Recent Develocpments in Pri

Carl Pomerance®

Given a natural number 22, how quickly can you tell if it is
prime or composite? This basic and cenfuries old problem
has seen a great profusion of activity within the past 5 or
6 years. It anything in mathematics is “elementary™, cer-
tainly one would think that this prablem is. Thus it was
very surprising when a proof was announced that linked
the problem to the Extended Riemann Hypothesis. But
there were other major developments in primality testing
as well. Two fast running probabilistic algorithms served
to focus philosophical concern on the nature of mathemat-
ical proof. A number was proved to be prime that was lar-
ger than the square of the astronomically farge champion
of only six months earlier. An application to cryptography
of the ability to find large primes and the inability to fac-
tor quickly made headlines in newspapers and calied into
question the role of the U.S. government in the usually
insulated American mathematical community. On other
fronts, researchers steadily added to the storehouse of
practical methods for primality testing, so that now it is
net unusual for an 80 digit prime of no special form to be
supplied with a proof of its prmality. And late in 1980,
anew primality testing algorithin was announced that
asymptotically runs in nearly polynomial time, is of theo-
retical interest becuuse of its use of algebraic number theo-
1y, specilically the higher power reciprocity laws, and per-
haps has the potenital for real implementation on numbers
of several hundred decimal digits.

In what follows we shall bricfly describe these excit-
ing developments. However the crypiography applicution
has already been amply discussed in the Mathematical In-
telligencer and elsewhere (see [12], [29], [31]), so we shall
say no miore ghout it here. In addition we would like to
call attention to the excellently writien survey articles on
primality testing by Lenstra [17] and Williams [35].

Some Simple Alzorithms

Everyone knows that the prime or composite nature of a
given number 1 can be determined by trial divisions of i
by the numbers (or prime numbers) up to~/i. This algo-
rithm has the advantage of not only providing a proof of
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primality for prime 2, but of discovering a non-trivial fac-
torization for composite 1. The main drawback of the
trial division algorithm is that it takes leo long if 12 has no
small prime factors. For example, say we use the trial di-
vision algorithm on a computer that can do one million
trial divisions per second to determine if a given n is prime
or composite. 1f 72 is a prime near 107, the running time
will be zbout onz million years, while if 77 is a prime near
10°°, the age of the universe would not suffice!

The trial division algorithm is an example of an expo-
nential time algorithm. If the input 11 has k& decimal digits,
then the number of computational bits involved in run-
ning the algorithm could be as many as /i > (/10)¥~1,
Since (v/10)*~! is an exponential function of &, the
length of the input, we say the algorithm runs in exponen-
tial time. A myujor upsolved problem in the theory of algo-
rithms and in number theory is whether there is a poly-
nomial time primality testing algorithm. That is, the run-
ning time is O(k°) = O(log€n) where ¢ is a constant and n
is the number to be tested for primality. (Recall that we
say f(x) = O(g (x)) if there is a constant C such that
V() < Ce(x) for all values of x in question.)

We now describe an algorithm with the property that
the average time spent on any one number is very small,
1t is the familiar sieve of Eratosthencs. Here one starts
with a list of all numbers from 2 to some point x (there
are variations where we require only that the list be in
arithmetic progression or the consecutive values of some
polynomial). At each stage, one circles the first unmarked
number 2, striking out every n-th number thercafter, un-
less 11 >/~ , in which case one circles every remzining
unmarked number and stops. The circled numbers are a
complete list of primes up tox. This algorithm is excel-
lent for constructing such a list and/or factor table of
least prime factors of composite numbers, Moreaover, the
average time spent on any one number is very small - it
is O(loglog 1). However one is obviously limited in the ex-
ccution of this algorithm by the amount of storage space
in the computer used and by the length of the print-out.
Iven though for any one 11 the time spent considering it
is very small, one must consider all of a large set of in-
teeers or none of them.

Joth the idal division algorithm and the sieve of Era-
tosthenes not only can prove primality but also can factor,
And factoring is hard, It has been estimated conservative-
Iy in [29] that to factor certain composite i with 75 de”
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cimal digits, using the fastest factoring algorithm known
(which is ncither of the above) on an imaginary computer
faster than any now in existence would take about 15
weeks, For certain numbers with 100 digits it could take
alife time,

Perhaps one could gain time by not asking for a fac-
torization of composite 2. That is, if our only goal is to
determine whether i1 is prime or composite and not to
factor it in the latter case, perhaps there are speedier algo-
rithms. Indeed there are, as we shali se2 below.

The Converse of Fermat’s Little Theorem

The “litile theorem’ of Fermat asserts that if (b, ) =1
and # is prime, then

"~ =1modn. (1)

This fact, at least for the case b = 2, was already known to
the fifth century B.C. Chinese (see Dickson [5], pp. 59,
91). However, the Chinese (and Leibniz) also asserted the
converse; that is, if (1) holds for b = 2, then n is prime.
Wouldn’t it be nice if this were true! To see if @ large 1 is
prime one would only have to compute the residue of
2"~ mod n and see if it is 1. Moreover, it is a simple com-
putation to compute the residuc of 5" ! mod n. Indeed,
one writes n — 1 in binary, so thatn —- 1 =8y + B, - 2+
...+ By - 2% where each B; = 0 or 1; one finds the residucs
of the b2 mod n, 0 <7 <k, by successively squaring; and
then, corresponding to those 7 with B; = 1, one succes-
sively multiplies together these residues, reducing mod n
after each multiplication. This procedure is a polynomial
time algorithm, taking O(log® 1) computational bits. Such
a computation can be practically accomplished in minutes
on an unextraordinary computer even if # has thousands
of digits. Recall that the trial division algorithm would
require more than the age of the universe to establish
primality for a number of just 50 digits.

Unfortunately, the converse of Fermat’s liitle theorem
is not true. For each b % 0 there are infinitely many com-
posite n for which (1) holds. For example, (1) holds for
b=2and n=341=11-31. This can be mentally verified
since clearly 2° = 1 mod 31 and by Fermat's little theo-
rem, 2% =1 mod 11. A composite 1 for which (1) holds
is called a pseudoprime to the base b.

For a fixed value of b, it is an observed fact that the
pseudoprimes to the base b are very rare, much rarer than
primes. For example, below 109 there are 455052512
primes, but only 14884 psendoprimes to the base 2 (see
[14] and [25]). The observed rarity of pseudoprimas cou-
pled with the case of numerically checking (1) indicate that
perhaps we should not give up on (1) as a primality test:
we just need some further test to weed out the pseudo-
primes. The conjectured rarity of pseudoprimes compared

with primes was proved in 1950 by Erdas [7] (also see [24]).

Connections with the Extended Riemann Hypothesis
yp

Because for each fixed b there are composite n for which
(1) holds, one possibility for a primality t2st miglit be to
vary h. But again there are composite i that masquerade
as primes. Forexample 1= 561 =3 - 11 - 17 satisfizs (1,
for every b with (b, 561) = 1. (This too can be mantally
verified by noting that 2, 10, and 16 each divide 360.)
Such values of i which are pseudoprimes 1o every base b
with (B, #) = | are known as Carmichzel numbers. It is
widely belicved there are infinitely many of them, but
this has not been proved.

If 7> 2 is prime, then 1 has just two square-rouvts in
the integers mod #: 1 and —1. If 11 is the product of & dis-
tinct odd primes, then by the Chinecse Remainder Theo-
rem 1 has 2¥ square-roots in the intesers mod #. This fact
suggests a strengthening of (1), since if (1) holds for the
odd number #, then 5* =2 is a square-root of 1 in the
integers mod #. If it is not congruent to =1, then 1 is com-
posite. For example, even though 5°%% = 1 mod 561, we
have 5?89 = 67 mod 561, so 561 is recognized as compos-
ite. -
"On input of an odd integer 12, v /e can perform the fol-
lowing test. Write n — 1 = 2% where m is odd. If either

oy flagis
M=1modn or b""M=—Ilmodn

forsome i, 0<i<<s — I, then 1 passes the test. Ifn4b
and # fails the test, then n is composite. This test was first
proposed (in a slightly different form) by Miller [20] (cf.
Williams [35], § 17). If an odd composite n passes Miller's
test, we shall call n a strong pseudoprime to the base b. A
strong pseudoprime test takes no mose time than before,
that is, O(log? 1) bit operations, Again, unfortunately, for
every b # 0 there are infinitely many strong pseudoprimas
to the base b {see [23], [25]).

Empirically, however, there are very few integers that
are simultancously strong pseudoprimes to several prede-
termined bases. For example, in [25] it is announced that
there is only one integer 12 << 25 - 107 which is sirulta-
neously a strong pseudoprime to the bases 2, 3, 5, snd 7.
This integer is .

3215031751 =151-751 - 28351,
/

and it is not a strong pseudoprime to the base 11. Thus a
programmable calculator or small computer contains
within it a table of primes to 25 - 10%. Simply perform the
5 mentioned strong pseudoprime tests. If i passes and
n<25-10%, then n is prima. (Or onz could perform only
the first 4 tests and then check that your number isn’t
the one exception.) _

In fuct there is no composite i1 which is a strong pszudo-
prime to cvery base b with (b, ) = 1; there is no analogy
to the Carmichuel numbers. To s2e this, supposz p; and p»
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are distinct odd primes dividing # (the prime power cuse is
easy to sce by a separate argument.) If 12 is a strong pseudo-
prime to the buse b, then the multiplicaiive orders of b mod-
ulo p, and p, must be divisible by precisely the same power
of 2. (That's casy!) Now suppose that 2% is the power of 2
which exacily divides p; — 1, and assumie that s; <s,. Re-
call that the Legendre symbol (b/p) is I or —1, depending
on whether b is or is not a square mod p. Of course, b is
not a square mod p; precisely when 2% divides its order
mod p;. Thus if (b/p() =1 and (b/pr5) = --1, then n can not
be a strong pseudoprime to the base . Furthermore, the
Chinese Remainder Theorem provides examples of such b.
In fact, we can define (see Lensira [16])

([;b— ifS]_ <S2
Ap)y=4{

i b
—- if 5, =55,
\Pz) 185, S5y

| o
I

Py

and check that 2 is not a strong pssudoprime base b when-
ever A() =-~1. Since A is 4 homomorphism [tom the multi-
plicative group of reduced residues mod 1 onto the cyclic
group of order 2, at least half the integers between 1 and
1 will tell us that i is composite!

Miller [20] exploits this situation as follows (zctually,
Miller’s argument is a little different). Recall that a char-
auter mod 7 is a homomorphism x from the multiplica-
tive group of reduced residues mod » to the non-zero com-
plex numbers. Ankeny [2] has shown that if the Extended
Riemann Hypothesis (ERH) is assumed, then there is an
absolute constant ¢ such that if y is any non-constant char-
acter mod 1, then there is some positive integer b <c log? n
with (b, n) =1 and x(b) # L. Since A, defined above,
is 2 non-constant character mod », it follows from Ankeny’s
conditional result that there is a small 5 such that 72 is not
a strong pseudoprime to the base b.

As we mentioned above a strong pseudoprime test for
1 may be accomplished in O(log? 1) bit operations, and
thus Mitler proposes that we so test # for each base
b<<clog” n, for a total of O(log® 1) bit operations. 1f n
is composite (and the ERH is true), then i will fail at
least one of the strong pseudoprime tests. Tf 12 passes all
of these tests (and the ERH is true), then i is prime. Thus
if the ERI is true, the issue of whether i is prime or com-
posite cun be decided in polynomial time! (There is 2
special argument to take care of the case when n is a prime
power -- the above analysis fuails here.)

The cateh, of course, is the reliance on the ERH. Al-
though widely (but nof universally) belizved to be true,
the ERI has only the stutus of a conjecture. Briefly, the
ERI includes the ordinary Riemann {ypothesis plus the
statement: if x is a non-constant character mod u, then
the analytic function defined by the serics

2
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Lis,x)= Z
a=1 a
(a,1)=1

in the half plane Re s > 0, has all its zeroes on the line
Res = 1/2.

A similar speedy, but conditional test was recently pro-
posed by Selfridge and Weinberger (unpublished, but see
[35], § 21). They meplace the strong pseudoprime tests
with the simpler test, 5@~ =21 mod .

Probabilistic Compositeness Tests

A probubilistic algorithm is one for which there is a pos-
sibility of a very long, perhaps infinite running time. In
practice, the algorithm will of course have a special in-
struction to halt if some time limit or pre-set number of
steps is excecded. However, if the algorithm tenninates
of its own accord before this time limit, the conclusion
is true — the element of chance only concerns the run-
ning time. There is at least one other definition of a prob-
abilistic algorithm (for example, see Rabin [27], p. 24),
but for the sake of clarity we shall use the term in the
above sense solely.

In the last section we noted that no composite 72 can
be a strong pscudoprime o every base b with (b, n) = 1.
In fact, Rabin [28] has proved that no composite # can
be a strong pseudoprime for n/4 choices of a base b in
[1,n — 1]. (The argument we gave in the last section can
be adapted to show this result if n is divisible by at least 3
distinct primes — special arguments are then constructed
for the remaining cases.) Thus, if b is randomly chesen in
the interval [1, 1 — 1], the probability that the composite

umber sz will pass a strong pscudoprime test to the base
b is at most 1/4. Of course the actual probability is a
function of i, but 1/4 is a universal upper bound for all
n. Thus Rabin proposes the following probabilistic algo-
rithm: on input i, perform strong psecudoprime tests on
i for randomly chosen bascsin [1, n — 1], stopping as
soon as n fails a test. Of course, if ;1 is prime, the algorithm
will never stop (unless it is instructed to do so after nf4
distinct bases are chosen). But if 1 is composite, the algo-
rithm will usuaily stop after at most a few tests. In fact,
for composite 11 the probability that the algorithm will
terminate after at most & tests is at least 1 — 4% If we
predetermine k. suy & = 100, and agree to run at most &
tests, then the number of bit operations is 0(10g3 ).
The Rubin test for a fixed & cannot prove that a prime
1 is prime - it should not be referred to as a primality
test, but as a compositeness test,

However, Chaitin and Schwartz [39] have shown that
if a truly random sequence is used in connection with this
algorithin, it will become a polynomial time detenministic
primality test! The catch is, unfortunately, that it is a con-
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sequence of the Godel theory that it is impossible to prove
that any particular sequence is truly random, although
most sequences are. o
Auother probabilistic compositeness algorithm, where
a different pseudoprime test (originally discavered by
hmer [15]) replaces the strong pscudoprime test, was
proposed earlier by Solovay and Strassen 33]. The two
algorithms are very similar, but Rabin’s is slightly easier
to explain and so is the one presented here.

These probabilistic algorithms have served to focus an
interesting philosophical question on the nature of math-
ematical truth (sze Kolata [11] and Debillo, Lipton, and
Petlis [4]). The argument goes as follows. Itis only an il-
lusion or wishful thinking that there is absolute certainty
in mathematics. It is commonly accepted that the natural
“laws” in the other sciences are not immutable, but sub-
ject to revision as scientists gain deeper understanding.
Witness the developments in physics during this century.
In fact, mathematics is no different. Mathematicians know
many instances of counter-examples for so-called theo-
rems (often, their own). Of course, occasionally a proof
is just plain wrong and cannot be patched up. But often
the exhibition of a counter-example causes us to tighten
definitions or to broaden the theorem to include new
cases. This dizlectic between proofs and counter-exam-
ples is the life blood of mathematics (see Lakatos [13]).
Because of this uncertainty in every human endeavor, in-
cluding mathematics, we might assign probabilities of truth
to mathematical theorems. A simple result that has borne
the test of time, such as the equation 2 + 2 = 4, should be
given a probability of truth that is extremely close to 1. A
more complicated result, such as the Fundamental Theo-
rem of Algebra, should be given a slightly lower probabil-
ity of truth. A new and complicated rasult, such as the
recent classification of finite simple groups, should be
given an even lower probability. Of course, this “moral
arithmetic™ is somewhat arbitrary and seems to imply the
questionable view that there is absolute truth out there
somewlere.

Say we accept the above argument, especially the “mor-
al arthmetic” part. And say # passes 100 randomly chosen
strong pscudoprime tests. Then the probability thatn is
primeisatleast 1 — 47109 _p, where p is the probability
that there is some important error in the Rabin analysis, or
that the computer made an error in implementation, or that
the computer was programmed incorrectly. Say we now em-
ploy the trial division algorithm on 7 and conclude that n
is prime. Then the probability that 71 is prime is at least
1 —p', where p’ is analogous to p. Since the trial division
algoritlim requires much mosre computation than 100
strong pseudoprime tests (i s large), we might guess that
p'>p +47190 Thus, by this argument the Rabin test
is a better test for primality than trial division in that we
can be more sure of the outcome.

On the other side we might argue thatitis human na-
ture to constantly sirive at reducing uncertzinty, The
probubilitics p, p' can be reduced by studying the proces-
ses involved more dacply, by having other people checs
the proofs, by repeating caleulations, ete. In fact thes:
is no predetermined positive lower bound for p and p'.
But 47190 just sits there. 1L is a positive constant, alb.ic
small. It cannot be madz smaller. (OF course, if you ere

willing to perform more strong pseudoprime tests, it <

be replaced by a smaller constant.)

The probability 47190 js also a litde ephemeral. Say
the randomly chosen bases for which we perform thz stroez
pscudoprime testsare by ... »Bioo- And sayv not enlv dce;
21 pass these tests, but for some reason the computer reils
us the bases by, . . ., bygo its random number generator
chose. This extra information could conceivably alter the
probability of error. Indead, if we happen to recognizs the
set{by, ... bigo} for having an inordirately large number
of strong pseudoprimes, then there may be a higher chance
n is composite. In particular, say 12 is composite and n =
3 mod 4. Then from Malm [19] it follows that the set of
bases for which 7 is a strong pscudoprime comprise a sub- ?
group of the multiplicative group of reduced residues
mod s Thus if we notice that the set by, .. ,byyplis
generated multiplicatively modulo 11 by a smaller set ey,
..., Cx )}, k<100, then the probubility of error now is
4-F T1tiseven conccivable thatk = 1. Of course we can
negate all of this by just making sure the computer nzier
iells us the numbeis by, . . ., P100-

It is my opinion that we should not accept a prohubii-
istic compositeness test as a proof of primality. If we did
accept such “proofs”, this lowering of stundurds could
lead in some bizarre directions. There are already theo-
rems in the literature of the sort: *“There are at most fi-
nitely many counter-examples to Fermats Last Theorem
with probability 17 (s2e Erdds and Ulam [S]). What ihis
statement means is that if the problem is generalized so
that the particular case we are really interested in is just
one of many cuses, and if we put a natural probability
distribution on the szt of all cases, the the analopous theo-
rem holds for so many cases that the probability is 1 that
it holds for any one fixed but random case. Perhaps this
analogy isn’t parfect, but would thoss who would accept
a probabilistic compositeness test as a proof of primality
also put Fermat’s Last Theorem into the “solved” col-
umn? Be forewarned though that Erdds and Ulam also
proved that with probability 1 there are indeed counter-
examples to Fermat’s Last Theorem with exponent three!

A Probohilistic Primality Test
In 1876, Lucas [18] gave the following iron clad tes: for

primality of 1 if g¥ = 1 mod st for x =5 - 1, but net fur
x equal to any propst divisor of 1 — 1 (that i3, g belongs
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to the exponent n — 1 mod i), then n is prime. Indeed, it
tollows {rom Fuler’s thearem that if g belongs to the ex-
ponent /i mod n, then /1}z(#) where o denotes Fuler’s func-
tion (i(r2) is the number of inlegers in [1, #2] coprime to
m). Thus it =n — 1. then n - 1 <)< n,so thate(n) =
it -~ 1. This can occur only if iz is prime.

On the other hand, if i1 is prime, such a g us described
by Lucas (celled 2 primitive root) will exist. Indeed, the
ring Z/nZ is a field if n is prime, so the non-zero cle-
nents form a cyclic group. Pratt [26] recently used the
TLucas lest to show that for every prime 1 there is a very
short proof that it is prime (a2 so-called “‘succint certificate
of primality”). The trouble is finding the proof, To imple-
ment the Lucas test one has to find the good value of g
and then prove it belongs to the exponent iz — 1. To ac-
complish the latter task you need to know the prime fac-
torization of 7 — 1. But as we remarked sbove, factoring
is not an casy job.

About 10 years ago, Brillhart and Morrison [21] found
a factoring alzorithm for an integer ;2 thatl makes use
of the continued fraction expansion of v/ . Although
proved in practice, the continued fraction algorithm has
never heen proved rigorously. Recently, Dixon [6] gave
a rigorous proof that if »r is compaosite, then a simpli-
fied, but prababilistic version of the continued fraction
algorithm will almost certainly provide a non-trivial factor-
ization of 1 in time bounded by O(e€V 108 oglosny
where ¢ = 3y/2 . Thus if one completely factors n — 1
by repeating Dixon’s algorithin (and one proves the
pume factors really are prime by an iteration of the
procedure), then we can almost certainly provide a rigor-
ous proof that i is prime (if it is s0) in time Lbounded by
O(ecﬁagnlog!ogn )

Note that once a complete factorization of -1 is known
one can use the following simple probabilistic algerithm for
the preduction of a primitive root g of 1. Namely, choose
residues mod 22 at random until a primitive reot is found.
Since a prime 21 > 3 has

uln-1)> B

6 loglog

(sce Resser and Schoenfeld [301, p. 72) primitive roots in
[1, n], this random search will almost certainly be success-
ful before log n guesses are made.

Thus we can almost certainly find a proof of primality
for prime » in sub-exponential time. owever, this algo-
rithm is mainty of theoretical interest, since we cannot in
practice factor numbers with much more than 40 deciinal
digits (Wunderlich [38]) unless we have good fortune or
the number is specizl. On the practical level we can use
other methads to prove that much larger numbers are
prime, us we shall see in the next scetion. Even on the
theoseticad level we cun do better as we shall see two sec-
tions hence.

“State University al Hayward found that Af5;40, is prime.

The Number Crunchers

We have mentioned above that if the prime fuctorization
of 1t --1 is known it is relatively casy to provide a proof
that i is prime if it is so. The same holds if we know the
prime factorization of i + 1. The argument in this case
follows from an apprepriate converse of Fermat's litile
thcorem in a certain quadratic number ficld, Let My =
2% 1, the k-th Mersenne number. Then obviously we
know the prime factorization of 4fy + 1. The famous
Lucas-Lehmer primality test for Mersenne numbers can
be stated (in an unusual form) as follows: for & > 2 we
have Afy, prime if and only if 7 — 4+/3 belongs to the ex-
ponent (A + 1)/2 modulo Afy. ( The usual statement is
that if §; =4 and S, =S2_, — 2 fork > 1, then for
k> 2, M, iz prime if and anly if M |Sk _ ;. This form of
the test is easy to carry out since all arithmetic is in Z,
but it disguises the fact that we are actually performing
a certain pseudoprime test in the field QR/3).)

By 1971 all M had been tested for primality for
e << 20,000. The largest of the 24 primes found was M 9947
(sce Tuckerman [34]) and was the largest number for which
a proof of its primality was known.This record number
with 6002 decimal digits fascinated laymen. In fact, a
picture of Tuckerman standing in front of his prime writ-
ten in decimal was in one of the editions of the Guiness
Book of World Records!

Tuckerman’s world record stood for only 7 years. In
QOctober, 1978, two high school students, Laura Nickel
and Curt Noll, using the computer center at California

This discovery not only made every major newspaper, but
was accorded the ultimate honor of being reported by the
television newscaster Walter Cronkite! A few months later
with much less publicity, Noll (see [22]) found that Af33209
is prime. But even this record didn’t stand for long. Just

G wecks later in April, 1979, David Slowinski [32], work-
ing on a CRAY-I computer, checked every Al until he
found that M,,4407 is prime. This number has 13,395 deci-
mal digits.

Most people belicve there are infinitely many Mersenne
primes, but this has never been proved and seems hopeless
at this time. A heuristic argument (Gillies [10]) suggests
there are asympiotically ¢ log x values of & <<x with Al
prime, The numerical evidence appears to support this as
well. Gillies” argument suggests the value 2/log 2 = 2.885
for ¢. Both Lenstra and the present writer have heuristic
arguments that suggest ¢”flog 2 2 2.570 for ¢ (where y is
Fuler’s constant). This value of ¢ appears to {it the data
better as well.

In 1975, Brilthart, Lelimer, and Selfridge [3], building on
carlier worlk of Pocklington, Lehmer, and Robinson, showed
that if 1 is prime, a proof of its primality can ofien be pro-
vided even if only a partial factorization of n — lorn +1
is known, In fact they showed how partial factorizations of
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both n + 1 can be used simultancously in one primality
test. Later Williams, Judd, and Holte [36], [37] extended
these ideas where now, in addition, partial factorizations
ofnt + 1, n +n+1,andn? — n+ 1 are thrown into the
pot.

A triumph of these methods is the proof (in [36]) that
the 121 digit number 2%%% .- 593 is prime, This particular
number was chosen in [27] by Rabin 2s a test case for his
probabilistic algorithm. It is the largest prime below 2400
and has no special form. Rabin declared it prime after it
passed over 100 randomly chosen strong pseudoprime tests.
Now Williams and Holte have proved that it is prime.

A Nearly Polynomial Time Algorithm

In 1980, a breakthrough was achicved by Leonard Adleman
and Robert Rumely. They invented a new primality test-
ing algorithm that had the important fzature of being able
to extract extra information from z pseudoprime test other
than just “‘pass” or “fail”. This extra information could
then be used to prove primality. Morzover, the pseudo-
prime tests were performed in various cyclotomic exten-
sions of the rational numbers, and so the subtlzties of arith-
metic in these fields, such as the hicher reciprocity laws,
became involved. Unsure of the running time, Adleman
and Rumely had a heuristic argument that it was very fasg,
in fact almost polynomial. Specifically they conjectured
the running time was bounded by O{(lag i) s08%8)
where 12 is the number to be tested for primality. Since
logloglog # grows so slowly, this bound is alimost poly-
nomial in the input length (which is proportional to log n}.
Somewhat later the present writer and Andrew Odlyzko
were able to prove correct their conjecture on the running
time.

The Adleman-Rumely test dozs not suffer from the de-
fects of the probabilistic compositensss tests or Milier’s
test. 1t will prove that n is prime, if it is so.

The algorithm appears to be computer practical, Wil-
liam Dubuque has run it on a 62 digit prime (a factor of
228 .t 1 recently discovered by Brent and Pollard), taking
about 6 hours on a moderately fast computer. The same
prime was handled in just a few minutas of computer
time by Hugh Williams using his algorithm. For a first at-
tempt though, Dubuque’s 6 hour running time is encour-
aging, especially since the algorithm should not take many
times longer for a number with twice as many digits. In
addition, Williams has noted that the new algorithm can
be used in tandem with his own. Thus there are good causes
for optimism among primality testers.

Recently Hendrik Lenstra has discovered several varia-
tions of the new algorithm., These variations bypass direct
use of the higher reciprocity laws in their proofs of cor-
rectness, but instead depend on the properties of Gauss
sums and Jucobi sums (ihe latter are also crmployed in the

Adleman-Rumely slgorithm ). An exciting 2spect of Lens-
tra’s variations are that they may be easier to runon a
computer,

We now give a brief description of the Adleinan-Ruma-
algorithm. For more details soe [1]. On input of the num. -
ber 1 to be tested for primaldity, compute, tha least square.
free integer fln) such that

M g>vVn.
q~11f ()

q primne

The prime factors of f(n) are called initial primes, while
the primes ¢ with g — 1| f{z1) are called Euclidean primes,
Check that » is divisible by no initial or Euvclide2n primes.
If # is composite then it has a prime factor r /1 . Since
the product of the Euvclidean primes exceeds /i, we can
find r by the Chinese Remainder Theoresn if we know
each residue r mod q. If £, denotes a primitive root forg
and Indg (r) is the lzast positive integer with

L= (JInd g (). .; 4
r=¢atmod g, 5 (2)

then knowing the residus r mod g is equivaient 1o know-
ing Indg (). However 1 S1nd () <q - landg —1isa
product of distinct primes which divide f(n). Thus we can
find Ind, (), again by the Chinese Remainder Theorem,
if we know each residue [nd, (r) mod p for each prime
pla — 1. In summary, if Ind () mod p can be found for
each pair of primes p, ¢ with plg - 1] f{n). then we can
compute r, the hypothetical prime factor of n.

Let us examine the significance of this idea fur ihe spe-
cial case p = 2. There are just two possible values for an
Ind 4 () mod 2 (where ¢ is an odd Euclidean prime), nane-
ly 0 or 1. Moreover, from {2), the parity of Ind, (r) tells
us something very concrete about r. Namely, if Iad, () is
even, then r is a squarc mod g;if Indg (r) is odd, then r
is not a square med g. In thz language of the Legandre
symbol {intreduced in the section on the LRI, we have

(i) = (-1)"q® Q)

q|
for each add Euclidean prime g. Thus, if w2 can compute
(r/q), then we can compute Ind, () mod 2.

But, of course, we cannot compute (7, ;) unlzss we
know r, so it would scem as if we have reached 2 dead end,
The key idea is that it is possible to conyire relasionsiips

among the (r/q) such that if just one of thom & Zreowed,
then all of the others may be found in ey of i This

“explosion of infonmuation” accounts [oi the 130
time of the algarithm.

We first note that, by the Law of Qu.lhotic Hecipras
ity, we can “flip” Legendre symbols. In paiice’oe sl
—g = 1 mod 4, we have
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Now we cannot compulte (-g/7), but we can compule the
“mock residue symhbol”

if such a cangru-
ence holds

<:€\_ (-‘ = ()= Dmod

n 4
/ 1 undefined, otherwise.

Thus if (~g/mn) is defined, then 1 has passed a certain pseu-
doprime test to the base —g. If (~g/n) is undefined, then

1 must be composite and the algorithm may be halted. So
assume all of the (~¢/n) are defined for all odd Euclidean
primes g. Also suppose at least one of these symbols is --1,
say {~qo/n} = —1. (This assumption may turn out to be no
preblem in practice, but in theory, there is no reason why
such a g4 should exist and be computable. This lacuna is
patched vp with some difficulty in the actual algorithm.)
Then it is possible to compute numbers mg =0 or 1 for
each odd g such that

<‘“°> <§IE> | @)

They key idea is that this relationship is preserved il r re-
places 2. In fuct, we have

(;‘{_Q ' . [;f”) (5)

g-lm q(.v

so we have indeed been successful in generalizing (3).

Our next problem s to try to “flip” the symbol (r/ 2,),
as we did in the case p = 2. There is indeed a p-th power
reciprocity law, but we can only use it to flip symbols
where the lower argument is an element of Z[{, |. And
unfortunately Z[{, ] nced not be a principal ideal domain,
so that the ideal %, need not be principally generated. We
solve this prablem by replacing 2, with a certain clement
of Z[{, ] denote J,(g). This element has several fortui-
tous praperties. First of all it is computable (after all, we
are describing an algorithm). Second, knowing (A7, (g)),
allows us to compute (1.2 ,)p, s0 we lose no information
in passing to J,,(g). Third, the p-th power reciprocity law
takes the very nice form

oy (@)
), 5,

NG

This remarkable clement J,(g) appears to be just what the
doctor erdered! (For the cognoscenti, J, (g} is a certain
Jacobi sum.)

The last difficulty in generalizing the p = 2 case is the
definitinn of an appropriate mock residue symbol, The
problem is that, even if i1 is a rational prime, the ideal (1)
in Z[{p ] may not be prime, so that (J,, () =1ip 5
not necessarily congruent to a { mod 2. We thus factor the

Jideal () inZ[{, ] as it would factor if 1 were prime and

use for our moduus one of these ideal factors instead of

itself. Lt is then possible to define ap-th power mock residue
symbol and to prove an appropriate generalization of the
theorem that (4) implies (5). Each time a p-th power mack

So we still have not computed the (—¢/r), but we have com-
puted the numbers n24, and thus there are only two pos-

ot

sibilities. If (—qq/r) =1, then each (—g/r) = 1. If (~q/r) = —1,
then each (~q/r) = (~1)"qa

Generalizing the above argument for the case of an ini-
tial prime p > 2 is where the fun begins. The first goal is to
generalize (3) and this is accomplished by introducing p-th
power residue symbols (the Legendre symbol is the 2-nd
power rcﬁdue symbol). If ¢, is a primitive p-th root of 1
and if & + (p)is a prime ideal in the ring Z[{, ], then the
symbol (a/ # ), is defined as that p-th root of 1 satisfying

ci o N e
:S‘;; sl ¥ 1 ) p mod .

Here, awis an clement of Z[{), | notin .2 and N7, the norm
of #,is the cardinality of the quotient ring Z[¢, /-2 . (In
addition, by letting this symbel be multiplicative in the
Tower argument, it can be defined for ideals - that are not
nceessarily prime.) Suppose p, ¢ are primes with plg
1701). Then there js a certain eanonical prime ideal Ay
in2X[, ] lving over ¢ that is related to the primitive root
g of q. For this ideal ./, we have

residue symbol is computed, we are essentially performing
a pseudoprime test on a2 in the ring Z[{, ].

When all of the analysis is completed for all initial primes
7, the guessing stage begins. For each p there are p possibil-
ities and thus there are a total of'j'(n) {(which is the product
of the p’s) guesses, Each guess allows one to construct a
potential prime factor of 5. I a non-trivial prime factor
is produced in this fashion, then we have proved n is com-
posite. However, if no factors are found, then we have
proved n is prime. (At first glance it would seem as if we
have described a factoring algorithm. However almost cer-
tainly any a1 that has run the gauntlet of pseudoprime tests
earlier in the algorithm is prime — the last step is not valid
for any n that has carlier been found out by the algorithm
as camposite.)

The running time for the algorithm can be shown to be
O(f(n)"). Thus it is crucial to estimate f{n). This task can
be secomplished by modifying a 1955 argument of Pra-
char thal shows there are infinitely many nuembers m which
have an inordinate number of divisors d for which d + | is
prime. In particular, it can be shown




1) < (log ”)c'lng‘lnglugn

] -
for all large 1. Moreover, apart from thec constani ¢, this

estimate is best possible.

Conclusion

Is there an algorithm that can decide whether iz is prime
or composite and that runs in polynomial time? The
Adleman-Rumely algorithm and the Lenstra variations
come so close, that it would szem that almost any im-
provement would give the final breakthrough.

Is factoring inherently more difficult than distinguish-
ing between primes and composites? Most pzople feel
that this is so, but perhaps this problem too will soon
yield.

In his “Disquisitiones Arithmeticaz” Gauss [9], p. 396,

wrote

“The problem of distinguishing prims numbers from composite
numbers and of resolving the latter into their prime factors is
known to be one of the most important and useful in arithmetic.
It has engagad the industry and wisdom of ancient 2and modern
geometers to such an extent that it would be superfluous to dis-
cuss the problem at length. Nevertheless we must confess that all
methods that have been proposad thus fur arc either restricted to
very special cases or are 5o iaborious and pralix that even for
numbers that do not exceed the limits of tables construcied by
estimable men, i.e., for numbers that do not yield to artificial
methods, they try the patience of even the practiced calculator.
And these methods do not apply at all to larger numbers.”

The striggle continues!
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