On generalizing Artin’s conjecture on primitive roots to composite moduli

Shuguang Li and Carl Pomerance

1. Introduction

For a given integer a, a natural question is whether there are infinitely many primes p
with a as a primitive root; that is, the residue a generates the cyclic multiplicative group
(Z/pZ)*. Let P,(x) denote the number of primes p < z which have a as a primitive root.
Clearly, a necessary condition on a for P,(z) to be unbounded is that a # —1 and a is not
a square. Artin conjectured that these are the only exceptional values of a, and in fact,
if @ is not —1 nor a square, then there is a positive proportion of primes p with primitive
root a. That is, there is a positive number A(a) such that

P,(z) ~ A(a)m(z).

After a clarification of Heilbronn suggested by some numerical experiments of Lehmer,
there is even a precise formula for the conjectured density A(a). In a remarkable paper,
Hooley [5] showed that this strong form of Artin’s conjecture follows from the Generalized
Riemann Hypothesis (GRH), in particular from the Riemann Hypothesis for the Galois
closures of Kummerian fields of the form Q(a'/%).

For an arbitrary positive integer n, the group (Z/nZ)* is not cyclic in general, but
we may naturally generalize the notion of primitive root to an element which generates
a maximal cyclic subgroup; that is, an element whose multiplicative order is as large as
possible. This notion was suggested by Carmichael, and we use his notation A(n) for the
order of the largest cyclic subgroup of (Z/nZ)*. Further, if (a,n) = 1, we use the notation
lo(n) for the order of a in (Z/nZ)*. Thus a is a primitive root for n if I,(n) = A(n).

Let N,(z) denote the number of integers n < x such that (a,n) = 1 and a is a
primitive root for n. In analogy to Artin’s conjecture, one might guess that if a is not in
some exceptional set, then there is a positive number B(a) such that

N,(z) ~ B(a)z.

Let £ denote the set of integers which are a power with an exponent larger than 1, or a
square times either —1 or +2. It is shown in Li [9] that if a € £, then N,(z) = o(z). (In
particular, if a is an h-th power, then on a set of integers n of asymptotic density 1, either
(a,n) > 1 orlu(n)|A(n)/h, and if a is a square times —1 or 2, then on a set of asymptotic
density 1, either (a,n) > 1 or l5(n)|A(n)/2.) Further, it is shown in the same paper that
for any integer a,

lim inf N, (z)/z = 0.
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So, the above guess of an analogue to Artin’s conjecture is not true. However, the conjec-
ture was made in [9] that if a ¢ &£, then

lim sup N, (z)/z > 0.

T—>00

It is the goal of this paper to prove this conjecture on assumption of the GRH.

For a fixed prime ¢ such that a is not a ¢-th power, it follows from the Chebotarev
density theorem that the relative density of the primes p such that p = 1 (mod ¢) and a
is a ¢-th power in (Z/pZ)* is 1/(¢(q — 1)). So if a is not a g-th power for any ¢, we would
heuristically expect that the relative density of the primes p such that a is a primitive root
for p is [[,(1 —1/(q¢(g — 1)))- In fact, this infinite product, known as Artin’s constant,
tells most of the story for the number A(a) in Artin’s conjecture, and this heuristic forms
the basis of Hooley’s GRH-conditional proof. However, the GRH is not needed for small
primes gq. That is, if ¥(x) tends to infinity very slowly, it can indeed be shown via the
Chebotarev theorem that A(a) gives the correct relative density of the set of primes p such
that (p — 1)/l.(p) has no prime factor < 1 (p).

In principle, it should not take much to finish the proof, since > a>p(z) 1 /(g(g—1)) —

0. All one would need is an estimate of < 7(z)/¢? (or even a weaker estimate such as
< 7w(z)/(¢lnq)) for the number of primes p < z with ¢|(p — 1)/l (p), uniformly for primes
g with ¢¥(z) < ¢ < z'/2=°(M)  Indeed, larger ¢’s can be handled by other means. Hooley
uses the GRH to obtain such an estimate and complete the proof of Artin’s conjecture.

In analogy, let F(q,z) denote the relative proportion, among those integers n < x
that are coprime to a, for which g|A(n)/l4(n). Then heuristically we should have

lal

No@) ~ 2L 1 - g, ).

It should be noted though that F(q,z) does not tend to a limit as z — oo. Rather, it
oscillates between a dangerously large order of 1/¢ and a safely small order of 1/(¢1n g) and
smaller. It is through this oscillation that Li [9] was able to show that lim inf N, (z)/z = 0.
This unconditional result can be achieved by looking at the combined affect of small primes,
where one can get by with the Chebotarev theorem. To show that limsup N,(z)/z is
positive when a is not in £, we have to show too that the larger primes do not pose too
great an influence, and as with Hooley, this can be shown conditionally on the GRH. To
complete the proof, as with Hooley, we use a sieve on the small primes, though this part of
our argument (which is unconditional) is the most intricate. However, in one respect, the
situation is now simpler. We are able to show (unconditionally) a principle of “separation
of powers” for most numbers n: For all numbers n, but for a set of asymptotic density 0,
if g1, q2 are different fixed primes, and if ¢'||A(n), ¢5*||A\(n), then n is not divisible by
any prime p = 1 (mod q{lqg2). This principle suggests that there is a universal “Artin
constant” for all numbers a ¢ £ rather than some varying A(a) as in Artin’s conjecture
for primes.

We prove the following theorem.



Theorem On assumption of the GRH, there is a positive number A such that if a is an
integer with a & £, then
limsup No(z)/z > Ap(|al)/|al.

T—r00

In particular there is an unbounded set S of positive reals such that for any a € £,

liminf Ny(z)/z > Ap(|al)/|al.

T—00, TES

We make as a conjecture a somewhat stronger assertion:

Conjecture For each prime q, let

and let

If a is an integer with a & &£, then

lim sup N, () /2 = ap(la])/|al,

T—>0o0

and this lim sup s attained on a set of numbers x that is independent of the choice of a.

It is not so hard to show that the number « in the conjecture is positive. We have ascer-
tained that a =~ 0.326. One might wonder if the conjecture can be proved on assumption
of the GRH, but we have not been successful in this regard. It may be possible to prove
the conjecture on assumption of the GRH and the assertion that if pi,ps,...,pr are dis-
tinct primes, then the numbers 1/Inp;y,1/Inps,,...,1/Inpy are linearly independent over
the field of rational numbers. This assertion is itself a corollary of Schanuel’s conjecture
in transcendental number theory: If the complex numbers z1,..., zx are linearly indepen-
dent over the rationals, then the set {z1,..., 2k, €*',...,e**} has transcendence degree k.
Applied to z; = Inp;, we get that Inpy,...,Inp; are algebraically independent, so that
1/Inpy,...,1/Inpy are linearly independent.

Though the function l,(n) is natural, ubiquitous, and useful, there are not very many
nontrivial results concerning it. We mention a few. In addition to [9], the first author
considers in [8], the number of residues a modulo n with ,(n) = A(n), and considers in
[10], the average order of N,(z) as a varies. Martin [11] considers the least prime primitive
root modulo n. The second author, in [15], shows that on a set of integers n with upper
asymptotic density 1, we have n Zla( d)=n 1 /d = o(1), disproving a conjecture of Erdés. It
follows from a 1934 paper of Romanoff that the series Y 1/(nl,(n)) is convergent for any
fixed integer a with |a| > 1. In [12], Murty, Rosen and Silverman obtain a strengthening
of Romanoff’s theorem. Among other results, Murty and Saidak [13] and Saidak [16]
show on the GRH that there is an Erdés-Kac theorem for the number of prime divisors
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of ly(n), with mean 1(Inlnn)? and standard deviation %(In Inn)3/2, thus conditionally

settling a conjecture in Erdés and Pomerance [1]. (We show in the next section that this
Murty-Saidak theorem follows as a corollary of a theorem in [1] and some of the tools we
develop for our main theorem.) Kurlberg 6] has recently shown on the GRH that for a
given integer a with |a| > 1, the set of integers n which are coprime to a and for which
lo(n) < n'~¢ has density 0, for each fixed ¢ > 0. (Again, in the next section we show
a somewhat stronger statement as a corollary of the tools we develop and the paper [2].)
One possible setting where primitive roots for composite moduli have some use lies in
pseudorandom number generators, for example see [3].

In the sequel, we denote by Ing x the k-fold iteration of the natural logarithm applied
to the number z, when z is sufficiently large that this value exceeds 1; and we let Inp x = 1
otherwise. We suppose that ¢ (x) is an arbitrary function that tends to infinity with z,
but that 9 (z) = o(Ing z). In the following results, implicit constants depend at most on
the choice of a. The letters p,q will always denote primes. As we have already been
doing, we often use the Vinogradov order notation f(z) < g(z) when it is the case that

f(z) = O(g(x))-

2. Large primes
Fix an integer a with |a| > 1.

Lemma 1 The number of integers n < z divisible by a prime p > (x) with l,(p) <
p/2/Inp is < z/Iny(z).

Proof Consider primes p in (T, 2T] with l,(p) < p'/2/Inp. Each of these primes divides
some number o/ — 1 with j < 27Y/2/InT. But the number of distinct prime factors of
a’ —1is < 2j1n |al, so that the number of such primes is

4T'1
< Z 2jln|a| < %ﬁ'

j<2T1/2/InT

Hence the number of integers n < z that are divisible by such a prime in (7, 27] is
< 4z(In |a])/In* T. Now summing dyadically, that is letting 7' run through the numbers
24p(x) for i = 0,1,... and summing, we get the lemma.

Lemma 2 The number of integers n < z divisible by a prime p = 1 (mod q) with
7

s <p<q¢*ln*q,

is < z(Ing q)/(gInq).

Proof By the Brun-Titchmarsh inequality, the number of primes p < y withp = 1 (mod q)
is < y/(qglny) when ¢ < y?/3. So, if ¢*/(41n®q) < T < ¢*In* ¢, we get that the number
of n < z divisible by a prime p € (T,2T] with p = 1 (mod q) is < z/(¢InT). There are
only < Ingy q values of T' to consider, so we have the lemma.
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Lemma 3 (GRH) Suppose that q is an odd prime and that a is not a q-th power. Let A,
denote the set of primes p =1 (mod q) with a®®~Y/2 =1 (mod p). The number of integers
n < z divisible by a prime p € A, with p > ¢*In* q is < z/(¢Inq) + z(Iny z)/q>.

Proof Using equation (28) in Hooley [5] (which relies on the GRH), we have that the
number of primes p € A, with p <y is

li (y)
q¢(q)

+O0(y"*In(qy)).

For ¢?In* ¢ < T < ¢*In* ¢, the number of primes p € A, N (T, 2T is therefore < T'/?Ing,
so that the sum of their reciprocals is < T~1/2Ing¢. Summing dyadically over choices for
T, we get that the number of n < z divisible by a prime p € A, N (¢?In*¢,¢*In* ¢] is
< z/(qlng).

If T > ¢*In* ¢, the number of primes p € A, N (T,27T] is < T/(¢*InT). So summing
dyadically for T' up to x, we get that the number of n < z divisible by a prime p € A,
with p > ¢*In* ¢ is < z(Ing ) />

Let P(m) denote the largest prime factor of m, when m is an integer greater than 1,
and let P(1) = 1.

Proposition 1 (GRH) Let a be an integer with |a| > 1. The number of integers n < x

with (a,n) = 1 and
P (1) > e

is o(x).

Proof This result follows from Lemmas 1-3. Suppose n < z, (a,n) = 1, and ¢ =
P(A(n)/la(n)) > Ingz. Since we may assume that z is large, it thus follows that a is
not a g-th power. Then either ¢*|n or p|n for some p € A,, where A, is defined in
Lemma 3. The number of n < x divisible by the square of a prime that is at least Ins x
is € z/(Ingzlngz) = o(z), so we may assume that n is divisible by a prime p € A,.
By Lemma 1, we may assume that l,(p) > p*/2/Inp. But l,(p) < (p — 1)/q, so that
p > ¢%/(41n?¢). Thus, by Lemmas 2 and 3, the number of remaining values of n < z to

be counted is
Ingg Ingx
<Lz E .
(q Ing * q?
q>lng

This expression is < z(Ing )/ Ing x = o(z), so the proposition is proved.

We are now in a position to give an alternate proof of the result of Murty and Saidak
discussed in the introduction. Let w(m) denote the number of distinct prime divisors of
the natural number m.

Corollary 1 (GRH) (Murty—Saidak) Let a be an integer with |a| > 1. The Erdds—Kac
theorem holds for w(la(n)) with mean i (Insn)? and standard deviation %(lnz n)3/2. That
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1
K(z,u) = 5(1112:1:)2—}—

1 u
—— e

Then for any real number u,

> 1= aromemwl,
n<z, (a,n)=1 |a|
w(la(n))<K(z,u)
as r — 0o.
Proof The result follows from Proposition 1 and a result in Erd6s—Pomerance [1] that
(1) > 1 = (14 0(1)G(u)z.

n<z
w(A(n))<K(z,u)

Indeed, it follows from Proposition 1 that, but for a set of integers n of asymptotic density 0,
w(la(n)) = w(A(n)) + o(Ing n),

as n — oo through the set of integers coprime to a. Thus, the corollary will follow if we
show that

Y= (1+o(1))G(u)‘P|(LC|‘|)x.
n<z, (a,n)=1

w(A(n))<K(z,u)

But
3 1 =Y u(d) > 1.
n<z, (a,n)=1 d|a m<z/d
w(X(n)) <K () w(dm)) <K (2,)

Now w(A(dm)) = w(A(m)) + O(1) so by (1),

Y 1= (1+0(1)Gw)
m<z/d
w(A(dm))<K(z,u)

s

Thus,

lal

Y= (1+o(1))G(u)mZ@ = (14 0(1))Gw) 2L,
n<z, (a,n)=1 d|a

w(A(n))<K(z,u)

This completes the proof of the corollary.



Remark Let 2(m) denote the number of prime factors of m with multiplicity, so that
w(la(n)) < Q(la(n)) < Q(A(n)).

From [1], we have the Erdés—Kac theorem for (\(n)) with the same mean and standard
deviation as for w(A(n)), so the same holds for (I,(n)).

We now give a second corollary of Proposition 1, strengthing a result of Kurlberg [6].

Corollary 2 (GRH) For any fized integer a with |a| > 1, the number of positive integers
n < x coprime to a and with l,(n) < z/(Inz)?™2® s o(x).

Proof We use, in addition to Proposition 1, both the statement and the proof of Theorem 2
of [2]. This theorem asserts that on a set of integers n of asymptotic density 1, we have
A(n) = n/(Inn)"s "+ (actually, a somewhat stronger theorem is proved). Let D, (n)
denote the largest divisor of A(n) divisible only by primes in [1,1Iny z|. From (7) and (19)
in [2], we have that the number of integers n < x for which D, (n) > (Inz)2!¢® is o(x).
Putting this estimate together with the theorem just quoted, we have that the number of
n < x for which A\(n)/Dg(n) < x/(Inz)®s2+3nez ig 5(x). But Proposition 1 asserts that
but for o(x) choices of n < z, if n is coprime to a, we have A(n)/D,(n) divides l,(n). This
completes the proof.

Remark The proof actually allows us to replace “2” with “1 4+ €¢” for any € > 0. In this
form, the result is best possible, in that it is untrue with ¢ = 0.
3. Intermediate primes

The goal of this section is to extend Proposition 1 to show that the set of integers n
with P(A(n)/la(n)) > ¥ (n) has lower asymptotic density 0. Towards this end, we consider
intermediate primes, namely those between 1 (z) and Iny 2. However, some of our results
also hold for the primes smaller than ¢ (x), for example, Lemma 4 below.

Fix an integer a not in the exceptional set £. For ¢ prime and k a positive integer, let

Ay = {p prime : ¢*||p—1 and a®?~D/? =1 (mod p)}
By = {p prime : ¢"|l4(p) or ¢"**'|p - 1}.

Note that for each pair g, k, we have A, disjoint from B, j and that

AgrUBgr = Cqr:= {pprime : q"p—1}.
Lemma 4 For each prime power ¢° < x we have

1 Iny z In(g*)
2. 5" q’“+1+0< ¢ )’

p<z,pEA & p

T b (o5,

p<z,pEBy




Proof The first assertion is Corollary 3.5 in [9]. Next, it is shown in [14] that

Z 1 . ln2x+0(lnm)
o . ¢(m)
p=1 (mod m)

for all x > m > 2, with m integral. Applying this result with m = ¢* and using that C,
is the disjoint union of A, and By, we get the second assertion of the lemma.

Remarks In this lemma it is important that a ¢ £. For example, if a is a square times +1
or +2 and k > 3, then A, j has density 2=k instead of 2%, If these densities were used
in Proposition 4 in the next section, the expression F5(x) defined there would telescope
to a quantity very near to 1. Similar telescoping would occur for Fy(z) if a were a ¢-th
power. This phenomenon lies behind our exceptional set £. We remark that by using
the GRH-conditional version of the Chebotarev density theorem in [7], we may establish
a version of Lemma 4 where the expression In(g*) is replaced with Iny(¢*). However, it
seems interesting to eschew the use of the GRH where possible.

Lemma 5 For each prime power ¢* let N(q¥) denote the number of integers n < x such
that both

(i) n is divisible by some prime p in Ay withp < x
(ii) n is not divisible by any prime in By .

Then
Ins x Inoz — Ing
R )

1-1/Iny x
s

Proof Let P denote an arbitrary set of primes. By sieve methods (see Halberstam and
Richert [4, Theorem 2.2, p. 68]), the number of integers m < y that are not divisible by
any member of P is < y exp(—>_,cp ,<, 1/p). This estimate is uniform over all P and y.
Note that a number n counted by N(g¥) is of the form pm, where p € Agr, p < gl=1/ 2z
and m is not divisible by any member of By ;. Thus,

N <o Y Cewm(- Y o

p<gll/Inz e p'€Bq,k,p' <z /p
peAq,k
1 1
<zexp| — E — E —.
P’ p
p'€By i, p' <zl/lnz e PEAG Kk, PLT

By Lemma 4, we have

—_ k
Z llzlnzm ln3m+0<ln(z ))
p q

p’qu,k7P’S$1/ln2 x



Thus, by Lemma 4,

and the lemma follows.

For each prime ¢ < Ingz, let k;, = ky(z) be the positive integer k£ which minimizes
|Ing z — In(g*)|. (If there are two values of k at which the minimum is attained, then let
kq be the smaller of them.) Let

E(z) = {g prime : 3 < g <Ingz, (Ingz)/Ing < ¢* < Inyz Ing}.

Proposition 2 But for o(z) numbers n < z with (a,n) = 1, every prime factor of
A(n)/la(n) that lies in the interval (Y(x),lng z) is in E(x).

Proof Suppose n < z with (a,n) = 1. Fix a prime ¢ ¢ E(z), and suppose Iny 2 > ¢q > 9 (x),
g*a > Inyx Ing. Thus, ¢8¢~! < (Inyz)/Ing. Suppose ¢¥||A(n) and g|A(n)/ls(n). Then
either ¢**'|n or n is divisible by a prime in A, . Further, n cannot be divisible by any
prime in By ;. Thus, at least one of the following possibilities must occur:

L ¢?n;

2. for some k > kg, n is divisible by a prime in A, ;
3. P( ) > m1—1/1n2 z.

4. for some k < k; — 1, (i) and (ii) of Lemma 5 hold.

Let N3, N3, N3, Ny denote the number of n that arise in the respective cases for some ¢
with 9(z) < ¢ < Ingz and ¢F¢ > Iny z Ing.

We have
T T
N1 < Z -5 <K m
> (z) a
By Lemma 4,
1n2$ In(q*)
Ny < Z Z k+1 q*
g>1p(z) k>kq
Ins )
cry bz, > !
> (z) qF>Ins
1 T
P S e
/2
A glng (Ing x)
< T
In¢(z)
We have

x x
M Y Te P
P Ing x

x1—1/1n2$<p5$
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Using Lemma 5,

| | —1
N4<< Z Z Il2.’1,' exp (_ Ny T kﬂg.’l)').

a>(@) T k<ke- 1

Let By denote the summand in the inner sum. For 2 < k < k; — 1 we have

By_1 . ( 1)11123: —Ingx
p— X _— _ e — .
B, —1exp (- 7

Thus, using ¢ > ¥(z), ¢* < Inpx/Ing, we have By_1/Bj < qe™? < e”! < 1, so that
> Br < Bg,—1. Hence, using that the function (1/t)exp(—B/t) is increasing in the
variable t when 0 < t < B, we have

> (z) 7
1 -1

< Z —Ing exp (—lnq DQQI"H mnga:)

>y (z) 2

1 1 1

D SIS

0>v() >u(a) 1
<« T

P(z)t/2

Thus, N1 + No+ N3+ Ny < z/In¢)(z) = o(x). A parallel argument handles the case
when ¢Fe < In, z/Inq, where in Ny we now have k > k, + 1 and in Ny we have k < k.
This completes the proof of the proposition.

Lemma 6 There is a set U of positive integers of asymptotic density 0, with the following
property. For each prime q, the number of integers n < x with n ¢ U, (a,n) = 1, and
qlA(n)/la(n) is < z/q.

Proof Let U be the set of integers n with P(n) > n'~1/1"27_ As in the proof of Proposi-
tion 2, we see that U has asymptotic density 0. If g|A(n) then either n is divisible by ¢? or
by a prime p =1 (mod gq). The number of n < z divisible by ¢? is < z/¢? < x/q. Thus,
we may assume that n is not divisible by ¢2. Let ko be the least integer k with ¢* > In, .
Suppose n & U, ¢*||A(n), g/A(n)/lo(n). Then n is divisible by a prime in A, and not
divisble by any prime in B, . By Lemma 5, the number of such n < z is

Ins z Inoz —Ing z
<<Zx k2+1 < ;> ZBk, say.

Summing for k > ko we may ignore the exp expression, getting an estimate that is < z/q.
As in the proof of Proposition 2, for k£ < kg

Bk—l 1I12.’I,' 1 1 q 3
By :qe"p<qk—1 (a”)) Saee (q (;‘1>> Taisa st
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Thus, the sum of the expressions By, for k < ko is < Bg,_1. But as noticed in the proof
of Proposition 2, the function (1/t) exp(—B/t) is increasing when 0 < ¢ < B, so that

zlny z 1 lngx—1n3x> zlng x 1

x
Bi,—1 = =1 &XP (— o1 exp(—1) < E

q .lﬂg.’L‘—lngﬁﬂ

This completes the proof of the lemma.

Remark It is not important in the sequel, but a natural refinement in the proof of Lemma 6
gives < (¢(|a])/|a])z/q in place of < z/q, with the implied constant being absolute.

We let exp; denote the j-fold iteration of the function exp.

Lemma 7 Let 1

@)=Y 1 K@= Y o

9€E(x) 9€E(z), ¢>9 ()

There is a positive number ¢ and an unbounded set S of positive numbers x such that
f(z) <cforxeS and fy(x) > 0asz —o00, z€S.

Proof Note that a prime ¢ is in E(x) if and only if 3 < ¢ < Ingz and ||(Inzgz)/Ing|| <
(Ing ¢)/ In g, where ||y|| denotes the distance of y from the nearest integer. For a positive
integer m let

F(m) = f(exps(m)) = 3 g

iz | <23t 3<as<em

Fy(m) = fy(exps(m)) = 3 L

q
|| || < 22, ¢ (exps (m)) <g<em

We have that for each even integer M > 2,

> - Y LY
3<g<eM

In
m 2 4q
||1nq||< In q

In g<m, %M<m§M

|-

1
< D M
a<a<er | <
LM<m<M
In
<M Z 2 q)
qlng
3<qg<eM
since the number of integers m satisfying
m ‘ Ing g
— — k| < ,
Ingq Ing
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for a given integer k is < 2Iny ¢+ 1 < Ingq. Since Y (Inyq)/(¢lng) < 1, it follows that
there is a number ¢; such that

for all even integers M > 2. Similarly, there is a number ¢y such that

1 Z Fw(m)g Iny ) (expz(M/2))

—— Co .
2M NPy In ¢ (exp5(M/2))
2 >

Let ¢ = 3c;. There are at least § M integers m in (3M, M] with F(m) < ¢ and Fy(m) <
3ca Ing ¢ (expg(M/2))/ Inep(exps(M/2)). By throwing exps(m) into the set S for these
numbers m, and then letting M run through powers of 2, we so create an unbounded set
as called for in the lemma.

Proposition 3 If x is in the set S described in Lemma 7, then but for o(x) integersn < z
with (a,n) = 1 we have that A(n)/l,(n) is not divisible by any prime from the interval

(¢(2), Inp z).
Proof This result follows immediately from Proposition 2, Lemma 6, and the second part
of Lemma 7.
4. Small primes

Fix an integer a ¢ £. The interval

Ins z
I(z) = [ —2=, 4¥®)]
@ = (g 7 mee)

will play a crucial role in what follows.

Lemma 8 But for O(z/3%(®)) integers n < x, for each prime q < 1(x), if ¢°||\(n), then
q* € I(z) and ¢*** f n.

Proof Let ¢ < () be prime, let k; be the largest integer with ¢ < (Inp z)/(2¢(x)),
and let ko be the least integer with ¢*> > 4¥(®) Iny 2. Note that ¢ > (Ing z)/(2¢(x)3?),
so that ¢** € I(z). If A(n) is not divisible by ¢**, then n is not divisible by any prime
p =1 (mod ¢**). The number of such n < z is, uniformly,

Lzx-exp | — Z 1/p
p<z, p = 1 (mod g¢k1)

1
<L T -exp (—7 Iny x)
p(g*)

< 1 |
S T -exp —qu No T

< z/e@),

12



On the other hand, if ¢®2|A(n), then n is either divisible by ¢*2*! or n is divisible by a

prime p = 1 (mod ¢*2). The number of such n < z is, uniformly,

T 1

S te ) p

p<z, p = 1 (mod ¢*2)

T zIns x

< gkt + gk
x

< TIOR

Summing over all choices of ¢ with ¢ < ¢(x) then shows that but for O(z/3%(®)) numbers
n < x we have for each prime ¢ < 9 () an integer k such that ¢*||A(n) and ¢* € I(x).
Now, the number of n < x with ¢**l|n is < z/¢**! < 229(2)%/Ing . Summing over all
possibilities for ¢* gives the lemma.

Recall the notation from the start of section 3. Let C' denote the union of all pairwise
intersections Cy, j, N Cy, j,, Where g1, ¢o are different primes < 9(z) and ¢J',¢}> € I(x).
For prime ¢ < 9(z) and j with ¢7 € I(x), let

/
Cgi =Cai\C
!/
/
Bq,j = Bq’j \ C
Note that all of the sets A’q,j are disjoint, and that th j, 18 disjoint from BZD o if g1 # qo,
! / /! s LN / /! ! — !
and the same for C,  ; ,Cy, ;. As before, A| ; is disjoint from By ; and Ay ;UB, ; = C, ..

Lemma 9 We have .
1 x

Y letil

p<z,peC p iz T

In particular, the number of integers n < z divisible by a prime in C is o(x).

Proof Let ¢1 < g < 9(x) be primes and let ji,jo be minimal with ¢J',¢3> € I(z). The
sum of the reciprocals of the primes p =1 (mod ¢J'¢3’) with p <z is < (In2z)/(¢]'¢3’) <
44p(x)*/ Iny x, uniformly for all choices of ¢, gz. Summing over all pairs g1, g2, we get the
inequality in the lemma.

Let M denote the product of the primes ¢ < v(z). For d|M, let N, q4(z) denote the
number of integers n < z such that (a,n) = 1 and d|A(n)/l4(n). And let NM(z) denote
the number of integers n < x such that (a,n) =1 and A(n)/l,(n) is coprime to M.

Proposition 4 Let
1 1 1
Fy(x) = exp|—| —— —— | Ingx —exp(——.ln x))
«*) N Z ( p( (w(qﬂ) q”l) ’ ) o(g)
j:q?€l(z)

13



Then
NM(z) =

a

« IL 0= + 0 (e )

q<y(z)

Proof By inclusion-exclusion, we have

= ) u(d)N,

M

So, our intermediate goal will be to get a good estimate for N, ().

Suppose d|M has the prime factorization g1¢2---q;. Let j = j(d) denote a vector
(Jg1>Jga»- - -+Jq.), Where each jg, is an integer with qfqi € I(z). For such a vector j, let
N,.q5(x) denote the contribution to N, 4(z) from those integers n with g7 ||A(n) for each
prime ¢|d. Then, from Lemma 8,

= Y Naaj(z) + O(z/3¢™).

We now turn to the estimation of an individual term N, 4;(x). For a set S of primes,
we write (n, S) = 1 if n is not divisible by any member of S. Let Bj = Uq|dB(’17jq. Clearly,
if n is counted by Ny 4;(x), then (n, BJ’) = 1. Further, but for the exceptional numbers n
mentioned in the lemmas, n must be divisible by a prime from each A' , for q|d. For uld,

let A q|uA . By the inclusion-exclusion principle and Lemma 9 We thus have
Naaj(z) = Y pw) Y 1+ O@p(z)5/Inz).
uld n<z, (a,n)=1
(n,A;’jUB_g)Zl
Let y = pl/Im2z Suppose P is a set of primes none of which divide a. Let P(y) =

PNl,y]. We have

> 1= Y 1s0fe ¥ -

n<z, (a,n)=1 n<z, (a,n)=1 y<p<z,pEP
(n,P)=1 (n,P(y))=1

Using the fundamental lemma of Brun’s sieve, see Theorem 2.5, p. 82 in Halberstam and
Richert [4], we have

a
2, 1= wﬂu')ﬁ [I @-1/p) + O/(myz)™"),
n<z, (a,n)=1 pEP(y)
(n,P(y))=1

for P = A;’j U BJf. Further, for this choice of the set P of primes, since Iny x —Iny y = Ing z,
we have

1 ¥ (z)?w(d) Ing z
Z < 1112 x ’

=l

y<p<z,peP

14



where, as before, w(d) is the number of distinct prime divisors of d. We thus have

> -

n<z, (a,n)=1
(n,A' -UBf)=1

(|a\) H (1-1/p) + O <¢($)2w(d) Ins :1:)

ol PE(A!, ,UB!)(y) Iny

\a| H H (1_1/27)'1_[ H (1_1/p)+0<¢($);£i)1n3$)‘

qlu peAy ; (v) qld peB ; (v)
Hence,

Ngaj(r) =

AL TT o= S eIl TT a1/ + 0@@seq)

ald peB ; (y) uld qlu peAL ; (y)
= |c|f\l| =] II a-upm- [] -1/p)]| + 0@D37¥@y),
gld \peB, ; (v) peCy ;. (y)

For a given divisor d of M, the number of choices for vectors j is < (3¢(x))“®. Thus,
Na,d(.fl?) =

z))? Dy
LY IT a-vw- I1 a-yp| + o 8820,

J gld \peB ; (v) peC, ;. (¥)
Now

] a=1/p) = exp ( > 1/p) + O( >y 1/p2).

PEP(y) PEP(y) PEP(y)
Also, by Lemmas 4 and 9,

1 1 P(z)? Inz x ,
<—<p(qj) — —qj+1> Ins y 4+ O (711123; , ifP= B(M
> 1p =

PEP(y) 1 P(z)%Ing
— —_— if P=C'
(p(qj) lngy—l-O ( 1112517 y 1 Cq’g

Since Ing z = Ins y 4+ Ing z and

> 1’ < 1/¢% < 4y(x)*/(Ing z)?

PEP(y)

15



fOI‘ P = Bq,jq or P= CqJ«;’ we have

[I a-uym- I a-vp
peC! . (y)

pEB('“-q (v) 4,Jq
1
- <_ (w(;jq) B qﬂ‘3+1) 2y + O (W)z%»
1 1n3:L‘ ¢($)4
— exp <_m Ingy + O (¢($)2@)> + 0 ((lng x)z)
1 1
- <_ (@(qh) - qja“) e y>
1
— exp (_cp(qjq) In, y) + 0 (1/)(.’1:) @)
1 1
e (o )
—op (<) + 0 (periet).

Fust = o (— (L~ LY o ()

Thus, we have
~ o(la)) | (69(x))* @z
Na,d(m) = szj:HFq’Jq(l') + O (—31/)(112) )
a z))“Dg
= —‘0‘(!1”)3:1_[ § >, Fuile) + 0 <(6¢;w)()m) )

. z w(d)x
- MxHFq(@") + 0 <(6¢;w)()w) )

Let

. 6 (x w(d)x
-5, (wotrio o ©45))

2))" @),
(1-Fy(z)) + O ((7¢( 3)1!))(9:) >

_ #(al) a—ﬂ@>+0Gﬁ%®)




since 3/e > 1.1. This completes the proof of Proposition 4.
Proposition 5 (GRH) If x is in the set S described in Lemma 7, then

No(@) = 21D TT (10— Fy@) + ofa).

q<tp(x)

Proof This result is an immediate corollary of Propositions 1, 3, and 4.

It remains now to estimate the product in Proposition 5 when x € S. Towards this
end we establish the following lemma.

Lemma 10 We have F>(x) < 0.521, F5(z) < 0.322, and for ¢ > 5 we have Fy(z) < 0.27.
In addition we have Fy(x) < 1/q for ¢ € E(z), and we have Fy(x) < 1/(qlng) for

q ¢ E(z).
Proof Let f,(t) =e™* (et(q_l)/qZ — 1), so that

oo

Fy(w) <) fq(p(e’) ' Inz ).

§=0

Note that f,(¢) achieves an absolute maximum on the positive reals at a critical value ¢,
that satisfies efa(#=1)/¢" = ¢2/(¢? — ¢ +1). The function fq(t) is increasing on (0,%,] and
decreasing on [ty, 00). Further, ¢, is in the interval (1,Ingq) for ¢ > 5.

For ¢ = 2,3 we have

Fy(z) < Z fq(qltq) + Z fq(q_ltq)a
=0 =0

so it is then an easy matter to confirm the claimed inequalities for Fy(x), F3(x).
Now suppose ¢ > 5. Then

Fy(z) < > foldmg) + > fi (¢ (Ing)™"),
=0 =0
if ¢ ¢ E(x), and
Fyz) < folty) + > fald'lng) + D fe (a7 (ng)™t),
=0 =0

if ¢ € E(x). Indeed, if ¢ € E(z), then there is exactly one value of j with ¢(¢?)~!Iny z in
((Ingx)/Ing, Ing Iny z) and f; at this value is at most f,(t,).
Note that

falty) < e M@/ —q—-1)—-1) = (¢g—1)/(e(¢® —q—1).
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Next note that for an integer [ > 0,

1 g—1 1.06(¢ — 1)
B R Pl ¢ )
fq <ql1nq> < exp <ql+21nq> < 7+2Ing ’

since e — 1 < 1.06x when 0 < < 4/(25In5). Thus,

o0

1 1.06
> iu(i) < i

= glng

We have

fo(lng) = % (exp <w) B 1) . L4i(g—Dng

e
since e® — 1 < 1.141 when 0 < z < (4/25) In5. Further, for an integer | > 1,

]‘ 2
fe(dng) < exp((qq2 —1) qllnq) — ¢~70-(a-1/d),

Note that
—_at 1— —1 2
qq7+i(1 (iq )1/)jq)2) = g7 @D/ > 585 5 50
0 o
Thus,
Y fald'ng) < (14107 fy(qIng).
=1
But
felglng) = e~1Indg (e((q_l)/q) Ing _ 1) <q %q-1),
so that

D foldtng) < (141071 (¢ —1)/q"%
=1

Thus if ¢ > 5 and q ¢ E(z), then,

o0

Fy@) < fung) + 31 (ﬁ) Y fuldng)
=0 =1

1.15(¢g — 1) Ingq 1.11 g—1
3 + )
q glng q?

We conclude that Fy(z) < 1/(¢lng). And if ¢ > 5 and ¢ € E(z), then we merely add
fq(ty) < (¢ —1)/(e(¢> — ¢ + 1)) to this last estimate for F,(z), getting F,(z) < 1/q.
Whether or not ¢ € E(x), we have Fy(x) < 0.27, completing the proof of the lemma.

18



Theorem (GRH) There is a positive number A such that for each integer a & £ there is
a number xo(a) such that if x is in the set S of Lemma 7, x > xo(a), then Ny(x)/x >

Agp(|al)/|al.

Proof This result follows immediately from Lemma 7, Proposition 5 and Lemma 10.
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