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The Search for Prime Numbers

Until recently the testing of a 100-digit number to determine

whether 1t 1s prime or composite could have taken a century

even with a large computer. Now it can be done in a minute

The prime numbers are the multi-
plicative building blocks of the
number system. If a number is
prime, there are no smaller natural
numbers that can be multiplied to yield
it as their product. The prime number
11, for example, cannot be broken down
into smaller factors; only 1 X 11 isequal
to 11. If a number is composite, on the
other hand, it can be expressed as the
product of two or more prime factors.
The composite number 12 is equal to
2 X 2 X 3. Every whole number larger
than 1 is either a prime or the product of
a unique set of primes. This fact, which
was known to the ancient Greeks, is so
central to the system of natural numbers
that it is called the fundamental theorem
of arithmetic,

How can one determine whether a
number is prime or composite? The
most straightforward way is to divide
the number to be tested by the integers
in sequence: 2, 3, 4 and so on. If any of
the divisions comes out even (that is,
leaves no remainder), the test number is
composite and the divisor and the quo-
tient are factors of the number. If all the
integers up to the test number are tried
and none of the divisions comes out
even, the number is prime. Actually it is
not necessary to continue up to the test
number; the procedure can be stopped
as soon as the trial divisor exceeds the
square root of the test number. The rea-
son is that factors are always found in
pairs; if a number has a factor larger
than the square root, it must also have
_ one smaller.

Stopping the trial division at the
square root can greatly speed up a test
for primality, and there are other short
cuts, such as deleting all the even tri-
al divisors after 2. Nevertheless, the
trial-division algorithm is utterly in-
capable of testing the largest primes
known. Consider the 13,395-digit num-
ber 244497 — 1, which was proved to be
prime in 1979 by Harry L. Nelson and
David Slowinski of the Lawrence Liver-
more Laboratory. If a computer were to
carry out trial divisions at the rate of a
million divisions per second, and if it
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were (o stop once it reached the square
root of the number, it would need 106684
years to finish the task.

The trouble with the trial-division
method is that it does far more than is
required: trial division not only decides
whether a number is prime or composite
but also gives factors of any composite
number. Although there are methods of
factoring that do not depend on trial di-
vision, none of them can factor an arbi-
trary number having a “mere” 100 digits
in any reasonable time, even with a large
computer. It turns out, however, that it
is possible to determine whether or not
a number is prime without necessarily
finding any factors in case the number is
composite. If the number has no small

factors, such methods are almost invar-

iably more efficient than the methods
that give the factors. In the past two
years a method has been developed that
enables a computer to determine the pri-
mality of an arbitrary 100-digit number
in about 40 seconds of running time.

The problem of testing for primality
and the superficially related prob-
lem of factoring are classic problems in
the theory of numbers, the branch of
mathematics that deals with the proper-
ties of whole numbers. Number theory
isrich in problems that are tantalizingly
simple to state but notoriously difficult
to solve. Number-theory problems hav-
ing to do with primality have been a
source of fascination to mathematicians
at least since Euclid.

For example, there appear to be in-
finitely many prime twins, which are
pairs of primes such as 17 and 19 that
differ by 2, but the conjecture has not
been proved. It is almost certainly true
that there is always at least one prime
between the squares of consecutive in-
tegers, but the statement also stands
unproved. Christian Goldbach conjec-
tured in 1742 that every even number
after 2 is the sum of two primes; 32, for
instance, is the sum of 13 and 19. Gold-
bach’s conjecture too has resisted all at-
tempts at proof, although in 1937 the
Russian mathematician I. M. Vinogra-

dov showed that all “large enough” odd
numbers can be expressed as the sum
of three primes. Vinogradov was not,
however, able to state explicitly what
is meant by the term “large enough.”

A corollary of Vinogradov's theorem
is that all large enough even numbers
can be expressed as a sum of four
primes; according to the theorem, it is
always possible to represent the odd
number that is three less than any large
enough even number as a sum of three
primes. The even number is then the
sum of the three primes and the prime
number 3. In 1966 the Chinese mathe-
matician Chen Jing-run showed that all
large enough even numbers can be ex-
pressed as the sum of a prime number
and a number that is either prime or the

f two primes. Such approxima-
tions to Goldbach’s conjecture are deep
results in the sense that their proofs call
for advanced mathematical analysis and
are quite difficult.

There are also many statements about
primes that can be proved by elementa-
ry methods, and many of the proofs are
delightfully ingenious. For example, it
was known by Euclid that the number of
primes is infinite. The argument is indi-
rect: it is assumed that the number of
primes is finite, in which case there must
be some largest prime, and from the
assumption a contradiction is derived.
Suppose the largest prime is p. Then
consider the number N, defined as the
product of all the prime numbers from 2
to p. The number N+ 1 must be either
prime or composite. N+ 1 is greater
than p, and so according to the original
assumption it must be composite; other-
wise it would be a prime larger than p.
Since N+ 1 is composite, the funda-
mental theorem of arithmetic implies
that it has prime factors. Because of the
way N + 1 was constructed, however, it
leaves the remainder 1 when it is divided
by any prime from 2 to p. Its prime fac-
tors (if it has any) must therefore be
larger than p. Again the assumption that
there is some largest prime leads to a
contradiction, and so there can be no
upper limit on the set of primes.




In a similar spirit it is easy to prove
that consecutive primes can be as far
apart as one might want. Consider the
sequence of numbers »!'+2, nl+ 3,
nt+ 4, .., 0 + n, where #! (read n facto-
rial) is the product of all the whole num-
bers from 1 to n. Note that n! + 2 is
evenly divisible by 2, n! + 3 is evenly

divisible by 3 and so on; finally, n! + nis
evenly divisible by n. Hence all n — 1
numbers in the sequence are compos-
ite. The sequence can be made as long
as one likes simply by picking a large
enough number 1.

Many mathematicians have regarded
number theory as “the queen of mathe-

matics,” partly for the intricate beauty
of its proofs but also because there has
long been the feeling that its study is
a form of pure contemplation, unbur-
dened by the potential for practical con-
sequences. Since 1977, however, the de-
velopment of number theory has also
been stimulated by the recognition that
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EARLY MACHINE for the exploration of the number system was
built in 1926 by D. H. Lehmer of the University of California at
Berkeley. Constructed out of a sawhorse, bicycle chains and other
readily available materials, the machine was a special-purpose com-
puter that could be programmed to search rapidly for numbers hav-
ing the special form necessary for solving certain problems in num-
ber theory. Primality testing, that is, the classification of a number
as being either prime or composite, is one of the most important of
these problems. (A prime is a number evenly divisible only by itself
and 1; if a number has other divisors, it is compaosite.) The conditions

_ that must be met by a numerical solution to a problem could be pro-

grammed on Lehmer’s machine by inserting bolts into certain links
of the bicycle chains. When the chains were turned by a motor, the
machine would run until all the bolts were lined up; the motor was
then automatically turned off. The number corresponding to the con-
figuration of the chains at the stopping point would satisfy the con-
ditions programmed. Lehmer built several faster versions of the ma-
chine, but the 1926 version has since been destroyed. The machine in
the photograph is one now heing built by Roberto Canepa of Carne-
gie-Mellon University at the Computer Museum in Marlboro, Mass,
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it could have an important application
to cryptography, the study of secure
communication. In that year Ronald L.
Rivest of the Massachusetts Institute of
Technology, Adi Shamir of the Weiz-
mann Institute of Science and Leonard
M. Adleman of the University of South-
ern California pointed out that a pub-

lic-key cryptographic system could be
based on the difficulty of factoring
a large composite number that is the
product of, say, two 100-digit primes.
In a public-key system the means of
encoding the message can be made pub-
lic knowledge without jeopardizing the
security of the code. The Rivest-Shamir-

Adleman code is based on the relative
case of determining that two large num-
bers are prime and then mulliplying
them, compared with the great practi-
cal difficulty of factoring their product
without prior knowledge of how it was
constructed, If the 200-digit product of
two 100-digit primes were made pub-

PRIME-NUMBER SIEVE, attributed to the ancient Greek scholar
Eratosthenes, was one of the first methods invented for distinguish-
ing primes from composites among the numbers up to some predeter-
mined limit. The sieve is represented in the illustration by an inclined
plane in which holes have been made; the numbers to be tested for
primality are represented by balls that roll down grooves in the plane,
The holes are made according to a fixed procedure. First, holes in the
second row are made at every second groove except the groove desig-
nated 2. Thus all the even-numbered balls except the ball in groove 2
fall through the holes. Next the lowest-numbered groove without a
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hole is found, namely the third groove. Holes are then made in the
third row at every third groove except the groove designated 3. The
procedure is continued by making holes in every fifth groove in the
fifth row, every seventh groove in the seventh row and so on, stopping
after the row whose number is less than or equal to the square root of
the largest number to be tested. The balls that do not fall through a
hole correspond to prime numbers. For example, all 25 primes small-
er than 100 can be determined by collecting all the balls from 2 to
100 that roll past the seventh row of holes. (There are no primes
greater than 7 that are less than or equal to the square root of 100.)




lic, anyone could encode a message by
employing the 200-digit number. Only
knowledge of the two prime factors,
however, would make it possible to de-
code the message. There are public-key
cryptographic systems that do not de-
pend on factoring, but the security of the
Rivest-Shamir-Adleman system rests on
the intractability of the factoring prob-
lem, and its operation rests on the as-
sumption that the 100-digit factors of
the key number are indeed prime. Effi-
cient primality tests that do not depend
on factoring are therefore of great value
to the cryptographic system [see “The
Mathematics of Public-Key Cryptogra-
phy,” by Martin E. Hellman; SCIENTIFIC
AMERICAN, August, 1979].

All known methods of testing primali-
ty that do not depend on factoring trace
their lineage to a theorem first stated by
Pierre de Fermat in a letter to his friend
Bernard Frénicle de Bessy on October
18, 1640. The theorem, usually called
Fermat's little theorem, states that if n is
a prime number and 4 is any whole num-
ber, then 4" — b is a multiple of ». For
example, if # is equal to 7 and b is equal
to 2, the theorem correctly states that
27— 2, or 126, is a multiple of 7.

For primality testing the importance
of the theorem is the logically equiva-
lent statement that if 5" — bisnota mul-
tiple of #, then n is a composite num-
ber. When # is equal to 4 and b is equal
to 3, the expression 31 — 3 is equal to
78, which leaves a nonzero remainder
(namely 2) when it is divided by 4.
Hence the little theorem makes it possi-
ble to conclude, in a somewhat round-
about way, that 4 is not a prime.

Ithough the little theorem is a funda-
mental and powerful result, it has
several elementary proofs, one of which
I shall give below. The theorem makes it
possible to state properties of numbers
that are so large they cannot even be
written in decimal form. From the fact
that 244497 — 1 is prime, for example,
the theorem states that the number 3
raised to the power 244497 — | minus 3,
is evenly divisible by 241497 — | The re-
sult of the exponentiation is a number so
unimaginably huge that it could never
be written in decimal form; [urther-
more, the process of division that would
give the quotient explicitly could not
possibly be done by any physically con-
ceivable computer.

To get to such distant outposts of the
number system one can use the arithmet-
ic wheel, invented by Carl Friedrich
Gauss. He formulated modular arith-
metic, in which the absolute size of a
number is irrelevant and all that mat-
ters is the size of the last turn of the
arithmetic wheel employed to reach the
number. The number # is expressed as
the remainder after » is divided by some
number m called its modulus; the re-
mainder is written # modulo m, or

4 =1 (MOD 3)

/

7 =2 (MOD 5)

MODULAR ARITHMETIC is a system of calculation with important applications in primal-
ity testing. In modular arithmetic the only thing that matters about any number » is the remain-
der when n is divided by some modulus 1. The absolute size of the number n is disregarded.
The most familiar example of modular arithmetic is the common system of telling time, in
which the hours are designated by their values modulo 12. The triple-bar sign is read “is con-
gruent to”; the numbers on each side of the sign have the same remainder when they are divid-
¢d by the modulus, For example, the expression 4 =1 (mod 3) means that 4 and 1 leave the same
remainder when they are divided by 3, namely 1. The remainder is often called the residue,

{mod m). The number m plays the role
of the size of the wheel, the number #
represents the absolute size of the num-
ber and the remainder n {mod m) repre-
sents the size of the last partial turn of
the wheel needed to reach .

In modular arithmetic many of the
laws of ordinary arithmetic have close
analogues. In particular it is possible to
add and multiply in modular arithmetic
as long as the results are expressed as
congruences; all numbers that leave the
same remainder with respect to a given
modulus are said to be congruent with

respect to that modulus. The remainder:

after division of a number by the mod-
ulus is often called the residuc of the
number with respect to the modulus.

In ordinary arithmetic 6 plus 7 is
equal to 13, a result that is readily repro-
duced in arithmetic with a modulus of,
say, 5. It turns out that 6 (mod 5) + 7
{mod 5) is congruent to I 4 2, or in oth-
er words 3, and that 13 (mod 35) is also
congruent to 3. Similarly, 4 X 5 is equal
to 20, whereas in arithmetic modulo 3
the multiplication is done as 4 (mod
3) X 5 (mod 3), which is congruent to
1 X 2. The product is therefore 2, and 20
(mod 3) is also congruent to 2.

In Gauss's notation Fermat's little
theorem states that if » is prime, then
b" — b is congruent to 0 (mod m), or in
other words b” — 4 is a multiple of n.
The advantage of Gauss's notation is
that the rules of modular arithmetic
make it possible to calculate the value
of 5" — b modulo »n without having to
divide " — b by n. For a number such
as 27 — 2 the advantages of Gauss's sys-
tem do not seem to be significant be-
cause direct division is easy. To find
the remainder when a number such as
31037 — 3 s divided by 1,037, however,
modular arithmetic becomes almost in-
dispensable.

The essence of the problem is to find
the value of 31937 (mod [,037). In mod-
ular arithmetic it is not necessary to
calculate the value of the enormous
number 31037 All one need do is to re-
peatedly apply the fact that in modular
arithmetic the residue of the square
of a number is congruent to the square
of the residue of the number.

For example, once 38 (mod 1,037) is
calculated, 316 (mod 1,037) can be ob-
tained by squaring the residue of 38 and
finding the residue of this number mod-
ulo 1,037. In this way one can find
the residues modulo 1,037 of 3, 32, 34,
38 and so on up to 31024 The number-
3L037 s equal to 3110244 8+4+ 1 which
in turn is equal to 3102 X 38 X 34 X 3
by the law of exponents; hence 31037
(mod 1,037) is congruent to 31021 (mod
1,037) X 38 {mod 1,037) X 34 (mod
1,037) X 3 (mod 1,037). When all the
calculations are done, it is found that
3187 is congruent to 845 (mod 1,037),
and so 31037 — 3 is congruent to 842
(mod 1,037) [see illustration on page 141.
On the basis of Fermat's little theo-
rem, therefore, 1,037 must be compos-
ite, since the remainder on dividing
31037 — 3 by 1,037 does not equal zero.
The procedure gives scarcely any clue
that might be employed to find the fac-
tors of 1,037.

It 15 amusing to carry out the proce-
dure with a programmable calculator.
To avoid round-off errors the value of
n should be limited to numbers with at
most hall of the number of digits dis-
played by the calculator. With a large
computer the calculation can be done
rapidly even if the input number has
thousands of digits. Thus enormous
numbers can often be identified by the
Fermat test as being composite.

The proof of Fermat's little theorem
follows from a simple consequence of

139




o ©

6 (MOD 5) 7 (MOD 5)

a_©

6 (MOD 5) + 7 (MOD 5) = 1 (MOD 5) + 2 (MOD 5) = 3l(MOD 5)

a o

6 +7=13=3 (MOD 5)

ADDITION IN MODULAR ARITHMETIC is carried out much as it is in ordinary arithme-
tic. The residue of each number with respect to the given modulus is determined and the resi-
dues are added. If the sum is greater than the modulus, the residue of the sum is found. In the
example shown here the total Iength of two strings, one of length 6 and the other of length 7, is
found modulo 5. In arithmetic modulo 5 the number of full turns a string takes around a penta-
gon is disregarded and only the length of the string that remains after the last full turn is consid-
ered relevant. Thus to module §, 6 is congruent to 1 and 7 is congruent to 2 (a). When the resi-
dues of string are unwound and spliced, the total length of the two residues is 3 (5). When all
the string is wrapped around one pentagon, the length of string that remains after all the full
turns are taken is 3, and so the ordinary sum of 6 and 7 is congruent to 3 modulo 5 (¢). In gener-
al the sum of the residues of two numbers is congruent to the residue of their ordinary sum.

a c
4 (MOD 3) 5 (MOD 3) I :
' : | 3x3 - Ix2

b A A
FSRE= s ‘ _.;’:-’ oL

— 3%1 Ry

4 (MOD 3) x 5 (MOD 3) et Sl

=1 (MOD 3) x 2 (MOD 3) ——

4x5=20=2(MOD 3)

MULTIPLICATION IN MODULAR ARITHMETIC is also done in a way similar to its ana-
logue in ordinary arithmetic. In the example given 4 and 5 arc multiplied modulo 3; they are
represented as strings wrapped around a triangle. The residue of each number is the length of
the string that remains after all full turns of the string around the triangle have been taken (q).
The residue of 4 modulo 3 is 1 and the residue of 5 modulo 3 i 2, The product of the two resi-
dues is the area of the rectangle having sides equal to the length of each residue; in other words,
1 times 2 equals 2 (5). The product of 4 and 5, on the other hand, is the area of the rectangle hav-
ing sides of length 4 and 5. The residue of the product (c) is obtained by disregarding the aren
of any smaller rectangle whose sides are equal to the length of string required for a whole num-
ber of turns around the triangle (gray regions). The arca of the remaining rectangle (colored
region) is the residue of the product of 4 and 5 modulo 3. Thus the general rule is that the
product of the residues of iwo numbers is congruent to the residue of their ordinary product.

=2 (MOD 3)
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the fundamental theorem of arithme-
tic: If a prime number evenly divides the
product of several numbers, then it
cvenly divides at least one of the num-
bers. For example, 4 X 9 or 36, isevenly
divisible by the prime number 3, and of
course one of the factors (namely 9) is
also evenly divisible by 3. The statement
is not true for a composite number:
4 X Yisevenly divisible by 6, but neither
4 nor 9 is evenly divisible by 6.

To prove Fermat’s result that b — b
is & multiple of # when u is prime,
note that d"—4 is equal to b
(6" =1 — 1). Hence if & itself is a multi-
ple of n. so is 4" — b. The theorem
thus remains to be proved only for the
case in which b is not a multiple of u:
the proof proceeds on this assumption.

The basic idea is that if the numbers 5,
25, 3b and so on up to (v — 1)b are mul-
tiplied together, their product can be re-
arranged as 5"~ '(# — ). On the other
hand, it follows from the fundamental
theorem of arithmetic that the residues
modulo n of b, 25, 36 and so on up 1o
(n — 1)b are the numbers 1, 2, 3 and so
on up to n — 1, possibly in some mixed-
up order. Some elementary algebra then
allows the conclusion that (*-! — |)
(n — 1)! is a multiple of n. Because the
prime number # does not evenly divide
any of the numbers from 1 to n — 1,
whereas # does evenly divide the prod-
uct (5"~ ! — 1)n — 1), another appli-
cation of the fundamental theorem of
arithmetic implies that n evenly divides
b"~1— 1. Since #"-'— 1 is a factor
ol 6" — b, the theorem follows.

It might appear that Fermat's little
theorem completely solves the problem
of primality testing, in that it seems to
provide a quick way of distinguishing a
prime number from a composite one.
Unfortunately there is a logical flaw in
this conclusion. If for some number b
the number 5" — b gives a nonzero re-
mainder when it is divided by u, then » is
certainly composite. Suppose, however,
6" — b is a multiple of #. Does it fol-
low that #» must be prime?

Several examples suggest the answer
is yes: 22 — 2 isa multiple of 2,23 — 2 is
a multiple of 3 and 25 — 2 is a multiple
of 5, and the numbers 2, 3 and 5 are all
primes. Some 2,500 years ago Chinese
mathematicians discovered the pattern
and asserted that if 2" — 2 is a multiple
of », then n must be prime. Gottfried
Wilhelm Leibniz, who made a study
of the binary patterns in the I Ching,
believed the result as well. In 1819,
however, the French mathematician
Pierre Frédéric Sarrus pointed out that
231 —2 is a multiple of 341, even
though 341 is a composite number, the
product of 11 and 31. Since Sarrus's
work many other counterexamples in-
volving many different values of the
base b have been found: 3%1 — 3 is ga
multiple of the composite number 9]




and 45 — 4 is a muluple of the compos-
ite number 15. All these statements can
be verified with a small calculator by
applying modular arithmetic in the
way | have already described.

Anumber that fails to show up as a
composite number by Fermat’s test
with a given value of b yet happens to
be composite is called a pseudoprime to
the base h. The number 341 is a pseu-
doprime to the base 2, whereas 91 is a
pseudoprime to the base 3 and 15 is
a pseudoprime to the base 4. It turns
out that for every base b there are in-
finitely many pseudoprimes. There are
even composite numbers, such as 361
(the product of 3, 11 and 17) and 1,729
(the product of 7, 13 and 19) that are
pseudoprimes to every base 5. Num-
bers of this kind are called Carmichael
numbers, after the American mathema-
tician R. D. Carmichacl, who discov-
ered their properties in 1909,

The existence of Carmichael numbers
puts an end to any hope that the Fermat
test, at least as it was originally formu-
lated, can separate all the primes from
the composites. Nevertheless, Carmi-
chael numbers are exceedingly rare, and
even the pseudoprimes to a single base b
are rare when they are compared with
the primes. Jan Bohman of the Uni-
versity of Lund has shown that there
are exactly 882,206,716 primes smaller
than 20 billion. John L. Selfridge of the
journal Mathematical Reviews and Sam-
uel S. Wagstaff, Ir., of the University of
Georgia have calculated that there are
only 19,865 pseudoprimes to the base 2
that are smaller than 20 billion. If the
Fermat test were carried out to the base
2 for all the numbers smaller than 20
billion, the error rate would be only
about one in a million.

The scarcity of pseudoprimes to the
base 2 among all the numbers smaller
than 20 billion suggests that any num-
ber that passes the Fermat test to base
2 is likely to be prime. Moreover, if the
number is a composite that passes the
Fermat test to base 2, it may not be able
to pass the Fermat test to base 3. One
would like to assert that by applying
the Fermat test to base 3, one could sig-
nificantly reduce the probability that a
composite number that has passed the
base-2 test is still posing as a prime. Be-
cause the tests may not be independent
ones, however, the Fermat test to base 3
might not rule out many composites
that had not already been eliminated by
the base-2 test.

Recently a variation of the Fermat test
that meets the requirement that tests
to different bases be independent was
developed by D. H. Lehmer of the Uni-
versity of California at Berkeley and in-
dependently by Robert M. Solovay of
the California Institute of Technology
and Volker Strassen of the Swiss Feder-
al Institute of Technology. The test has
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APPLICATION OF MODULAR ARITHMETIC circumvents calculations thai would be
exceedingly time-consuming and prone to error if they were done in ordinary arithmetic. The
flow chart demonstrates how the remainder can be found when the number 31.037 is divided
by 1,037, without ever calculating the value of 31997, The method depends on the fact that the
residue of the square of a number is equal to the square of its residue to a given modulus, By re-
peatedly squaring the residue of a power of 3 and taking the residue of the result one can find
in sequence the residues modulo 1,037 of 3, 32, 34, 35, 316 and so on up to 31924, Because
31037 js equal to 31024 3 38 5 34 X 3, the remainder when 31957 is divided by 1,037 is equal
to the residue of the product of the residues 31.024 (mod 1,037) X 38 (mod 1,037) X 34 (mod
1,037) X 3 (mod 1,037). The entire procedure can be done with a programmable calculator.

the feature that if the test number » is
composite, it will be recognized as com-
posite for at least half of the values of
the base b between 1 and n. Thus by
randomly choosing, say, 100 different
bases and applying the Lehmer-Solo-
vay-Strassen test to each one, the prob-
ability that some random composite

number # will pass all 100 tests is less
than or equal to one in 2100, or about
one in 1030,

Solovay and Strassen said that their
test constitutes a “Monte Carlo pri-
mality test.” (A number of probabilis-
tic methods in mathematics and physics
have been named for the city noted for
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CONSIDER THE NUMBERS b, 2b, 3b,..., (7 — 1)b, nb
FINDING THE RESIDUES OF THE NUMBERS MODULO n SETS UP A CORRESPONDENCE IN
WHICH THE REMAINDERS ARE A PERMUTATION OF THE COEFFICIENTS OF b. -

b 2b 3b . . .(r-1)b nb

HENCE b x 2bx .. x(n = 1)b (MODn)=1x2x .. x (n — 1)}(MOD n).

THEREFORE |b x 2bx .. x (n = 1)b| = |1 x 2% ..x (7 —1)|=0 (MOD n).

BUTE x2bx .x{m—-NTp=b"""(n-1)! ANDIX2x.x{n-1)=(—1"
HENCElbxsz...x(n—?)bf—ﬁx2x...x(n—1)]=
Ib”"(n—1)!|—|(n—1)!i=(b""—1){nk1)!- 0 (MOD n).

THEREFORE (b""' = 1){7 — 1) ! IS A MULTIPLE OF n, WHICH IS SUFFICIENT TO PROVE
FERMAT'S THEOREM.

FROOF OF FERMAT’S “LITTLE THEOREM?” follows from the application of the funda-
mental theorem of arithmetic and from the rules of multiplication in modular arithmetic. Fer-
mat’s little theorem states that if # is a prime number and 5 is any whole number, " — b is a
multiple of #. For the case in which & is a multiple of #, the conclusion of the theorem follows
at once: because b — b iy equal to 6(p" ! — 1), b is a factor of " — p and so 5" — H is a mul-
tiple of n. For the case in which b is not a multiple of i it is sufficient to show that 5" - ! — 1 is
a multiple of s, A corollary to the fundamental theorem of arithmetic states that if a prime
number evenly divides the product of several numbers, it also evenly divides one of the num-
bers. Thus beeause # does not evenly divide any of the numbers from 1 to # — 1, » does not
evenly divide their product (# — 1)! either. Hence if it can be proved that (b" ' — 1)(m — I}
is evenly divisible by n, then it follows that 5"~ ' — 1 and 5" — b are also evenly divisible
by n. Consider the numbers b, 25, 35 and so on up to nb. No two of the numbers, say ib and jb,
can give the same remainder when they are divided by n. If they could, then ib — jb, which
is equal to (i — /)b, would be a multiple of n, because subtraction would canse the two re-
mainders to cancel. Since » is not a multiple of u, the fundamental theorem of arithmetic im-
plies that i — j is a multiple of n. The number i, however, cannot evenly divide any numbers
of the form 7 — j, where i and f are chosen from the sequence of numbers from 1 to #. Thus
the supposition that ib and jb give the same remainder when they are divided by » leads to a
contradiction, Because the remainder when n divides nd is 0 and because division by u only
gives remainders from 0 to n — 1, the numbers 5, 25, ... s (m — 1)}b must give all the remain-
ders from 1 to # — 1, in some order, when they are divided by n. The diagram shows that
dividing the numbers b, 25,..., (v — 1)b by n and then taking the remainder amounts to set-
ting up a correspondence between the numbers b, 2b,..., (n — 1)b and the numbers 1, 7 JE—
(n —1) in some order. Since the residues of the numbers in cach set are the same except for
order, the residue of the product 4 X 25 X ... X (n — Db is equal to the residue of the product
1X2X .00 X(r—1) Subtracting one product from the other causes the residues to cancel, and
so the difference of the two products is a multiple of . The algebraic manipulations show that
the difference of the two products is equal to (571 — 1)(n — 1)}, and so this expression
is evenly divisible by n. Fermat’s little theorem is thereby proved for all whole numbers b.

341 PSEUDOPRIME TO BASE 2
2]41 = 2256 » 25-1 x 2!6 b3 24 » 2
=64 x 16 x 64 x 16 x 2 (MOD 341)
=2 (MOD 341)
HENCE 23 — 2 = 0 (MOD 341)
THEREFORE 341 PASSES THE FERMAT TEST TO BASE 2
BUT 341 =11 x 31

561 PSEUDOPRIME TO ANY BASE
255] :251? x 232 14 215 x 2
=103 x 103 x 460 x 2 (MOD 561)
= 2 ({MOD 561)
HENCE 2% — 2 = 0 (MOD 561)
THEREFORE 561 PASSES THE FEAMAT TEST TO BASE 2
BUT 561 =3 x 11 x 17

SSGI =3512 x 33? X 315 X3
=273 x 273 x 69 x 3 (MOD 561)
. =3{MOD 561)
HENCE 3%! x 3 = 0 (MOD 561)
THEREFORE 561 PASSES THE FERMAT TEST TO BASE 3

PSEUDOPRIME is a number that passes the test for primality derived from Fermat's little
theorem for some base b but is nonetheless a composite number. Thus a pseudoprime to the
base b is a composite number x that divides " — b evenly. The French mathematician Pierre
Frédéric Sarrus was the first to pointaost that 341, which is the product of 11 and 31, is a pseu-
doprime to the base 2. The verification that 2311 — 2 js evenly divisible by 341 is done:here in
modular arithmetic in a way similar to the procedure in the illustration on the preceding page.
Some numbers, called Carmichael numbers after the American mathematician R. D, Carmi-
chael, are pseudoprimes to any base 5. The number 561, which is the product of 3, 11 and 17,
is the smallest Carmichael number; here it is shown to be a pseudoprime to the bases 2 and 3.
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its games of chance.) In a practical sense
the description seems accurate: it would
appear, for example, that in the crypto-
graphic application the operation of a
code is not handicapped by a vanishing-
ly small chance that the numbers on
which it is based are not prime after all.
It has also been argued, however, on
what I regard as shaky philosophical
grounds, that because every ordinary
mathematical proof is subject to correc-
tion and human error, onc ought to ac-
cept a strong probabilistic verification
ol primality as being a mathematicul
proof of primality.

There is indeed reason to believe the
probability is considerably greater than
one in 10% that arguments accepted as
mathematical proofs are in error. The
history of mathematics bears witness to
numerous cxamples of “proof™ that lat-
er turned out to be misleading or errone-
ous. There is, however, a qualitative
difference between probabilistic verifi-
cation and mathematical proof that is
important to mathemalicians. A proof
is a deductive argument, in which each
step follows logically from the preced-
ing steps. The proof carries such weight
not only because the conclusion can be
seen to be valid but also because a valid
conclusion must follow from the force
of the argument. What the idea of a
Monte Carlo primality test does sug-
gest, | think, is that the concept of proof
and the concept of certainty are quite
different from each other.

In 1876 the French mathematician
Edouard A. Lucas gave an ironclad pri-
mality test for any number ». Suppose
there is a number b for which "~ 1 is
congruent to 1 modulo # but for which
bin=1/p ig not congruent to 1 modulo #
for each prime factor p of # — 1. Then
Lucas proved that n must be prime.

For example, suppose the number » to
be tested is 257; then n — 1 is equal to
256, or 28, so that every prime factor p
of n — 1 is equal to 2. In order to prove
that » is prime one must find a number 5
such that 525:is congruent to 1 modulo
257 but 4%56/2 j5 not congruent to 1 mod-
ulo 257. Although there is no indication
given by the Lucas test of how to find the
special number b, many such numbers
satisfy the conditions of the theorem for
any prime number »; a random search
will almost always be successful. When
b is equal to 3, for example, 32 is con-
gruent to 1 modulo 257, but 3256/2 ig
congruent to 256 modulo 257. Hence
257 is prime. Although the Lucas test
too is a Monte Carlo test, in the sense
that the number b must be selected at
random, it delivers a rigorous proof of
primality once the number 5 is found.

There is one aspect of the Lucas test
that limits it to numbers having a special
form. Unless every prime factor p of the
number # — 1 can be found, the test can-
not be applied. Of course, if u is suspect-
ed to be prime, it is an odd number, and
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so n — 1 is divisible by 2. Such a head
start is seldom enough; the Lucas test is
not generally feasible unless n — 1 fac-
tors easily, as it did in my example.

If all the prime factorsof n + I can be
found more readily than those of n — 1,
another test (also first proposed by Lu-
cas) can determine the primality of the
number n. Lehmer improved on the test
in 1930, and for the numbers to which
it can be applied the Lucas-Lehmer test
can be run extremely fast on a large
computer. The test has demonstrated
the primality of the largest primes
known, numbers of the form 2¢ — I,
where p itself is a prime number. Such
numbers are called Mersenne numbers,
after the 17th-century French mathema-
tician Marin Mersenne, who once gave a
list of prime numbers p for which he
believed 27 — 1 is prime. It is evident
that if n is a Mersenne number, all the
prime factors of » + 1 are known at
once: they are all equal to 2.

In 1975 John Brillhart of the Univer-
sity of Arizona, Lehmer and Selfridge
showed how to construct a primality test
for a number # if only some of the prime
factors of n —1 or n+ 1 are known.

Hugh C. Williams of the University of
Manitoba has raised this kind of testing
to a fine art: partial factorizations of
2+ 1, n2—n+1 or s2+n+1 are
now sufficient for testing the primality
of n. If none of the numbers factors eas-
ily, however, the tests bog down. Al-
though many 100-digit numbers can be
tested by such methods, it has been esti-
mated that the testing of certain stub-
born 100-digit primes would have re-
quired a century of computer time. Thus
what has been needed is a test for pri-
mality that does not depend on the spe-
cial form of the number being tested.

In 1580 Adleman and Robert S. Rume-
ly of the University of Georgia de-
veloped a test that has radically altered
the efficiency of testing the primality of
large numbers having no special form.
The test as it was originally formulated
was probably capable of testing the pri-
mality of any number having from 50
to 100 digits in four to 12 hours with
a large computer. Henri Cohen of the
University of Bordeaux and Hendrik W.
Lenstra, Jr., of the University of Am-
sterdam have since improved the test in

THE MERSENNE PRIMES TQ 262982

several significant ways so that it can
now run about 1,000 times faster: a 100-
digit number can be tested in about 40
seconds with the Control Data Corpora-
tion-Cyber 170-750 computer.

How does the Adleman-Rumely test
achieve such efficiency? Its details re-
quire a technical understanding of alge-
braic number theory, but in its essence
the test is quite similar to the one de-
vised by Fermat. Two auxiliary num-
bers, called the initial number [ and
the Euclidean number E, are construct-
ed. The number J is a product of sev-
eral primes, such as 2 X 3 X 5 X 7, or
210. The number Eis called the Euclid-
ean number because its definition isrem-
iniscent of Euclid’s proof that there are
infinitely many primes. E is the product
of all the primes p, ¢, r and so on, such
that the numbersp — 1,4 — 1, r — 1 and
so on are all factors of /. The number 70,
for example, is a factor of 210, and be-
cause 70 is one less than the prime num-
ber 71, 71 is defined as a factor of the
Euclidean number E, The factors of 210
that are exactly one less than a prime
number are 1,2, 6, 10, 30,42, 70 and 210
itself. Hence E is the product of the

VALUE OF p FOR WHICH
25— 1 1S PRIME 22—1 WHEN PROVED PRIME BY WHOM MACHINE USED
2 3
. o ANTIQUITY MENTIONED IN EUCLID'S ELEMENTS
7 127
13 8,191 1461 MENTIONED IN CODEX LAT. MONAC. 14808
17 131,071
b o 1588 PIETRO ANTONIO CATALDI
31 2,147,483,647 1772 LEONHARD EULER
61 19 DIGITS 1863 I. M. PERVOUCHINE
89 27 DIGITS 1911 R. E. POWERS
107 33 DIGITS 1914 R. E. POWERS, E. FAUQUEMBERGE
127 39 DIGITS 1876 — 1914 EDOUARD LUGAS, E. FAUQUEMBERGE
521 157 DIGITS
607 183 DIGITS
1,279 386 DIGITS 1952 RAPHAEL M. ROBINSON SWAC
2,203 664 DIGITS
2,281 687 DIGITS
3,217 969 DIGITS 1957 HANS RIESEL BESK
4,253 181 Digns } 1961 ALEXANDER HURWITZ 1BM-7090
4,423 1,332 DIGITS
9,689 2,917 DIGITS
9.941 2,993 DIGITS 1963 DONALD B. GILLIES ILLIAC-II
11,213 3,376 DIGITS
19,937 6,002 DIGITS 1971 BRYANT TUCKERMAN IBM 360/51
21,701 6,533 DIGITS 1978 LAURA NICKEL, CURT NOLL CDC-CYBER-174
23,209 6,987 DIGITS 1979 CURT NOLL CDC-CYBER-174
44,497 13,395 DIGITS 1979 HARRY L. NELSON, DAVID SLOWINSKI CRAY-1

MERSENNE PRIME is a prime number that is one Jess than a pow-
er of 2; the numbers of this form are named for the French mathema-
tician Marin Mersenne. Such primes have been of interest since an-
tiquity because, as was shown by Euclid, if the number 27 — 1 is prime,
the number 27~ (27 — 1) is perfect, that is, equal to the sum of all its
factors except itself. If 27 — 1 is prime, then p too is prime, but the
converse does not necessarily hold. It is not known whether there are
infinitely many Mersenne primes, nor is it known whether there are
infinitely many Mersenne composites, but both statements are proba-
bly true, In recent years the growth of the table of known Mersenne
primes has paralleled the growth of computing power. According to
David Slowinski of the Lawrence Livermore Laboratory, showing
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that 28191 — 1 is not a prime took 100 hours with the ILLIAC-I com-
puter, 5.2 hours with the IBM System 7090, some 49 minutes with
the ILL1AC-II, 3.1 minutes with the IBM System 360/91 and 10
seconds with the crav-1. Slowinski and Harry L. Nelson, also of
Lawrence Livermore, have examined the Mersenne numbers for all
values of p up to 50,000 without identifying any primes larger than
244497 — 1, Recently Guy M. Haworth, Steven M. Holmes, David J.

" Hunt, Thomas W. Lake and Stewart F. Reddaway of International

Computing Limited have been continuing the search with the help
of the ICL-DAP, a supercomputer having 4,096 processors that op-
erate in parallel. They have now searched for Mersenne primes for
values of p up to 62,982 without finding any new Mersenne primes.
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prime numbers 2,3, 7, 11,31, 43, 71 and
211, or 9,225,988,926. The number E
must be constructed so that it is larger
than the square root of the number n
being tested for primality; in my exam-
ple, with the initial number 210, the
Adleman-Rumely method would work
as long as » is no larger than about 1019,
The running time for the computer is
proportional to a power of the number
I, and so [ should also be chosen to
be as small as possible.

There is a kind of dynamic tension
between the numbers E and I For the
test to be valid £ must be large; for the
test to be fast 7 must be small. More-
over, since £ depends on /, the auxiliary
numbers cannot be chosen independent-
ly of each other. The number 210 is a
good example of a choice for 7 be-
cause it is a relatively small number
with many factors that are one less than
a prime. To prove that the Adleman-
Rumely test is always [ast it was neces-
sary to verify that suitable numbers E
and 7 can always be found and to give
an estimate of their size.

By coincidence, work on the question
had already been done. In 1955 Karl
Prachar of the Agricultural University
of Vienna showed that there are infinite-
ly many integers having a large number
of factors that are one less than a prime.
To apply Prachar’s result to the original
Adleman-Rumely test it was necessary
to show that the numbers / could be
constructed so that they are “square-
free,” that is, not divisible by any square
of an integer larger than 1. Cohen and
Lenstra have recently shown that in
their variation of the test the square-free
condition can be dropped. It was also
possible to strengthen Prachar’s result
by employing later findings made by
Patrick X. Gallagher of Columbia Uni-
versity and Enrico Bombieri of the Insti-
tute for Advanced Study. Andrew M.
Odlyzko of Bell Laboratories and 1 an-
alyzed the construction of the num-
bers that can appear as [ in the new
primality test.

After the numbers / and £ have been

constructed certain tests analogous to
the Fermat test are done for each pair of
primes p and g in which p, the first mem-
ber of the pair, is a factor of Eand ¢
the second member of the pair, is a fac-
tor of p — 1. The test is not carried out
for whole numbers but rather for num-
bers called algebraic integers that corre-
spond to p and ¢. An algebraic integer is
a complex number that is the root of
a polynomial whose coefficients are in-
tegers and whose leading coefficient is
1. For example, vZ, 7 (the imaginary
square root of —1) and (—1 + 7 v3)/2
are all algebraic integers because they
are roots of the algebraic equations
x2—2=0,x2+1=0and x3— [ = (.

If n, the number being tested for pri-
mality, fails the test corresponding to
one of the pairs of primes pand ¢, then n
is recognized to be composite. If # pass-
es all the tests, it is still not certain to be
prime, but the number of possible fac-
tors remaining to be checked is small.
Adleman and Rumely have shown that
any composite number » passing all
tests of the Fermat type must have
prime factors in a set with exactly / ele-
ments. Lenstra has shown that the num-
bers in the set are equal to the residues
of the powers . #2, n3and so on up to »/,
modulo E. By trial division, if any of
the numbers in the set other than 1 or »
divides » without remainder, u is com-
posite; otherwise » must be prime.
Although the last step makes the Adle-
man-Rumely method appear to be a fac-
toring method, I must stress that the
conclusion of the last step is valid only if
n has passed all previous tests of the
Fermat type. Most and perhaps all com-
posite numbers will fail at least one of
the Fermat-type tests and so need not
have a factor that can be found by the
trial division of the last step.

The speed and completely general ap-
plicability of the new primality tests
have opened the way to the theoretical
investigation of numbers previously in-
accessible even to the fastest computers.
Suppose, however, arbitrary numbers

SIZE OF NUMBER

PRIMALITY TEST 20 DIGITS | 50 DIGITS | 100 DIGITS | 200 DIGITS |1,000 DIGITS
TRIAL DIVISION 2 HOURS' | 10" YEARS | 10% vEARS | 10% YEARS [10% YEARS
LUCAS, BRILLHART-LEHMER- || SoLh
SELFRIDGE, WILLIAMS 5 SECONDS | 10 HOURS | 100 YEARS | 10° YEARS | 10% YEARS
ADLEMAN-RUMELY, PR R ]
COMHEN-LENSTRA 10 SECONDS 15 SEQQ_QQS ‘. 10 MINUTES| 1 WEEK

TIME REQUIRED to test an arbitrary number for primality varies widely according to the
kind of primality test. Here it is assumed that the tests are run with a fast computer; in particu-
lar, for the method of trial division it is assumed that the computer does a million divisions per
second regardless of the size of the number being tested. The running times given for the fami-
ly of tests similar to the one invented by the French mathematician Edouard A. Lucas represent
worst cases; prime numbers of special form can often be tested much faster. Most of the times
listed are estimates, but entries shaded in color reflect experience with a computer. In practice
all three kinds of test can be combined into one test that runs slightly faster than the third test,




having many more than 100 digits are r--------------------------1
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subjected to the tests. How quickly can Which of these

one expect the tests to deliver primality

judgments for such numbers? This ques- languages would
you like to speak?

tion and similar ones have become theo-
retically important for a branch of com-
Mark the one you want to speak in 2 or 3 months’ time

puter science called complexity theory.
According to a currently accepted defi-

nition in complexity theory, a primality Amef'can Eoghish ﬁ' German C No'jweg'an L
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f of the number of digits in . I shall
designate the number of digits in n by
the symbol d(n); notice that d(n) itself is
a number, and so one can write the num-
ber of digits in din) as d(d(m)).

It turns out that according to the defi-
nition provided by complexity theory,
the Adleman-Rumely and Cohen-Len-
stra tests are computationally slow.
Their running time is bounded by ()
raised fo the power dd(d(n)) times
some constant ¢. The cxpression (e
(n))} is the number of digits in the num-
ber of digits in the number of digits in
the number #: no matter what the con-
stant ¢ is, the product of ¢ and the ex-
pression will eventually exceed the con-
stant & and become indefinitely large as
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ning time is not a polynomial one.
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plexity theory can be misleading be-
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