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(Eötvös Loránd University

Department of Algebra and Number Theory
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1 INTRODUCTION

Let g be an integer with g ≥ 2. Let S(n) = Sg(n) be the sum of the base-g “digits”

of the natural number n. That is, if

(1.1) n =

J
∑

j=0

ajg
j, 0 ≤ aj ≤ g − 1, aJ ≥ 1,

then

Sg(n) =
J

∑

j=0

aj.

Also we let Sg(0) = 0. The function Sg(n) evidently satisfies

(1.2) Sg(ig
µ + j) = Sg(ig

µ) + Sg(j) = Sg(i) + Sg(j) for 0 ≤ j < gµ;

the first equation representing a property called g-additivity.

Other than the familiar “rule of nines” in the case g = 10, which generalizes to

the congruence

(1.3) n ≡ Sg(n) (mod g − 1),

it is natural to conjecture that n and Sg(n) are in some sense independent events

as far as their distribution in residue classes. For example, Gelfond [7] has such a

result when the moduli are fixed.

For a number N ≥ 1, and integers m, h with m ≥ 1, let

Vk(N) = #{0 ≤ n < N : Sg(n) = k},

Vk(N ; m, h) = #{0 ≤ n < N : Sg(n) = k, n ≡ h (mod m)}.

In [9] the first and third authors, using the saddle point method, showed that uni-

formly in wide ranges, if (m, g(g − 1)) = 1, then Vk(N ; m, h) ∼ 1
m

Vk(N). It is our

goal in this paper to study Vk(N ; m, h) with no coprimality condition on the mod-

ulus m. We are able to give a result that is uniformly valid in wide ranges and we

use this result to solve some problems in elementary number theory.
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In a popular lecture in 1977 at Miami University in Ohio, USA, Ivan Niven gave

an example of how an easy child’s puzzle might be thought of by a professional

mathematician. The puzzle: find a whole number larger than 10 and less than

20 which is a multiple of the sum of its (base-10) digits. Niven suggested that

a mathematician might ask instead for an asymptotic formula for the number of

integers n < N with S10(n)|n, and to generalize to other bases. Thus was born the

concept of a “Niven number”. A base-g Niven number is a positive integer n with

Sg(n)|n. Let Ag(N) be the number of base-g Niven numbers n < N . In [2], Cooper

and Kennedy show that A10(N) = o(N). (Other, related papers are [3]–[6], [8].) It

is easy to see that

Ag(N) =
∑

k≥1

Vk(N ; k, 0),

so that it is clear that an understanding of the expressions Vk(N ; m, h) could be of

help in the estimation of Ag(N). In fact, our main theorem allows us to give an

asymptotic formula for Ag(N).

In 1976, Olivier [10] gave an asymptotic formula for the distribution of integers

n with (n, Sg(n)) = q, where q is an arbitrary, but fixed positive integer. Our main

theorem allows us to extend his result to nearly a best-possible range for q (namely,

beyond this range, the asymptotic formula of Olivier cannot hold).

We also discuss some other applications, and some open problems.

First in Section 2 we will recall the result from [9] dealing with Vk(N ; m, h), and

we show how the condition (m, g(g − 1)) = 1 can be relaxed to (m, g) = 1 (with

now a different main term). In Section 3 we give some lemmas that will be useful in

relaxing the condition (m, g) = 1 to all m, and useful in some of the applications.

In Section 4 we prove our main result on the distribution in residue classes of the

numbers n with Sg(n) = k. Applications to Niven numbers, the problem of Olivier

that we mentioned, and further applications and problems are discussed in Section 5.

Throughout this paper we we write e(α) = e2πiα. We denote by R, Z and N the

sets of real numbers, integers, and positive integers. For x ∈ R, we let bxc be the

greatest integer that does not exceed x, we let dxe be the least integer which is not

less than x, and we let ‖x‖ be the distance of x from the nearest integer, that is
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the minimum of dxe− x and x−bxc. All implicit constants, as well as the numbers

`0, `1, c0, c1, . . . , depend at most on the choice of g. The integer g ≥ 2 is arbitrary,

but considered as fixed throughout the paper. (It is probably not hard to cast our

results with an explicit dependence on g, but we have not done so here.)

2 EARLIER RESULTS AND THE CONDITION

(m, g − 1) = 1

For N a real number at least 1, define

(2.1) ν = ν(N) = blogg Nc =

⌊

log N

log g

⌋

,

so that gν ≤ N < gν+1. Set

(2.2) µ = µ(N) =
g − 1

2
ν.

In [9] first Vk(N) was estimated under various conditions on k and N . In particular,

it was proved (Corollary 2 in [9]) that

LEMMA 1. For N → ∞ and

(2.3) ∆ = |µ − k| = o(ν),

we have

Vk(g
ν) = 61/2π−1/2(g2 − 1)−1/2gνν−1/2 exp

(

−
6

g2 − 1
·
∆2

ν
+ O

(

∆3ν−2 + ν−1/2
)

)

.

One of the main results in [9] is that if (m, g(g−1)) = 1, ` := min(k, (g−1)ν−k)

is large, and

(2.4) m < exp(c0`
1/2),

then Vk(N) is well-distributed in the modulo m residue classes.
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THEOREM A. There exist positive constants `0, c1, c2 (all depending on g only)

such that if N, k, m ∈ N, m ≥ 2,

(2.5)
(

m, g(g − 1)
)

= 1,

h ∈ Z, ` > `0 and (2.4) holds, then

∣

∣

∣

∣

Vk(N ; m, h) −
1

m
Vk(N)

∣

∣

∣

∣

< c1
1

m
Vk(N) exp

(

−c2
`

log m

)

.

(Indeed, this is Theorem 2 in [9].) The proof uses the saddle point method, and the

following lemma (Lemma 2 in [9]) plays a crucial role in the proof:

LEMMA 2. If g, m, % ∈ N, m, g ≥ 2,

(2.6)
(

m, (g − 1)g
)

= 1,

1 ≤ j ≤ m − 1, % ≥ 2
log m

log g
+ 8 and β ∈ R,

then
%−1
∑

u=0

∥

∥β + gu j

m

∥

∥

2
≥

(g − 1)2

128g4
·

%

log m
.

Note that, as pointed out in the first paragraph in Section 5 of [9], the condition

(2.6) can be replaced by

(2.7) (m, g) = 1 and (g − 1)
j

m
6∈ Z.

Using this idea, we now give a self-contained proof of the following strengthening of

Lemma 2:

LEMMA 2’. If the hypotheses of Lemma 2 hold except with (2.7) replacing (2.6),

we have
%−1
∑

u=0

∥

∥β + gu j

m

∥

∥

2
≥

(g − 1)2

20g4
·

%

log m
.
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PROOF. We first show that if k is an integer with (g− 1)k/m 6∈ Z then there is an

integer n ∈ [0, dlogg me − 1] with

(2.8) ‖gn(g − 1)k/m‖ ≥
g − 1

g2
.

Let α = ‖(g − 1)k/m‖, so that α ≥ 1/m. Let n1 be the least integer with gn1α ≥ 1,

so that 1 ≤ n1 ≤ dlogg me. We have g−1 ≤ gn1−1α < 1. Say gn1−1α ≤ 1−g−1. Then

we have ‖gn1−1(g − 1)k/m‖ = ‖gn1−1α‖ ≥ g−1, so that we may take n = n1 − 1.

Thus, we may assume that 1 − g−1 < gn1−1α < 1. But 1 − g−1 ≥ 1/2, so we have

n1−1 ≥ 1 and g−1−g−2 < gn1−2α < g−1. Hence in this case we may take n = n1−2.

Thus, we have (2.8).

A consequence of (2.8) is that if k is an integer with (g − 1)k/m 6∈ Z, then

(2.9)

dlogg me
∑

n=0

∥

∥β + gn k

m

∥

∥

2
≥

(g − 1)2

2g4
.

Indeed, (2.9) follows from (2.8) and the inequality

‖β + gnk/m‖2 + ‖β + gn+1k/m‖2 ≥
1

2
‖gn(g − 1)k/m‖2.

To complete the proof of Lemma 2’, let b = dlogg me+1 and let q = b(%− 1)/bc.

An elementary calculation, using the hypothesis % ≥ 2 logg m + 8, shows that

q ≥
1

2

%

dlogg me + 1
>

%

10 log m
.

Thus,

%−1
∑

u=0

∥

∥β + gu j

m

∥

∥

2
≥

q
∑

i=1

ib−1
∑

u=(i−1)b

∥

∥β + gu j

m

∥

∥

2
≥ q

(g − 1)2

2g4
>

(g − 1)2

20g4
·

%

log m
,

where the next-to-last inequality follows by applying (2.9) to the inner sum with

k = g(i−1)bj. This completes the proof of Lemma 2’.

Replacing Lemma 2 in the proof of Theorem A in [9] by Lemma 2’, we can extend

Theorem A to the case when (m, g − 1) = 1 is not assumed:
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THEOREM B. There exist positive constants `1, c3, c4 (all depending on g only)

such that if N > 1 is a real number, m is a positive integer with

(m, g) = 1,

k, h, ` are integers such that ` > `1 and (2.4) holds, then, writing

(2.10) d = (m, g − 1),

we have

(2.11)
∣

∣

∣

∣

Vk(N ; m, h) −
d

m
Vk(N)

∣

∣

∣

∣

< c3
1

m
Vk(N) exp

(

− c4
`

log m

)

for k ≡ h (mod d)

and

(2.12) Vk(N ; m, h) = 0 for k 6≡ h (mod d).

PROOF. The theorem is trivial if m = 1, so assume m ≥ 2. Note too that (2.12)

is trivial, since if Sg(n) = k, (1.3) implies that n ≡ k (mod d). The non-trivial part

of Theorem B, i.e., (2.11), can be proved along the same lines as Theorem A in [9],

only the computation of the main term becomes slightly more complicated. Thus

we will present this computation here, and we will omit the rest of the proof.

As in [9], we may restrict ourselves to the case 0 < k ≤
g − 1

2
ν, and we use the

saddle point method, which leads to the definition of the parameter r as the unique

solution of the equation

r + 2r2 + · · ·+ (g − 1)rg−1

1 + r + · · · + rg−1
=

k

ν

with 0 < r ≤ 1. Next we consider the generating function

G(z, γ) =
N

∑

n=1

zS(n)e(nγ)
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(where z ∈ C, γ ∈ R) so that

1

m

m−1
∑

j=0

e

(

−
hj

m

)

G

(

z,
j

m

)

=
∑

1≤n≤N
n≡h (mod m)

zS(n).

Thus taking z = re(β) we have

Vk(N ; m, h) = r−k

1
∫

0

e(−kβ)
∑

1≤n≤N
n≡h (mod m)

(re(β))S(n)dβ

=
1

m
r−k

m−1
∑

j=0

1
∫

0

e

(

−kβ −
hj

m

)

G

(

re(β),
j

m

)

dβ.(2.13)

In [9], assuming (m, g − 1) = 1, there was a single main term: the one with j =

0. Now (m, g − 1) = 1 is not assumed, and thus all the terms with j satisfying

(g − 1)j/m ∈ Z contribute to the main term. If (g − 1)j/m ∈ Z, then
j

m
can be

written as
a

d
with 0 ≤ a < d. Thus, the main term in (2.13) is

1

m
r−k

1
∫

0

d−1
∑

a=0

e
(

−kβ − h
a

d

)

G
(

re(β),
a

d

)

dβ

=
1

m
r−k

1
∫

0

e(−kβ)
N

∑

n=1

rS(n)e(S(n)β)
d−1
∑

a=0

e
(

(n − h)
a

d

)

dβ

=
d

m
r−k

1
∫

0

e(−kβ)
∑

n≤N
n≡h (mod d)

rS(n)e(S(n)β)dβ =
d

m
Vk(N)(2.14)

since now k ≡ h (mod d) is assumed.

It follows from (2.13) and (2.14) that for k ≡ h (mod d),

∣

∣

∣

∣

Vk(N ; m, h) −
d

m
Vk(N)

∣

∣

∣

∣

≤
1

m
r−k

∑

0≤j<m
(g−1)j/m 6∈Z

1
∫

0

∣

∣

∣

∣

G

(

re(β),
j

m

)∣

∣

∣

∣

dβ.

This upper bound can be estimated further in exactly the same way as in [9] except

that now we use Lemma 2’ in place of Lemma 2, thus we leave the details to the

reader.
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3 FURTHER LEMMAS

LEMMA 3. For each positive integer ν, the sequence V0(g
ν), V1(g

ν), . . . , V(g−1)ν(g
ν)

is unimodal, with peak value Vb(g−1)ν/2c(g
ν).

PROOF. We have Vk(g
ν) = V(g−1)ν−k(g

ν), so that it suffices to prove that if 1 ≤ k <

b(g − 1)ν/2c, then Vk(g
ν) ≤ Vk+1(g

ν). This assertion is obvious for ν = 1 since each

Vk(g) = 1. Assume the lemma holds for ν − 1. Clearly for i = 0, 1, . . . , g − 2, we

have Vk(g
ν; g, i) = Vk+1(g

ν; g, i+ 1), since if n < gν, n ≡ i (mod g), Sg(n) = k, then

n + 1 < gν, n + 1 ≡ i + 1 (mod g), Sg(n + 1) = k + 1. So, it suffices to prove that

(3.1) Vk(g
ν; g, g − 1) ≤ Vk+1(g

ν; g, 0),

where g − 1 ≤ k < b(g − 1)ν/2c. We have

Vk(g
ν; g, g − 1) = Vk−(g−1)(g

ν−1),

Vk+1(g
ν; g, 0) = Vk+1(g

ν−1) = V(g−1)(ν−1)−(k+1)(g
ν−1).

If k + 1 ≤ (g − 1)(ν − 1)/2, the induction hypothesis implies that Vk−(g−1)(g
ν−1) ≤

Vk+1(g
ν−1), so that (3.1) holds. So assume k + 1 > (g − 1)(ν − 1)/2. Then

k − (g − 1) < (g − 1)(ν − 2)/2 ≤ (g − 1)(ν − 1) − (k + 1) < (g − 1)(ν − 1)/2,

so that the induction hypothesis implies that

Vk−(g−1)(g
ν−1) ≤ V(g−1)(ν−1)−(k+1)(g

ν−1),

and again (3.1) holds. This completes the proof of the lemma.

Remark. It is likely that some argument similar to the one just given can show

that for any N , the sequence Vk(N) is unimodal in the variable k.

LEMMA 4. There are positive constants c5, c6, depending at most on g, such that

if N > N0(g) and λ > 0, then, with µ, ν as in (2.1), (2.2),

∑

|k−µ|≥λν1/2

Vk(N) ≤ max

{

c5N exp

(

−
6

g2 − 1
λ2

)

, c5N
1−c6/ log log N

}

.
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PROOF. Clearly Vk(N) is increasing in N , so that we have Vk(N) ≤ Vk(g
ν+1). If

|k − 1
2
(g − 1)(ν + 1)| = o(ν), Lemma 1 implies that (for a number c depending at

most on g)

Vk(g
ν+1) ≤ cNν−1/2 exp

(

−
6

g2 − 1

(k − 1
2
(g − 1)(ν + 1))2

ν

)

(3.2)

≤ 2cNν−1/2 exp

(

−
6

g2 − 1

(k − µ)2

ν

)

.

If |k − µ| ≥ ν/(log ν)1/2, then (3.2) and Lemma 3 imply that

Vk(g
ν+1) ≤ c5N

1−c7/ log log N .

Thus,

(3.3)
∑

|k−µ|≥ν/(log ν)1/2

Vk(g
ν+1) ≤ c5N

1−c6/ log log N ,

where 0 < c6 < c7. Using

∑

|k−µ|≥λν1/2

exp

(

−
6

g2 − 1

(k − µ)2

ν

)

= O

(

ν1/2 exp

(

−
6

g2 − 1
λ2

))

,

the lemma now follows from (3.2) and (3.3).

Remark. By using Bernstein’s inequality (see, e.g., [11, Ch. 7]) it is possible to

obtain an upper bound of the form N exp(−cλ2) in essentially the entire range.

LEMMA 5. For each real number N > 1 and integer g ≥ 2, let ν be as in (2.1).

For each integer k satisfying

(3.4) ∆ :=

∣

∣

∣

∣

g − 1

2
ν − k

∣

∣

∣

∣

≤ ν5/8,

we have

(3.5) Vk(N) = 61/2π−1/2(g2 − 1)−1/2Nν−1/2 exp

(

−
6

g2 − 1

∆2

ν
+ O(ν−1/8)

)

.
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PROOF. Write

(3.6) H =

⌈

log g

g2 − 1
ν1/4

⌉

= O
(

(log N)1/4
)

,

and let

(3.7) ν0 = ν(N/gH) = ν − H.

Set Q = bN/gν0c. Then clearly we have

(3.8) Vk(N) =

Q−1
∑

i=0

(

Vk((i + 1)gν0) − Vk(ig
ν0)

)

+ Vk(N) − Vk(Qgν0).

For igν0 < n ≤ (i + 1)gν0, write n in the form

n = igν0 + j with 0 ≤ j < gν0.

By the g-additivity (1.2), for this n we have

Sg(n) = Sg(i) + Sg(j).

Since i ≤ Q − 1 < gH , we have

(3.9) Sg(i) ≤ (g − 1)H = O
(

(log N)1/4
)

.

Thus the general term in the sum in (3.8) can be rewritten as

(3.10) Vk((i + 1)gν0) − Vk(ig
ν0) = Vk′

i
(gν0)

with

k′
i = k − Sg(i).

Further, by (3.9) we have

(3.11) k − k′
i = O

(

(log N)1/4
)

.

Now we will use Lemma 1 with k′
i, ν0, and ∆0 = |g−1

2
ν0 − k′

i| in place of k, ν and ∆,

respectively. Note then by (3.6) and (3.11) we have

(3.12) |∆0 − ∆| ≤
g − 1

2
H + k − k′

i = O
(

(log N)1/4
)

= O
(

ν
1/4
0

)
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so that (2.3) holds and thus, indeed, Lemma 1 can be applied. Since (3.4), (3.6),

(3.7) and (3.12) imply that ∆3
0ν

−2
0 = O(ν

−1/8
0 ), we obtain

(3.13) Vk′

i
(gν0) = 61/2π−1/2(g2 − 1)−1/2gν0ν0

−1/2 exp

(

−
6

g2 − 1

∆2
0

ν0

+ O
(

ν
−1/8
0

)

)

.

By (3.4), (3.6), (3.7) and (3.12), here we have

ν
−1/2
0 = ν−1/2

(

1 + O(ν−3/4)
)

ν−1
0 = ν−1

(

1 + O(ν−3/4)
)

∆2
0 = ∆2 + O

(

ν1/4∆ + ν1/2
)

= ∆2 + O
(

ν7/8
)

,

so that (3.13) implies that

(3.14) Vk′

i
(gν0) = 61/2π−1/2(g2 − 1)−1/2gν0ν−1/2 exp

(

−
6

g2 − 1

∆2

ν
+ O(ν−1/8)

)

.

By (3.8), (3.10), (3.14) and the definition of Q, we have

Vk(N) =bNg−ν0c61/2π−1/2(g2 − 1)−1/2gν0ν−1/2 exp

(

−
6

g2 − 1

∆2

ν
+ O(ν−1/8)

)

+ Vk(N) − Vk(Qgν0)

=61/2π−1/2(g2 − 1)−1/2Nν−1/2 exp

(

−
6

g2 − 1

∆2

ν
+ O(ν−1/8)

)

+ O (gν0 + N − Qgν0) .

(3.15)

The expression in the last O-term in (3.15) is at most

gν0 + N − Qgν0 < 2gν0 ≤ 2N/gH ≤ 2N exp

(

−
1

g2 − 1
ν1/4

)

,

using (3.6). Thus, (3.5) follows by putting this estimate into (3.15) and using (3.4).

This completes the proof of Lemma 5.

LEMMA 6. For integers k, k1 satisfying the hypotheses of Lemma 5, with |k−k1| ≤

(log N)1/4, we have

Vk1
(N) = Vk(N)(1 + O

(

(log N)−1/8)
)

.

PROOF. If ∆ corresponds to k in (3.4) and ∆1 corresponds to k1, then |∆−∆1| ≤

(log N)1/4. Then, by (3.4), ∆2/ν = ∆2
1/ν + O(ν−1/8). Thus, Lemma 6 follows from

(3.5).
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4 RELAXATION OF (m, g) = 1

We now prove the following extension of Theorem B to the general case. Unfortu-

nately, the error estimate and the range are not as good; this appears to be more

an artifact of the proof than the truth.

THEOREM C There is a positive constant c8 (depending on g only) such that if

N ∈ R, N > 1, k, m ∈ N, (3.4) holds, h ∈ Z, m < 2(log N)1/4

and d is as in (2.10),

then

(4.1)
∣

∣

∣

∣

Vk(N ; m, h) −
d

m
Vk(N)

∣

∣

∣

∣

< c8
1

m
Vk(N)/(log N)1/8

for k ≡ h (mod d)

and

(4.2) Vk(N ; m, h) = 0 for k 6≡ h (mod d).

PROOF. Clearly (4.2) holds if k 6≡ h (mod d), so henceforth we shall assume that

k ≡ h (mod d).

Write m = m1m2 where each prime factor of m1 divides g and no prime factor

of m2 divides g. Let x be the least integer with m1|g
x. Clearly x is at most the

largest exponent in the canonical factorization of m1 into powers of primes, so that

x ≤ log m1/ log 2 ≤ log m/ log 2 < (log N)1/4,

by our hypothesis. If n is an integer in [1, N), write

n = n2g
x + n1,

where n1 is a nonnegative integer smaller than gx. Further, by (1.2), Sg(n) = k if

and only if

Sg(n2) = k′(n1) := k − Sg(n1).

13



By the bound on x we have

Sg(n1) ≤ (g − 1)x < (g − 1)(log N)1/4.

We have that n ≡ h (mod m) if and only if

n ≡ h (mod m1) and n ≡ h (mod m2)

if and only if

n1 ≡ h (mod m1) and n2 ≡ h′(n1) (mod m2),

where h′(n1) is the least nonnegative residue of (h − n1)g
−x (mod m2), with g−x

being the multiplicative inverse of gx modulo m2. Thus,

(4.3) Vk(N ; m, h) =
∑

0≤n1<gx, n1≡h (mod m1)

Vk′(n1)((N − n1)/g
x; m2, h

′(n1)) .

Let ν ′(n1) = ν((N − n1)/g
x). Then ν ′(n1) = ν − x + O(1).

We now apply Theorem B to the individual terms on the right side of (4.3).

By construction, we have (g, m2) = 1, so that the only hypothesis that needs to

be checked is that (2.4) holds. Since m2 ≤ m < 2(log N)1/4

, it suffices to show that

`′ := min(k′(n1), (g − 1)ν ′(n1) − k′(n1)) > c−2
0 (log 2)2(log N)1/2. However |`′ − `| =

O((log N)1/4), where ` = min(k, (g − 1)ν − k), since ν − ν ′(n1) = x + O(1) with

0 ≤ x < (log N)1/4 and since k − k′(n1) = Sg(n1) < (g − 1)(log N)1/4. Hence (3.4)

implies we have (2.4). Thus, we may apply Theorem B.

Since we are assuming that k ≡ h (mod d), and since

k′(n1) = k − Sg(n1) ≡ k − n1 (mod g − 1),

h′(n1) ≡ (h − n1)g
−x ≡ h − n1 (mod (g − 1, m2)),

we have that k′(n1) ≡ h′(n1) (mod (g − 1, m2)). So, from (4.3) and Theorem B, we

have

Vk(N ; m, h) =
(g − 1, m2)

m2

∑

0≤n1<gx, n1≡h (mod m1)

Vk′(n1)((N − n1)/g
x)

+ O





1

m2

∑

0≤n1<gx, n1≡h (mod m1)

Vk′(n1)(N/gx) exp(−c3 log N/ log m)



 .
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We have, by Lemmas 5 and 6,
∑

0≤n1<gx, n1≡h (mod m1)

Vk′(n1)((N − n1)/g
x)

=
∑

0≤n1<gx, n1≡h (mod m1)

Vk′(n1)(N/gx) + O(gx/m1)

=
1

gx

∑

0≤n1<gx, n1≡h (mod m1)

Vk′(n1)(N)
(

1 + O
(

(log N)−1/8
))

=
1

gx

∑

0≤n1<gx, n1≡h (mod m1)

Vk(N)
(

1 + O
(

(log N)−1/8
))

=
1

m1

Vk(N)
(

1 + O
(

(log N)−1/8
))

.

Using this calculation in the prior one, we obtain

Vk(N ; m, h) =
(g − 1, m2)

m1m2
Vk(N)

(

1 + O
(

exp(−c3 log N/ log m) + (log N)−1/8
))

,

and since (g − 1, m2) = (g − 1, m) and m1m2 = m, we have the theorem.

5 APPLICATIONS AND PROBLEMS

In this section we give several applications of Theorem C, as well as some additional

problems.

Let

D(g) =
2 log g

g − 1

∏

pα‖g−1

(

1 + α(1 − p−1)
)

,

for each integer g ≥ 2. We shall prove the following result, which gives an asymptotic

formula for the distribution of the g-Niven numbers defined in Section 1.

THEOREM D. If g is an integer at least 2, then for each number N > 1,

Ag(N) = #{0 < n < N : Sg(n)|n} = D(g)
N

logN
+ O

(

N

(log N)9/8

)

.

PROOF. Recall the notation from (2.1), (2.2) and let

Z = ν5/8.
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We have

Ag(N) =
∑

n<N,Sg(n)|n

1 =

(g−1)ν
∑

k=1

∑

n<N,Sg(n)=k, k|n

1

=

(g−1)ν
∑

k=1

Vk(N ; k, 0)

=
∑

|k−µ|≤Z

Vk(N ; k, 0) +
∑

|k−µ|>Z

Vk(N ; k, 0).(5.1)

It follows from Lemma 4 that

(5.2)
∑

|k−µ|>Z

Vk(N ; k, 0) ≤
∑

|k−µ|>Z

Vk(N) = O
(

N exp(−6ν1/4/(g2 − 1)
)

.

Using Theorem C we have that

∑

|k−µ|≤Z

Vk(N ; k, 0) =
∑

|k−µ|≤Z

(k, g − 1)

k
Vk(N) + O





∑

|k−µ|≤Z

1

k
Vk(N)(log N)−1/8



 .

For |k − µ| ≤ Z, we have 1/k = 1/µ + O(Z/µ2) = 1/µ + O((log N)−11/8), so that

(5.3)
∑

|k−µ|≤Z

Vk(N ; k, 0) =
1

µ

∑

|k−µ|≤Z

(k, g − 1)Vk(N) + O

(

N

µ(log N)1/8

)

.

(A better error estimate may be had at this point, but it will later be swamped, so we

have used the trivial estimate Vk(N) < N .) Further, the function f(k) = (k, g − 1)

is periodic with period g − 1, and, as a simple calculation shows, the average value

of f(k) is

C(g) :=
∏

pα‖g−1

(

1 + α(1 − p−1)
)

.

Thus, by Lemma 6, we have

(5.4)
∑

|k−µ|≤Z

(k, g − 1)Vk(N) = C(g)
∑

|k−µ|≤Z

Vk(N)
(

1 + O((log N)−1/8)
)

.

Further,

∑

|k−µ|≤Z

Vk(N) = N + O





∑

|k−µ|>Z

Vk(N)



 ,
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so that using (5.2), we have

∑

|k−µ|≤Z

(k, g − 1)Vk(N) = C(g)N
(

1 + O((log N)−1/8)
)

.

Using this in (5.3), we have

∑

|k−µ|≤Z

Vk(N ; k, 0) = C(g)
N

µ
+ O

(

N

µ(log N)1/8

)

= D(g)
N

log N
+ O

(

N

(log N)9/8

)

.

With (5.1) and (5.2), this calculation completes the proof of Theorem D.

Now we consider a problem of Olivier [10]. He showed that for each fixed positive

integer q,

#{0 < n < N : (n, Sg(n)) = q} = aqN + O(N/(log N)1/8+o(1)),

where

aq = 6π−2(q, g − 1)q−2
∏

p|(g−1)/(q,g−1)

(

1 + p−1
)−1

,

the letter p in the product running over primes. Using Theorem C, the lemmas, and

#{n ≤ N : (n, Sg(n)) = q} =
∑

m≥1

∑

l|m

µ(l)Vmq(N ; ql, 0),

(here, µ is the Möbius function), it is routine to show that uniformly for q ≤

ν1/2/(log ν)2,

#{n ≤ N : (n, Sg(n)) = q} ∼ aqN,

as N → ∞ (and explicit error estimates may be worked out as well). We have not

optimized the exponent on log ν in the range for q, but it is fairly easy to see that

the range q ≤ ν1/2/(log ν)2 is close to best possible. For example, if q ≈ cν1/2 where

c is a large constant (depending at most on g), then a value of q with a multiple

quite close to µ will give quite different behavior from a value of q whose multiple

closest to µ is about q/2 away from µ.

In [3] Cooper and Kennedy generalized the problem of the Niven numbers by

considering arithmetic functions f : N → N, and then estimating the number of
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integers n with n ≤ N , f(n)|n. Later Erdős and Pomerance [4] extended and

sharpened their results. There are various other digital-sum problems that our

methods in this paper can handle. E.g., it follows easily from Theorem C, in the

same way that Theorem D is proved, that for any fixed positive integers g, t with

g ≥ 2, an asymptotic formula for the number of integers n with

(5.5) (Sg(n))t | n, n ≤ N ,

is attainable.

One might like to extend the problem by studying numbers n which are Niven

numbers simultaneously with respect to several distinct bases g1, g2, . . . , gt:

(5.6) Sg1
(n) | n, Sg2

(n) | n, . . . , Sgt(n) | n .

It is easy to see that for any t ∈ N, (5.6) has infinitely many solutions in g1, . . . , gt, n.

Indeed, consider a number n ∈ N with (t + 1)! | n, and for 1 ≤ i ≤ t set gi =
n

i + 1
.

Then the representation of n in the number system to base gi is

n = (i + 1)gi + 0

so that

Sgi
(n) = (i + 1) | (t + 1)! | n for i = 1, 2, . . . , t.

To exclude this trivial example, one might like to add the restriction

(5.7) g1, g2, . . . , gt < n1/2.

Still further simple constructions can be given:

PROPOSITION. Let g, t, k ∈ N, g ≥ 2,

(5.8) (k, g) = 1

and let h1 < h2 < · · · < hk be positive integers with

(5.9) ghj ≡ 1 (mod k) (for j = 1, 2, . . . , k).
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(By (5.8), there are infinitely many hj ∈ N with this property.) Set

n =
k

∑

j=1

gt!hj

and

gi = gi for i = 1, 2, . . . , t.

Then the number n is a Niven number with respect to each of the bases g1, g2, . . . , gt

(and for t > 3 (5.7) also holds).

PROOF. For each of i = 1, 2, . . . , t, the number n is the sum of k distinct powers

of gi = gi, and thus we have

Sgi
(n) = k (for i = 1, 2, . . . , t).

Moreover, it follows from (5.9) that we have

n =
k

∑

j=1

gt!hj ≡
k

∑

j=1

1 ≡ 0 (mod k)

so that, indeed, Sgi
(n) | n for each of i = 1, 2, . . . , t.

Note that each of the constructions above gives only a few simultaneous Niven

numbers. It seems to be a much more difficult problem to give asymptotics for the

number of solutions up to N . Two further problems that we have not been able to

settle:

PROBLEM 1. Is it true that for any t ∈ N there are infinitely many g1, g2, . . . , gt,

n satisfying (5.6), (5.7) and

(gi, gj) = 1 for 1 ≤ i < j ≤ t ?

PROBLEM 2. Is it true that if g1, g2 ∈ N and g1, g2 ≥ 2 then there are infinitely

many positive integers n which are Niven numbers simultaneously to both bases

g1, g2? (Note that if g1, g2 are multiplicatively dependent, i.e.,
log g1

log g2
is rational,

then by the proposition above, the answer is affirmative.) In particular, are there
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infinitely many numbers which are Niven numbers simultaneously to both bases

g1 = 2 and g2 = 3?

More fundamentally, we may consider possible generalizations of Theorems A,

B, and C to simultaneous bases. The papers [1], [12], [13], and [14] are perhaps

relevant here.

ADDED IN PROOF. It has recently come to our attention that J.-M. De Kon-

inck, N. Doyon, and I. Kátai, in “On the counting function for the Niven numbers,”

Acta Arith. 106 (2003), 265–275, have achieved results very similar to ours. In

particular, their Theorem 2 is similar to our Theorem C, and their Theorem 1 is

similar to our Theorem D, but with a weaker error estimate.
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