
Rank statistics for a family of elliptic curves

over a function field

Carl Pomerance

Department of Mathematics, Dartmouth College

Hanover, NH 03755-3551, USA
carl.pomerance@dartmouth.edu

Igor E. Shparlinski

Department of Computing, Macquarie University
Sydney, NSW 2109, Australia

igor@ics.mq.edu.au

Dedicated to John Tate

Abstract

We show that the average and typical ranks in a certain parametric

family of elliptic curves described by D. Ulmer tend to infinity as the

parameter d → ∞. This is perhaps unexpected since by a result of

A. Brumer, the average rank for all elliptic curves over a function field

of positive characteristic is asymptotically bounded above by 2.3.
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1 Introduction

1.1 Background

Let Fq be the finite field of q elements of prime characteristic p. We consider
the parametric family of curves

Ed : y2 + xy = x3 − td

over the function field Fq(t), where d is a positive integer. Among other
results, Ulmer [21, Proposition 6.4] has shown that the conjecture of Birch
and Swinnerton-Dyer holds for each Ed when d is not divisible p.

Denote by Up the set of positive integers which divide some member of
the sequence pn + 1, for n = 1, 2, . . . . Let ϕ denote Euler’s function, and for
a, b coprime integers with b > 0, let `a(b) be the multiplicative order of the
residue class a in the group (Z/bZ)×. We always have `a(b) | ϕ(b). Ulmer [21,
Theorem 9.2] has also shown that for every d ∈ Up, the rank Rq(d) of Ed over
Fq(t) is given by

Rq(d) = Iq(d) − Cq(d), (1)

where

Iq(d) =
∑

e|d

ϕ(e)

`q(e)

and Cq(d) is an explicit correction term that always satisfies 0 ≤ Cq(d) ≤ 4.
(Note that d ∈ Up implies that gcd(e, q) = 1 for each e | d, so that Iq(d) is
defined.) Since members of Up are coprime to p, the Birch and Swinnerton-
Dyer conjecture holds for Ed for d ∈ Up, so that (1) holds as well for the
analytic rank.

Ulmer [21] considers the specific case d = pn + 1 and q = p. Then
`p(d) = 2n, and each `p(e) | 2n, so that

Ip(p
n + 1) ≥

∑

e|pn+1

ϕ(e)

2n
=

pn + 1

2n
.

Thus,

Rp(d) ≥
d log p

2 log d
− 4,

which compares very nicely with the upper bound

Rp(d) ≤
d log p

2 log d
+ O

(

d(log p)2

(log d)2

)
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(uniformly over d and p) due to Brumer [2].
It is interesting that the expression Iq(d) occurs in other contexts. For

example, Moree and Solé [14] show that Iq(d) is the number of irreducible
factors of td −1 in Fq[t] and go on to apply Iq(d) to a combinatorial problem.

1.2 Our results

Using (1), we show that on average over all numbers d (without the restriction
that d ∈ Up), the rank of Ed is quite large. We do not know how to bound
the rank from above for integers d 6∈ Up, but we can show that the average
over Up is not quite as big as Brumer’s upper bound.

Theorem 1. There exists an absolute constant α > 1/2 such that for all
finite fields Fq and all sufficiently large large values of x (depending only on
the characteristic p of Fq),

1

x

∑

d≤x

Rq(d) ≥ xα. (2)

Moreover, for x sufficiently large depending on q,

(

∑

d≤x
d∈Up

1

)−1
∑

d≤x
d∈Up

Rq(d) ≤ x1−log log log x/(2 log log x). (3)

The constant α in (2) can be explicitly evaluated. Moreover, assuming
the Elliott–Halberstam conjecture about the distribution of primes in residue
classes (described below), we can show that α may be taken as any number
smaller than 1. Probably the upper bound (3) is close to the truth, but we do
conjecture that the “2” in the denominator of the exponent can be removed.

The average order is presumably skewed by a few numbers d where the
rank is especially big, at least that is the way we prove the lower bound in
Theorem 1. One might wonder about Rq(d) for a “typical” number d. We
show that for almost all numbers d, in the sense of asymptotic density, the
rank is still fairly large.

Theorem 2. Let Fq be a finite field of characteristic p and let ε > 0 be
arbitrary. As x → ∞, except for op,ε(x) values of d ≤ x, we have

Rq(d) ≥ (log d)(1/3−ε) log log log d.
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It has been shown by Brumer [2] that the average analytic rank over
all elliptic curves over a function field of positive characteristic is bounded
above by 2.3 asymptotically. Since by a result of Tate [19] the algebraic
rank is bounded by the analytic rank, the same bound holds as well for the
algebraic rank. Thus, Theorems 1 and 2 show that the thin family consisting
of the curves Ed is indeed very special.

Concerning the set Up for which the rank formula (1) holds, we show
that the number of elements in Up up to x is asymptotic to cpx/(log x)2/3

as x → ∞, where cp is a positive constant, see Corollary 5 below. (A more
precise formula may be found in Moree [13, Theorem 5].)

We remark that it seems very plausible that using the methods of [5]
and [12] one can show that under the assumption of the Generalized Riemann
Hypothesis for Kummerian fields over Q, we have

Rq(d) = (log d)(1+o(1)) log log log d

for almost all numbers d ∈ Up in the sense of asymptotic density. We hope
to take this up in a future paper.

Perhaps more importantly, it should be interesting to investigate the sit-
uation for more families of elliptic curves than the one family of Ulmer that
we consider here. For example, in Darmon [3] many other families are con-
sidered each of a similar flavor to Ulmer’s. One might not know the Birch
and Swinnerton-Dyer conjecture in these cases, but at least some statistical
information might be gleaned for the analytic ranks.

Acknowledgment. We wish to thank Douglas Ulmer for some helpful com-
ments and his encouragement. We also thank an anonymous referee for a
careful reading.

2 Preparations

2.1 Notation

We always use the letters l, p, r, s, and t to denote prime numbers, while
d, e, k, m, and n always denote positive integers. We let P (n) denote the
largest prime factor of n if n > 1, and P (1) = 1.

As usual, we use π(x; k, a) to denote the number of primes r ≤ x with
r ≡ a (mod k), and we let π(x) denote the total number of all primes r ≤ x.
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Given a set A of positive integers, we use A(x) to denote the subset of
a ∈ A with a ≤ x.

For any real number x > 0 and any integer ν ≥ 1, we write logν x for the
function defined inductively by log1 x = max{log x, 1} (where log x is the
natural logarithm of x) and logν x = log1(logν−1 x) for ν > 1.

We use the order symbols O, o, �, � with their usual meanings in
analytic number theory, where all implied constants are absolute, unless in-
dicated by subscripts. (We recall that the notations A � B, B � A and
A = O(B) are equivalent.)

We use vl(n) to denote the (exponential) l-adic valuation of n; that is,
vl(n) is the exponent on the prime l in the prime factorization of n.

2.2 Structure of Up

Recall that Up is the set of natural numbers that divide pn + 1 for some
positive integer n.

Lemma 3. Let p be a prime number and suppose d ∈ Up.

(i) There is a positive integer k such that v2(`p(r)) = k for each odd prime
factor r of d.

(ii) If p > 2 and k = 1, then v2(d) ≤ v2(p + 1), while if p > 2 and k > 1,
then v2(d) ≤ 1.

Proof. Suppose d ∈ Up and r is an odd prime factor of d. Since d | pn +1 for
some positive integer n, we have r | pn + 1 and r - pn − 1. Thus, `p(r) | 2n
and `p(r) - n, so v2(`p(r)) = v2(2n) = v2(n) + 1. Thus, (i) follows with
k = v2(n) + 1. For (ii) note that from our proof of (i), k = 1 if and only if n
is odd. But for odd n we have v2(p

n + 1) = v2(p + 1), so v2(d) ≤ v2(p + 1).
And if k > 1, we have n even, so pn + 1 ≡ 2 (mod 4) and v2(d) ≤ 1.

For p prime and k a positive integer let Up,k denote the set of integers
d coprime to p such that for each odd prime r | d we have v2(`p(r)) = k;
further, if p > 2, k = 1, then v2(d) ≤ v2(p + 1), and if p > 2, k > 1, then
v2(d) ≤ 1. Thus, Lemma 3 implies that Up ⊂

⋃

k≥1 Up,k. In fact, they are
equal.

Lemma 4. For each prime p, we have Up =
⋃

k≥1 Up,k.

5



Proof. Suppose d ∈ Up,k. We may assume d > 2. If d is a power of 2,
then k = 1, p > 2, and d | p + 1, so that d ∈ Up. If d is not a power
of 2, let do be the odd part of d and let m = `p(do). Then m is the least
common multiple of the numbers `p(r

a) where ra runs over the odd prime
power divisors of d. We have `p(r

a)/`p(r) | ra−1, so that if r is odd, we have
v2(`p(r

a)) = v2(`p(r)) = k. Thus, v2(m) = k and we have r - pm/2 − 1. But
ra | pm−1, so we have ra | pm/2 +1. Thus, the odd part of d divides pm/2 +1.
If k > 1 and p > 2, then v2(d) ≤ 1, so that the even part of d also divides
pm/2 + 1. Further, if k = 1 and p > 2, then v2(d) ≤ v2(p + 1). In this case,
m/2 is odd, so that p + 1 | pm/2 + 1, and so the even part of d again divides
pm/2 + 1. We thus have that d | pm/2 + 1, and this concludes the proof.

Let Rp,k denote the set of odd prime members of Up,k. That is,

Rp,k = {r an odd prime : r 6= p, v2(`p(r)) = k}.

Then, Up,k is the set of integers d all of whose odd prime factors come from
Rp,k, with v2(d) bounded as discussed above. After a classical result of
Wirsing [23], the distribution of the sets Up,k within the natural numbers
follows from the distribution of the sets Rp,k within the prime numbers in a
way that is made more precise below.

The following result should be compared with results in [13] and with [16,
Theorem 1.3]. We discuss the proof in Section 2.4.

Proposition 1. Let x be large and let p ≤ (log x)2/3 be a prime number. Let

E(x) =
x log2 x

(log x)7/6

For p > 2, we have

#Rp,1(x) =
1

3
π(x) + O(E(x)), #Rp,2(x) =

1

6
π(x) + O(E(x)),

∑

k≥3

#Rp,k(x) =
1

6
π(x) + O(E(x)).

Further,

#R2,1(x) =
7

24
π(x) + O(E(x)), #R2,2(x) =

1

3
π(x) + O(E(x)),

∑

k≥3

#R2,k(x) =
1

12
π(x) + O(E(x)).
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For p a prime, let

Rp =

{

Rp,1 , p > 2

R2,2 , p = 2.

From Proposition 1 we have

#Rp(x) =
1

3
π(x) + O

(

x log2 x

(log x)7/6

)

. (4)

We can now establish the following result about the distribution of the
sets Up.

Corollary 5. For each prime p, there is a positive constant cp such that

#Up(x) ∼ cpx/(log x)2/3

as x → ∞.

Proof. It follows directly from Proposition 1 and Wirsing’s theorem [23] (see
too [20, Chapter II.7, Exercise 9]) that there are positive constants cp such
that

#Up,1(x) ∼ cpx/(log x)2/3 for p > 2 and #U2,2(x) ∼ c2x/(log x)2/3

as x → ∞. Using the same tools, we have

#U2,1(x) � x/(log x)17/24, #Up,2(x) � x/(log x)5/6 for p ≥ 3,

#

(

⋃

k≥3

Up,k

)

(x) � x/(log x)5/6 for all p.

The result thus follows from Lemma 4.

Remark 1. As mentioned in the introduction, a more precise result, giving
an asymptotic expansion for #Up(x) is presented by Moree [13, Theorem 5].

We need an estimate on the cardinality of a somewhat more specialized
set which we use in the sequel. Suppose m is an odd integer not divisible by
p. Let

Qp,m = {r ∈ Rp : r ≡ 1 (mod m)}. (5)
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Proposition 2. Let x be large. Assume that a prime p and a positive odd
integer m not divisible by p satisfy the inequalities

p ≤ (log x)2/3 and m ≤
(log x)1/6

log2 x
.

We have

#Qp,m(x) =
1

3ϕ(m)
π(x) + O

(

x log2 x

(log x)7/6

)

.

2.3 Chebotarev density theorem and its applications

We let L be a finite Galois extension of Q with Galois group G of degree
k = [L : Q] and discriminant ∆. Let C be a union of conjugacy classes of G.
We define

πC(x, L/Q) = #{p ≤ x : p unramified in L/Q, σp ∈ C},

where σp is the Artin symbol of p in the extension L/Q, see [8].
Combining a version of the Chebotarev density theorem due to Lagarias

and Odlyzko [11] together with a bound for a possible Siegel zero due to
Stark [18], we obtain the following result.

Lemma 6. There are absolute constants A1, A2 > 0 such that if

log x ≥ 10k(log |∆|)2 (6)

then

∣

∣

∣

∣

πC(x, L/Q) −
#C

#G
li (x)

∣

∣

∣

∣

�
#C

#G
li
(

xβ
)

+ ‖C‖x exp

(

−A1

√

log x

k

)

with some β satisfying the inequality

β < 1 −
A2

max{|∆|1/k, log |∆|}
,

where ‖C‖ is the number of conjugacy classes in C.

We use Lemma 6 in the proofs of Propositions 1 and 2. It should be noted
that in these applications we are studying primes which split completely in
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certain normal extensions of Q, and so we might have gotten by with just
Landau’s prime ideal theorem. However, to our knowledge the best explicit
form of the prime ideal theorem is that given in the more general Lemma 6.

In order to apply Lemma 6 we need an estimate for the discriminants of
certain number fields K ⊂ L, which we now present. Let ∆(L/K) denote
the relative discriminant of L over K and let ∆(L) = ∆(L/Q).

Lemma 7. Let n, d be positive integers with d | n and let a be an integer
with |a| > 1. Let h denote the largest integer for which a is an h-th power in
Z and assume gcd(d, h) = 1. For the field L = Q(e2πi/n, a1/d), we have

[L : Q] = dϕ(n) or dϕ(n)/2, |∆(L)| ≤ (dϕ(n)|a|)[L:Q].

Further, if a = a1a
2
2 where a1 is squarefree, then [L : Q] = dϕ(n)/2 if and

only if d is even and either a1 | n, a1 ≡ 1 (mod 4) or 4a1 | n, a1 6≡ 1
(mod 4).

Proof. The assertions about [L : Q] follows from [6, Lemma 2.2] (for the
case d = n, see also [10, Equations (12) and (13)] and [22, Proposition 4.1]).
Let K be the cyclotomic field Q(e2πi/n) and write [L : Q] = dϕ(n)/ϑ, where
ϑ = 1 or 2. In particular if ϑ = 2, then d is even and a1/2 ∈ K. Thus,
the minimum polynomial for a1/d over K is xd/ϑ − a1/ϑ = f(x), say. From
elementary algebraic number theory we have

∆(L) = ∆(K)[L:K]NK/Q(∆(L/K)).

Now ∆(L/K) divides NL/K(f ′(a1/d)) (see [15, Proposition 2.9]) so that

NK/Q(∆(L/K)) | NK/Q(NL/K(f ′(a1/d))) = NL/Q((d/ϑ)a1/ϑ−1/d).

Since each conjugate of (d/ϑ)a1/ϑ−1/d has absolute value (d/ϑ)|a|1/ϑ−1/d, we
have

|NK/Q(∆(L/K))| ≤ ((d/ϑ)|a|1/ϑ−1/d)[L:Q] ≤ (d|a|)[L:Q].

It is well-known and easy to see from Hadamard’s inequality for determi-
nants that |∆(K)| ≤ ϕ(n)ϕ(n). Thus |∆(K)|[L:K] ≤ ϕ(n)[L:K]ϕ(n) = ϕ(n)[L:Q].
Assembling our estimates gives the lemma.

For a prime p and natural numbers d, n with d | n, let

Lp,n,d = Q(e2πi/n, p1/d)
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and let $p(x; n, d) denote the number of primes r ≤ x with r ≡ 1 (mod n)
and d | (r − 1)/`p(r). Thus, $p(x; n, d) is the number of primes r ≤ x which
split completely in Lp,n,d. We may thus use Lemmas 6 and 7 to estimate
$p(x; n, d).

Lemma 8. For

p ≤ (log x)2/3 and n ≤
(log x)1/6

log2 x

and any number A > 0, we have

$p(x; n, d) =
1

[Lp,n,d : Q]
li (x) + OA

(

x

(log x)A

)

.

Proof. We apply Lemma 6 to the primes that split completely in Lp,n,d. Thus,
#C = 1 and #G = [Lp,n,d : Q]. Using Lemma 7 and the assumptions on p
and n, we have with ∆ = ∆(Lp,n,d),

[Lp,n,d : Q](log |∆|)2 ≤ (dϕ(n))3 (log(dnp))2 ≤ n6 (log2 x)2 = o(log x).

Thus, for x sufficiently large, the condition (6) of Lemma 6 is satisfied. Also

max{|∆|1/[Lp,n,d:Q], log |∆|} ≤ max{dϕ(n)p, dϕ(n) log(dnp)}

≤ dn(log x)2/3 ≤ n2(log x)2/3 ≤
log x

(log2 x)2
.

Therefore,

β < 1 −
A2(log2 x)2

log x
,

so that
li (xβ) ≤ xβ ≤

x

(log x)A2 log2 x
.

The second term in the inequality of Lemma 6 is smaller than this estimate
under the above restriction on the size of n, so we have the lemma.

Remark 2. One can reduce the limit for p in Lemma 8 and get a much
stronger bound of the error term. However this does not affect our main
results.
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2.4 Proof of Propositions 1 and 2

We are now in a position to prove Proposition 1. For example, take the case
of Rp,1 for p > 2. Let

Np,k = $p(x; 2k, 2k−1) − $p(x; 2k, 2k)

−
(

$p(x; 2k+1, 2k−1) − $p(x; 2k+1, 2k)
)

.

Then Np,k is precisely the number of primes r ≤ x with v2(`p(r)) = 1, and
v2(r − 1) = k. Indeed, the first two terms count those primes r satisfying
these conditions plus some additional primes r for which v2(r − 1) > k, and
the last two terms remove from the count these extra primes r. Thus,

#Rp,1(x) =
∑

k≥1

Np,k. (7)

By Lemma 7 and also Lemma 8 (used with A = 2), if 2k+1 ≤ (log x)1/6/ log2 x,
we have

Np,k =

(

1

22k−2
−

1

22k−1
−

1

22k−1
+

1

22k

)

li (x) + O

(

x

(log x)2

)

=
1

22k
li (x) + O

(

x

(log x)2

)

.

(8)

We apply (8) in (7) for those values of k with 2k+1 ≤ (log x)1/6/ log2 x, and
for larger values of k we use that by the Brun–Titchmarsh theorem, see [20,
Chapter I.4, Theorem 9],

Np,k ≤ π(x; 2k, 1) �
π(x)

2k
for 2k ≤ x1/2,

and also the elementary estimate

Np,k ≤ π(x; 2k, 1) ≤
x

2k
,

used when 2k > x1/2. We thus obtain

#Rp,1 =
1

3
li (x) + O

(

x log2 x

(log x)7/6

)

=
1

3
π(x) + O

(

x log2 x

(log x)7/6

)

by the prime number theorem.
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The remaining cases of Proposition 1 follow in a similar manner, noting
that when p = 2 we can be in the situation when [Lp,n,d : Q] = dϕ(n)/2.

The same method can be used to prove Proposition 2. Indeed, in the
expression for Np,k put a factor m in the four middle arguments and then
use Lemma 8 if m2k+1 ≤ (log x)1/6/ log2 x, the Brun–Titchmarsh theorem for
(log x)1/6/ log2 x < m2k+1 ≤ x1/2, and the trivial bound for m2k+1 > x1/2.
We suppress the details.

2.5 Ranks of curves Ed

We need the following inequality which allows us to study the rank of Ed for
an arbitrary d ≥ 1.

Lemma 9. For positive integers f, d with f | d, we have Rq(d) ≥ Rq(f).

Proof. It is clear that Ed contains the subgroup of points (x(tg), y(tg)), where
g = d/f . This subgroup is isomorphic to Ef .

Remark 3. It is clear from the definition of Iq(d), that if f | d then Iq(d) ≥
Iq(f).

For d a positive integer and p a prime, let dp be the largest divisor of d
whose every prime factor comes from Rp, that is,

dp =
∏

r∈Rp

rvr(d). (9)

We are now able to combine Lemma 9 with (1) to get the following result.

Proposition 3. Let Fq be a finite field of characteristic p. For every positive
integer d we have

Rq(d) ≥
∑

e|dp

ϕ(e)

`q(e)
− 4.

Let λ denote the Carmichael function; it is defined for each integer d ≥ 1
as the largest order of an element in the multiplicative group (Z/dZ)×. More
explicitly, for any prime power lν, one has

λ(lν) =

{

lν−1(l − 1), if l ≥ 3 or ν ≤ 2,
2ν−2, if l = 2 and ν ≥ 3,
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and for an arbitrary integer d ≥ 2,

λ(d) = lcm [λ(lν) : lν | d] .

Note that λ(1) = 1.
If d is coprime to q, then as is immediate from the definitions,

`q(d) ≤ λ(d).

We conclude from Proposition 3 that for any finite field Fq of characteristic
p and any positive integer d, we have

Rq(d) ≥
ϕ(dp)

λ(dp)
− 4. (10)

3 Proof of Theorem 1

We begin with the upper bound (3) since it is easier. Note that

∑

d∈Up(x)

Rq(d) ≤
∑

d∈Up(x)

Iq(d) =
∑

d∈Up(x)

∑

e|d

ϕ(e)

`q(e)

≤ x
∑

e∈Up(x)

ϕ(e)

e`q(e)
≤ x

∑

e∈Up(x)

1

`q(e)
≤ x

∑

n≤x

1

n

∑

e≤x
gcd(e,q)=1
`q(e)=n

1.

In [17, Theorem 1] it is shown that

∑

m≤x
m odd

`2(m)=n

1 ≤ x1−(3+log3 x)/(2 log2 x)

for all sufficiently large x, uniformly in n. An examination of the proof shows
that for any integer a and all sufficiently large x depending only on a,

∑

m≤x
gcd(m,a)=1
`a(m)=n

1 ≤ x1−(3+log3 x)/(2 log2 x)
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for all n. Using this estimate in the calculation above, we have

∑

d∈Up(x)

Rq(d) ≤ x2−(3+log3 x)/(2 log2 x)
∑

n≤x

1

n
≤ x2−(2+log3 x)/(2 log2 x)

for all sufficiently large x depending on the choice of q. Using Corollary 5
completes the proof of (3).

To prove the lower bound (2) in Theorem 1 we loosely follow the con-
struction from Erdős [4] to construct integers v with many solutions to the
equation ϕ(n) = v. When p, the characteristic of Fq, is odd, let u be an
integer such that u ≡ 3 (mod 4) and the Legendre symbol (u/p) is −1; and
if p = 2, let u = 5. Let 1/12 > δ > 0 be a small absolute constant to be
chosen shortly, let z be large, and let

I = [z1/2−2δ , z1/2−δ ], R = {r prime : r ≡ u (mod 4p), P (r − 1) ∈ I}.

Note that any prime r ≡ u (mod 4p) is in Rp, so in particular, we have
R ⊂ Rp. Let r, s, t denote prime variables. We have

#R(z) =
∑

s∈I

∑

r≤z
r≡u (mod 4p)
r≡ 1 (mod s)

1 −
∑

s∈I

∑

s<t<z/s

∑

r≤z
r ≡u (mod 4p)
r ≡ 1 (mod st)

1 = S1 − S2,

say. Indeed, any integer n ≤ z is divisible by either 0, 1, or 2 distinct primes
that are greater than z1/2−2δ , so S1 counts 0, 1, or 2 correspondingly if r − 1
has 0, 1, or 2 primes in I; and S2 makes the necessary correction in the case
of 2 primes, or in the case that r − 1 is also divisible by a larger prime.

We now recall the Bombieri–Vinogradov theorem which states that for
each A there is some number B such that

∑

m≤z1/2/ logB z

max
gcd(a,m)=1

∣

∣

∣

∣

π(z; m, a) −
1

ϕ(m)
li (z)

∣

∣

∣

∣

�
z

logA z
, (11)

see [20, Chapter II.8, Theorem 11].
Using (11) and p fixed, we have by the Mertens formula

S1 ∼
log((1 − 2δ)/(1 − 4δ))

ϕ(4p)
π(z) as z → ∞. (12)
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We reorganize S2 by letting (r − 1)/st = a, so that

S2 =
∑

a<z4δ

∑

s∈I

∑

s<t<z/as
ast+1≡u (mod 4p)

ast+1 prime

1.

Note that since z/as ≥ z1/2−3δ , we have by Brun’s method (see [9, Theo-
rem 2.3]) that the double sum on s and t is

∑

s∈I

∑

s<t<z/as
ast+1≡u (mod 4p)

ast+1 prime

1 �
∑

s∈I

z

ϕ(4pas) log2(z/as)

�
log((1 − 2δ)/(1 − 4δ))

ϕ(4pa)

z

log2 z
.

Thus,

S2 �
∑

a<z4δ

log((1 − 2δ)/(1 − 4δ))

ϕ(4pa)

z

log2 z
� δ

log((1 − 2δ)/(1 − 4δ))

ϕ(4p)
π(z),

where we use the estimate

∑

a<Z

1

ϕ(a)
=

∑

a<Z

1

a

∑

d|a

µ2(d)

ϕ(d)
≤
∑

d<Z

1

ϕ(d)

∑

b<Z/d

1

db

� log Z
∑

d

1

ϕ(d)d
� log Z.

Thus, there is an absolute choice for δ > 0 such that for all large z
depending on the choice of p, we have S2 ≤ S1/4. We now fix such a value of
δ. Note that the identity #R(z) = S1 − S2 and the asymptotic formula (12)
applied to z/2 show that #R(z/2) ≤ (1/2 + o(1))S1. We conclude that for
z sufficiently large, depending on the choice of p, that

#(R ∩ [z/2, z]) ≥
log((1 − 2δ)/(1 − 4δ))

5ϕ(4p)
π(z). (13)

Let x be large, and let

y =
log x

log2 x
and z = y2/(1−2δ).

15



Let My denote the least common multiple of the integers in [1, y] and let

Q = {r ∈ R ∩ [z/2, z] : r − 1 | My}.

We note that for r ∈ Q, we have P (r − 1) ≤ y = z1/2−δ . The number of
primes r ≤ z such that `k|r − 1 for some prime power `k > y with k ≥ 2 is
bounded by

∑

2≤k≤log z/ log 2

∑

` : `k≥y

z

`k
� z

∑

2≤k≤log z/ log 2

1

ky1−1/k
�

z log z

y1/2
.

Combining this with (13) we have

#Q ≥ κ
z

log z
(14)

for z sufficiently large depending on the choice of p, where

κ =
log((1 − 2δ)/(1 − 4δ))

6ϕ(4p)
.

We now put

m =

⌊

log x

log z

⌋

and consider the set S of all products of m distinct primes from Q. Clearly

x ≥ d ≥ (z/2)m = x1+o(1) (15)

for every d ∈ S. Recalling (14), we also have

#S =

(

#Q

m

)

≥

(

#Q

m

)m

≥

(

κz

log x

)m

≥
1

z

(

κz

log x

)log x/ log z

= x exp

(

−
log x

log z
(log2 x + O(1))

)

= x exp
(

− (1/2 − δ) log x + O(log x log3 x/ log2 x)
)

= x1/2+δ+o(1) .

Note that for every d ∈ S we have

`q(d) | λ(d) | My.

16



Thus, from the prime number theorem, we obtain that

`q(d) ≤ exp((1 + o(1))y) = xo(1).

By the construction of S and Lemma 4 we have d ∈ Up so that (1) can be
applied to compute Rq(d). Therefore, (15) and a standard estimate for ϕ(d)
imply that

Rq(d) ≥ Iq(d) − 4 ≥
ϕ(d)

`q(d)
− 4 =

d1+o(1)

xo(1)
= x1+o(1).

Thus, using our estimate for #S, we have
∑

d≤x

Rq(d) ≥ x1+o(1)#S ≥ x3/2+δ+o(1)

which concludes the proof.

Remark 4. A key step in the proof is the use of the Bombieri–Vinogradov
theorem (11). We have applied this result in the proof to moduli 4ps with
s ∈ I. The Elliott–Halberstam conjecture looks superficially the same, but
the range for m is allowed to be much larger: For every ε > 0, A > 0,

∑

m≤z1−ε

max
gcd(a,m)=1

∣

∣

∣

∣

π(z; m, a) −
1

ϕ(m)
li (z)

∣

∣

∣

∣

�
z

logA z
.

Assuming this conjecture, the above proof gives Theorem 1 for every value of
α < 1. The idea is similar to the proof of Theorem 3 in [1] and is also men-
tioned in [7]. Let k be an arbitrarily large integer, let Ik = [z1/k−1/k2

, z1/k],
and let R be the set of primes r ≡ u (mod 4p) with r − 1 divisible by k − 1
primes from Ik. The primes r ≤ z constructed in this way have P (r−1) ≤ zη,
where η = 1 − (k − 1)2/k2. Further, by the Elliott–Halberstam conjecture,
there are at least ck,pπ(z) such primes r, where ck,p > 0 depends only on
k and p. Let y = log x/ log2 x as before and let z = y1/η. We do not
have to worry about taking only those values of r that are ≥ z/2, since
each r is already guaranteed to be at least z1−η , so that the values of d
formed at the end of the proof are ≥ x1−η+o(1). Each of these values of d
has lq(d) ≤ xo(1) as before, so that Rq(d) ≥ x1−η+o(1). Moreover, as before,
there are x1+o(1)/ exp(log x log2 x/ log z) = x1−η+o(1) values of d, so that the
average in Theorem 1 is at least x1−2η+o(1). Since k is arbitrary, this then
proves that the average is x1+o(1).
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4 Proof of Theorem 2

Our proof closely follows the proof of Theorem 2 in [5]. This result gives
the normal order of λ(n), showing that for almost all n (that is, on a set of
asymptotic density 1), we have λ(n) = n/(log n)(1+o(1)) log3 n. Since for all n
we have n ≥ ϕ(n) � n/ log2 n, it follows that for almost all n we have

ϕ(n)

λ(n)
= (log n)(1+o(1)) log3 n

as n → ∞.
We first note the elementary fact that

m | n =⇒
ϕ(m)

λ(m)

∣

∣

∣

∣

ϕ(n)

λ(n)
. (16)

Indeed, by the Chinese remainder theorem, there is an integer a such that
for each prime power lν | n we have `a(l

ν) = λ(lν). Then `a(n) = λ(n)
and `a(m) = λ(m). The canonical epimorphism from (Z/nZ)× to (Z/mZ)×

induces an epimorphism from (Z/nZ)×/〈a〉 to (Z/mZ)×/〈a〉, so that (16)
follows.

Let x be large and let y = log2 x. In view of (10), it suffices to show that

log ϕ(dp) − log λ(dp) =
1

3
y log y + Op(y log2 y) (17)

for all d ≤ x with at most op(x) exceptions, where dp is given by (9). (In
fact (17) is somewhat stronger than required in that we really only need a
lower bound for the left side. Nevertheless it is interesting to know the true
order of ϕ(dp)/λ(dp) for almost all integers d.) For all d we have

log ϕ(dp) =
∑

l

vl(ϕ(dp)) log l, log λ(dp) =
∑

l

vl(λ(dp)) log l,

where the sums are over all primes l. It follows from (6) and (19) in [5] that

∑

l≤y log y

vl(λ(dp)) log l ≤
∑

l≤y log y

vl(λ(d)) log l = y log2 y + O(y)

for all but o(x) values of d ≤ x. Using (16), we have for each prime l,

vl(ϕ(dp)) − vl(λ(dp)) ≤ vl(ϕ(d)) − vl(λ(d)).
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Also, from (20), (21), and (22) in [5] we have

∑

l>y log y

(vl(ϕ(d)) − vl(λ(d))) log l ≤
y log2 y

log y
+ (log y)2

for all but o(x) values of d ≤ x. It thus follows that

∑

l>y log y

(vl(ϕ(dp)) − vl(λ(dp))) log l ≤
y log2 y

log y
+ (log y)2

for all but o(x) values of d ≤ x. Thus, to prove that (17) holds for all but
op(x) values of d ≤ x, it suffices to show that

∑

l≤y log y

vl(ϕ(dp)) log l =
1

3
y log y + Op(y log2 y) (18)

holds for all but op(x) values of d ≤ x.
We prove (18) using the Turán–Kubilius inequality, arguing along the

same lines as in [5]. We recall, that for real-valued additive functions g(n)
the Turán–Kubilius inequality asserts that if

E(g, x) =
∑

rν≤x

g(rν)

rν

(

1 −
1

r

)

and V (g, x) =
∑

rν≤x

g(rν)2

rν
,

then
∑

n≤x

(g(n) − E(g, x))2 ≤ 10xV (g, x), (19)

see [20, Chapter III.3, Theorem 1]. Let

h(n) =
∑

l≤y log y

vl(ϕ(n)) log l, hp(n) = h(np) =
∑

l≤y log y

vl(ϕ(np)) log l,

so that h and hp are both additive functions. It is shown in [5, pp. 366–367]
that

V (h, x) � y(log y)2.

Since V (hp, x) ≤ V (h, x), we have V (hp, x) � y(log y)2.
For the determination of E(hp, x) we use Proposition 2. Since hp(r

ν) ≤
log(rν), we have

E(hp, x) =
∑

rν≤x

hp(r
ν)

rν

(

1 −
1

r

)

=
∑

r≤x

hp(r)

r
+ O(1).
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Now

∑

r≤x

hp(r)

r
=

∑

l≤y log y

∑

r≤x
r∈Rp

vl(r − 1) log l

r
=

∑

l≤y log y

log l
∑

i≥1

∑

r≤x
r∈Rp

vl(r−1)=i

i

r
.

The inner sum is O (iy/li), so the contribution for values of i > 1 is O(y).
We conclude that

E(hp, x) =
∑

l≤y log y

log l
∑

r≤x
r∈Rp

r≡1 (mod l)

1

r
+ O(y). (20)

Recall the notation Qp,m from (5). We use partial summation on the inner
sum in (20) getting

∑

r∈Qp,l(x)

1

r
=

#Qp,l(x)

x
+

∫ x

2

#Qp,l(z)

z2
dz.

We use the estimate #Qp,l(z) ≤ π(z; l, 1) � π(z)/l for z ≤ exp(l7), and we
use Proposition 2 for larger values of z, getting that

∑

r∈Qp,l(x)

1

r
=

y

3(l − 1)
+ O

(

log l

l

)

.

Putting this into (20) we get that

E(hp, x) =
∑

l≤y log y

y log l

3(l − 1)
+ O(y) =

1

3
y log(y log y) + O(y).

We now use this estimate for E(hp, x) and our earlier estimate for V in
the Turán-Kubilius inequality (19) applied to the function hp. We get that
the number of d ≤ x with

∣

∣

∣

∣

hp(d) −
1

3
y log y

∣

∣

∣

∣

> y log2 y

is O (xy(log y)2/(y log2 y)2) = o(x). This concludes the proof of (18) and so
proves the theorem.
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[5] P. Erdős, E. Schmutz, and C. Pomerance, ‘Carmichael’s lambda func-
tion’, Acta Arith., 58 (1991), 363–385.

[6] J. von zur Gathen and F. Pappalardi, ‘Density estimates related
to Gauss periods’, in Cryptography and computational number the-
ory (Singapore, 1999), 33–41, Progr. Comput. Sci. Appl. Logic, 20,
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