in Proposition 8 is at most

SK(x, y) +
∑

p>y

∑

0≤k1<k2≤K

# (Sk1,k2
(x, p, p) − SK(x, y)) .

By Lemma 10 with q1 = q2 = p, we have

SK(x, y) ≤
∑

p>y

∑

0≤k≤K

x

p2
(3c0 log log x)2k �

x

y
(3c0 log log x)2K .

We also take q1 = q2 = p in Lemma 11. Thus,
∑

p>y

∑

0≤k1<k2≤K

# (Sk1,k2
(x, p, p) − SK(x, y)) �

∑

p>y

x

p2
K(3c0 log log x)2K

�
x

y
K(3c0 log log x)2K .
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Thus, the proposition follows with c2 any number larger than 3c0.

The next two results will be helpful in establishing Proposition 9. The
proofs are suggested in Exercise 05 in [5].

Lemma 12. Uniformly for 1 < z < 2, we have

∑

n≤x

zΩ(n) �
x(log x)z−1

2 − z
.

Proof. Let g be the multiplicative function with g(pa) = za − za−1 for primes
p and positive integers a. Then zΩ(n) =

∑

d|n g(d). Thus, the sum in the
lemma is equal to

∑

m≤x

g(m)
⌊ x

m

⌋

≤ x
∑

m≤x

g(m)

m
≤ x

∏

p≤x

(

1 +
z − 1

p
+

z2 − z

p2
+ · · ·

)

= x
∏

p≤x

p − 1

p − z
=

x

2 − z

∏

3≤p≤x

p − 1

p − z
�

x

2 − z
(log x)z−1.

This completes the proof of the lemma.

Lemma 13. Uniformly for each positive integer k,

∑

n≤x
Ω(n)≥k

1 �
k

2k
x log x.

Proof. This merely involves applying Lemma 12 with z = 2 − 1/k. Indeed,
if N is the sum in the present lemma, then Lemma 12 implies that

N �
x(log x)1−1/k

(1/k)(2 − 1/k)k
,

and it remains to note that (2 − 1/k)k = 2k(1 − 1/(2k))k ≥ 2k−1.

A version of Lemma 13 above appears also in [7].

Proof of Proposition 9. By Lemma 13, if 0 < t ≤ x, the number of primes
p ≤ t with Ω(p−1) > 5 log log x is O(t/ log2 x). This holds since 5 log 2−1 >
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2, and indeed the same estimate holds for the number of integers n ≤ t with
Ω(n) > 5 log log x. Thus, by partial summation,

∑

p≤x
Ω(p−1)>5 log log x

1

p
�

1

log x
. (3)

If Ω(n) ≤ 5 log log x and if each prime p dividing FK−1(n) has the property
that Ω(p − 1) ≤ 5 log log x, then for all positive integers 0 ≤ k ≤ K we
have Ω(ϕk(n)) ≤ (5 log log x)k+1, so that Ω(FK(n)) ≤ 2(5 log log x)K+1. We
conclude that if Ω(FK(n)) > 2(5 log log x)K+1, then either Ω(n) > 5 log log x
or there is some prime p | FK−1(n) with Ω(p−1) > 5 log log x. It follows from
Lemma 13, that the number of n in the first category is O(x/ log2 x), while
it follows from (3) and Proposition 7 that the number of n in the second
category is O((x/ log x)(c1 log log x)K−1). This completes the proof of the
proposition.

4 Thoughts on the normal order of D(n)

Let kϕ(n) be the least integer k with ϕk(n) = 1. Further, let λ(n) denote
Carmichael’s function, so that λ(n) is the order of the largest cyclic subgroup
of the multiplicative group (Z/nZ)×. With λk as the iterated Carmichael
function, let kλ(n) be the least k with λk(n) = 1. It is easy to see that the
prime factors of

∏

k≥1 ϕk(n) are the same as the prime factors of
∏

k≥1 λk(n),
so that we might have stated Theorem 2 in terms of the iterated λ-function
rather than the iterated ϕ-function. Thus,

D(n) = ϕ(nF (n)) ≤ nF (n) ≤ nkλ(n)+1. (4)

It is suggested in [6] that for all n lying outside a set of asymptotic density
0, the inequality kλ(n) � log log n holds. If so, then apart from a factor of
order log log log n in the exponent, Theorem 3 is best possible.

Let r(n) denote the radical of ϕ(n), that is, the largest squarefree divisor
of ϕ(n), and let kr(n) be the number of iterates of r that brings n to 1. We
have kr(n) ≤ kλ(n) and D(n) ≤ nkr(n)+1, thus strengthening (4). This in-
equality and Theorem 3 imply that kr(n) ≥ (1 + o(1)) log log n/ log log log n
for a set of n of asymptotic density 1. It is easy to see that kλ(n) � log n
for infinitely many n; just take n of the form 2m (and with n = 3m, we get a
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slightly better constant). We do not know how to show that kr(n) � log n
infinitely often, and perhaps we always have kr(n) = o(log n). Surely it must
be true that kr(n) = o(log n) on a set of asymptotic density 1, but we do not
know how to prove this assertion. We also do not know how to prove the anal-
ogous assertion for kR(n), where R(n) is defined as the largest prime factor of
ϕ(n). We cannot even prove that kR(n) = o(log n) for a fixed positive propor-
tion of integers n, nor can we show that kR(n) = o(log n) for infinitely many
primes n. Here is one more statement showing our state of ignorance. Let
Prime(n) denote the smallest prime that is congruent to 1 modulo n, and let
Primek(n) denote the kth iterate. For example, Prime2(3) = Prime(7) = 29.
Presumably, the sequence Primek+1(n)/Primek(n) is unbounded as k → ∞
for each fixed n, but we cannot show this is true for any n. Note that if this
sequence is bounded for some n, then kR(n) � log n for infinitely many n.
However, we conjecture both of these assertions are false. For some related
considerations, see the paper [1].

We close by remarking that we have kλ(n) � log log n almost always,
that is, for all n outside a set of density 0. Indeed, we have from Theorem
4.5 of [4] that there is a positive constant c3 such that for almost all n, there
is some iterate ϕj(n) divisible by every prime up to (log n)c3 . Since every
prime that divides some iterate of ϕ at n also divides some iterate of λ at n
(as remarked above), we have

kλ(n) ≥ max
p≤(log n)c3

kλ(p).

Further, by Linnik’s theorem, there exists a positive constant c4 such that
for all sufficiently large values of x, there is a prime p ≤ x with 2u | p− 1 for
some integer u with 2u > xc4 . For this prime p, we have kλ(p) > u/2 � log x.
Applied with x = (log n)c3, we have the assertion.
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