ON PRIMES AND PRACTICAL NUMBERS

CARL POMERANCE AND ANDREAS WEINGARTNER

ABSTRACT. A number n is *practical* if every integer in [1, n] can be expressed as a subset sum of the positive divisors of n. We consider the distribution of practical numbers that are also shifted primes, improving a theorem of Guo and Weingartner. In addition, essentially proving a conjecture of Margenstern, we show that all large odd numbers are the sum of a prime and a practical number. We also consider an analogue of the prime k-tuples conjecture for practical numbers, proving the "correct" upper bound, and for pairs, improving on a lower bound of Melfi.

> In memory of Ron Graham (1935–2020) and Richard Guy (1916–2020)

1. INTRODUCTION

After Srinivasan [16], we say a positive integer n is *practical* if every integer $m \in [1, n]$ is a subset-sum of the positive divisors of n. After the proof of Erdős [2] in 1950 that the practical numbers have asymptotic density 0, their distribution has been of some interest, with work of Margenstern, Melfi, Tenenbaum, Saias, and the second-named author of this paper. In particular, we now know, [23], [24], that there is a constant c = 1.33607... such that the number of practical numbers in [1, x] is $\sim cx/\log x$ as $x \to \infty$. For other problems and results about practical numbers see [5, Sec. B2].

The problem of how frequently a shifted prime p-h can be practical was considered recently in [4]. Since practical numbers larger than 1 are all even, one assumes that the shift h is a fixed odd integer. Under this assumption, it would make sense that the concept of being practical and being a shifted prime are "independent events" and so it is natural to conjecture that the number of primes $p \leq x$ with p-h practical is of magnitude $x/\log^2 x$. Towards this conjecture it was shown in [4] that the number of shifted primes up to x that are practical is, for large x

Date: October 20, 2020.

²⁰⁰⁰ Mathematics Subject Classification. 11N25 (11N37).

Key words and phrases. practical number, shifted prime.

depending on h, between

$$\frac{x}{(\log x)^{5.7683...}}$$
 and $\frac{x}{(\log x)^{1.0860...}}$.

Here we make further progress with this problem, proving the conjecture for the upper bound of the count and reducing the lower bound exponent 5.7683... to 3.1647....

As in [4] we consider a somewhat more general problem. Let θ be an arithmetic function with $\theta(n) \geq 2$ for all n and let \mathcal{B}_{θ} be the set of positive integers containing n = 1 and all those $n \geq 2$ with canonical prime factorization $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}, p_1 < \ldots < p_k, \alpha_1, \ldots, \alpha_k \geq 1$, which satisfy

(1)
$$p_j \le \theta(p_1^{\alpha_1} \dots p_{j-1}^{\alpha_{j-1}}) \quad (1 \le j \le k).$$

(It is not necessary that p_i be the *i*-th prime number.) Stewart [17] and Sierpinski [15] showed that if $\theta(n) = \sigma(n) + 1$, where $\sigma(n)$ is the sum of the positive divisors of n, then the set \mathcal{B}_{θ} is precisely the set of practical numbers. Tenenbaum [20] found that if $\theta(n) = yn$, where $y \geq 2$ is a constant, then \mathcal{B}_{θ} is the set of integers with y-dense divisors; i.e., the ratios of consecutive divisors are at most y.

Throughout this paper, all constants implied by the big O and \ll notation may depend on the choice of θ . For several of our results we assume that there are constants A, C such that

(2)
$$\theta(mn) \le Cm^A \theta(n), \quad m, n \ge 1.$$

This holds for $\theta(n) = \sigma(n) + 1$ with A = 2, C = 1, since we trivially have $\sigma(mn) \leq \sigma(m)\sigma(n)$ and $\sigma(m) \leq m^2$.

We write $\log_2 x = \log \log x$ for $x > e^e$ and $\log_2 x = 1$ for $0 < x \le e^e$, and write $\log_3 x = \log_2 \log x$ for x > 1. Let

$$l(x) = \exp\left(\frac{\log x}{\log_2 x \log_3^3 x}\right)$$

and

$$S_h(x) := |\{p \le x : p \text{ prime}, \ p - h \in \mathcal{B}_\theta\}|.$$

Theorem 1. Fix a nonzero integer h. Assume (2) and $n \leq \theta(n) \ll nl(n)$ for $n \geq 1$. For x sufficiently large depending on the choice of θ, h , we have

(3)
$$\frac{x}{(\log x)^{3.1648}} < S_h(x) \ll_h \frac{x}{(\log x)^2}$$

where $h \in \mathbb{Z}$ and h is not divisible by $\prod_{p < \theta(1)} p$ in the lower bound.

The exponent in the lower bound can be taken as any number larger than $(e+1)\log(e+1) - e + 1$. In the case of practical numbers, where $\theta(n) = \sigma(n) + 1$ and $\prod_{p < \theta(1)} p = 2$, Theorem 1 implies the following.

Corollary 1. For any fixed odd $h \in \mathbb{Z}$, the number of primes $p \leq x$ such that p - h is practical satisfies (3).

It seems likely that the upper bound in (3) is best possible, apart from optimizing the implied constant as a function of the shift parameter h. Our proof shows that this constant is $\ll h/\varphi(h)$.

Margenstern [8, Conjecture 7] conjectured that every natural number other than 1 is the sum of two numbers that are either practical or prime. The case of even numbers was settled by Melfi [10, Theorem 1], who showed that every even number is the sum of two practical numbers. Somewhat weaker versions of the problem for odd numbers were recently stated by Sun [18]. (Also see [19] for several other related problems.) We show that, in the case of odd numbers, there are at most a finite number of exceptions to Margenstern's conjecture. Tomás Oliveira e Silva has told us that Margenstern's conjecture has no counterexamples to 10^9 and we have verified this via a direct search. We have used this result to bootstrap the calculation to a considerably higher bound, see Section 5. It may be difficult by our methods to get a numerical bound x_0 for which every odd number $> x_0$ is the sum of a prime and a practical number, but such a calculation is tractable using our proof if one is prepared to use the extended Riemann Hypothesis in place of the Bombieri–Vinogradov theorem. However, it may be that even this hypothetical x_0 is too large for a feasible calculation to close the gap.

Theorem 2. Assume $\theta(n) \geq n$. Every sufficiently large integer not divisible by $\prod_{p < \theta(1)} p$ is the sum of a prime and a member of \mathcal{B}_{θ} .

Corollary 2. Every sufficiently large odd integer is the sum of a prime and a practical number.

Margenstern [8, Theorem 6] showed that for every fixed even number h, there are infinitely many practical numbers n such that n + h is also practical. He conjectured [8, Conjecture 2] that the number of practical pairs $\{n, n + 2\}$ up to x is asymptotic to $cx/\log^2 x$ for some positive constant c. Let

$$T_h(x) := |\{n \le x : n \in \mathcal{B}_\theta, n+h \in \mathcal{B}_\theta\}|.$$

Theorem 3. Fix a nonzero integer h. Assume (2) and $\theta(n) \ll nl(n)$ for $n \ge 1$.

(i) We have

(4)
$$T_h(x) \ll_h \frac{x}{\log^2 x}.$$

(ii) Assume further that $\theta(n) \geq n$ for all n, and that $n \in \mathcal{B}_{\theta}$ and $m \leq 3n/|h|$ imply $mn \in \mathcal{B}_{\theta}$. Moreover, if $\theta(1) < 3$, assume that

(5)
$$\begin{cases} h \in 2\mathbb{Z} & \text{if } \theta(2) \ge 3, \\ h \in 4\mathbb{Z} & \text{if } \theta(2) < 3. \end{cases}$$

Then for sufficiently large x, depending on the choice of h,

(6)
$$T_h(x) > \frac{x}{(\log x)^{9.5367}}$$

When $h \in 2\mathbb{Z}$ and $\theta(n) = \sigma(n) + 1$, all conditions of Theorem 3 are satisfied, since for practical n we have $\sigma(n) + 1 \ge 2n$, by [8, Lemma 2].

Corollary 3. For every nonzero even integer h, the number of practical n up to x, such that n + h is also practical, satisfies (4) and (6).

Corollary 3 improves on the lower bound by Melfi [11, Thm. 1.1] for twin practical numbers, $T_2(x) \gg x/\exp(k\sqrt{\log x})$ for $k > 2 + \log(3/2)$.

The upper bound in Theorem 3 generalizes as follows to the distribution of practical k-tuples.

Theorem 4. Fix integers $0 \le h_1 < h_2 < \ldots < h_k$. Assume (2) and $\theta(n) \ll nl(n)$ for $n \ge 1$. We have

$$\left| \{ n \leq x : \{ n + h_1, \dots, n + h_k \} \subset \mathcal{B}_{\theta} \} \right| \ll_{h_1, \dots, h_k} \frac{x}{\log^k x}.$$

When $k \geq 3$ getting a lower bound of the same quality for these k-tuples seems difficult. In some cases with the practical numbers we know there are no large examples, such as when the h_i do not all have the same parity, or for the example 0, 2, 4, 6 when at least one of $n + h_i$ must be 2 (mod 4) and not divisible by 3, cf. [8]. However, when the k-tuple is admissible, i.e., not ruled out by congruence conditions, it would seem likely that the "independent events" heuristic would again apply and that the upper bound in Theorem 4 is correct up to a constant factor. In our proof of the lower bound in Theorem 3 we use the Bombieri–Vinogradov theorem. If instead the Elliott–Halberstam conjecture is assumed, it may be possible to get a reasonable lower bound in Theorem 4 when the k-tuple is admissible in the sense above. Finally, we remark that in certain special cases, such as when the h_i are 0, 2, 4, we at least know that there are infinitely many practical examples, see Melfi [10].

2. The upper bound of Theorem 1

Lemma 1. There exists a constant K > 0 such that for all $a, b \in \mathbb{Z} \setminus \{0\}$ and all x > 1 we have

$$|\{m \le x : m \text{ and } am + b \text{ are both } prime\}| \le K \frac{a|b|}{\varphi(a|b|)} \cdot \frac{x}{\log^2 x}.$$

This result follows immediately from [12, Lemma 5].

Let $P^+(n)$ denote the largest prime factor of n > 1 and $P^+(1) = 1$. Define

$$B(x, y, z) = |\{n \le x : n \in \mathcal{B}_{z\theta}, P^+(n) \le y\}|.$$

Proposition 1. Assume $\theta(n) \ll n l(n)$. For $x \ge 2$, $y \ge 2$ and $z \ge 1$,

$$B(x, y, z) \ll \frac{x \log(2z)}{\log x} e^{-u/3},$$

where $u = \log x / \log y$.

Before proving this we establish some consequences.

Corollary 4. Let $\alpha \in \mathbb{R}$. Assume (2) and $\theta(n) \ll n l(n)$ for $n \ge 1$. For $x \ge 1$, $y \ge 2$, $z \ge 1$,

$$\sum_{\substack{n \le x, \ n \in \mathcal{B}_{z\theta} \\ P^+(n) \le y}} \left(\frac{\sigma(n)}{n}\right)^{\alpha} \ll_{\alpha} \frac{x \log(2z)}{\log(2x)} \exp\left(-\frac{\log x}{3 \log y}\right).$$

Proof. When $\alpha \leq 0$, the result follows from Proposition 1. We will show the result for $\alpha \in \mathbb{N}$ by induction. Note that because of (2) we have that $kd \in \mathcal{B}_{\theta}$ implies $k \in \mathcal{B}_{\theta_d}$, where $\theta_d(n) = Cd^A\theta(n)$. By Proposition 1 with z replaced by zCd^A ,

$$\begin{split} \sum_{\substack{n \le x, \ n \in \mathcal{B}_{z\theta}\\P^+(n) \le y}} \left(\frac{\sigma(n)}{n} \right)^{\alpha} &= \sum_{\substack{n \le x, \ n \in \mathcal{B}_{z\theta}\\P^+(n) \le y}} \left(\frac{\sigma(n)}{n} \right)^{\alpha-1} \sum_{d \mid n} \frac{1}{d} \\ &\leq \sum_{d \le x} \frac{\sigma(d)^{\alpha-1}}{d^{\alpha}} \sum_{\substack{k \le x/d, \ k \in \mathcal{B}_{z\theta_d}\\P^+(k) \le y}} \left(\frac{\sigma(k)}{k} \right)^{\alpha-1} \\ &\ll_{\alpha} \sum_{d \le x} \frac{\sigma(d)^{\alpha-1}}{d^{\alpha}} \frac{x \log(2dz)}{d \log(2x/d)} \exp\left(-\frac{\log(x/d)}{3 \log y}\right) \\ &\ll x \exp\left(-\frac{\log x}{3 \log y}\right) \sum_{d \le x} \exp\left(\frac{\log d}{3 \log y}\right) \frac{(\log_2 d)^{\alpha-1} \log(2dz)}{d^2 \log(2x/d)} \\ &\ll_{\alpha} \frac{x \log(2z)}{\log(2x)} \exp\left(-\frac{\log x}{3 \log y}\right), \end{split}$$

since $\exp((\log d)/(3\log y)) \le d^{1/2}$.

With y = x, z = 1 and $\alpha = 1$ in Corollary 4, we get

Corollary 5. Under the assumptions of Corollary 4 we have, for x > 1,

$$\sum_{\substack{n \le x \\ n \in \mathcal{B}_{\theta}}} \frac{\sigma(n)}{n} \ll \frac{x}{\log x}.$$

Remark 1. Corollary 5 allows us to replace the relative error term $O(\log_2 x/\log x)$ in [23, Theorem 1.1], the asymptotic for the count of practical numbers up to x, by $O(1/\log x)$. Indeed, in the proof of [23, Theorem 1.1], the estimate $\sigma(n)/n \ll \log_2 n$ leads to the extra factor of $\log_2 x$. Using instead Corollary 5 in the proofs of Lemmas 5.3 and 5.6 of [23], the factor $\log_2 x$ can be avoided.

Proof of the upper bound in Theorem 1. Assume $x \geq 2|h|$. We consider those $n \in \mathcal{B}_{\theta}$ with n + h prime and $n + h \leq x$. We may assume that $n > x/\log^2 x$. Write n = mq, where $q = P^+(n)$. We have $m \in \mathcal{B}_{\theta}$, $P^+(m) \leq q$ and $q \leq \theta(m) \leq ml(m)$. So, assuming x is large, we have $m > x^{1/3}$. By Lemma 1,

$$S_{h}(x) \leq \sum_{m \in \mathcal{B}_{\theta}} |\{q \text{ prime} : mq + h \text{ prime}, q \leq (x - h)/m\}|$$

$$\ll \sum_{\substack{m \in \mathcal{B}_{\theta}, m > x^{1/3} \\ mP^{+}(m) \leq x - h}} \frac{m|h|}{\varphi(m|h|)} \frac{(x - h)/m}{\log^{2}(2(x - h)/m)}$$

$$\leq \frac{2|h|x}{\varphi(|h|)} \sum_{m \in \mathcal{B}_{\theta}, m > x^{1/3}} \frac{1}{\varphi(m)\log^{2}P^{+}(m)}.$$

We will show that the last sum is $\ll 1/\log^2 x$. With $p = P^+(m)$ and m = kp, we have $k \in \mathcal{B}_{\theta}$ and $k > x^{1/7}$. The last sum is

$$\ll \sum_{p\geq 2} \frac{1}{p\log^2 p} \sum_{k\in \mathcal{B}_{\theta}, \ k>x^{1/7} \atop P^+(k)\leq p} \frac{k}{\varphi(k)} \cdot \frac{1}{k}.$$

Since $k/\varphi(k) \ll \sigma(k)/k$, Corollary 4 (with $\alpha = z = 1$) and partial summation applied to the inner sum shows that the last expression is

$$\ll \sum_{p \ge 2} \frac{1}{p \log^2 p} \cdot \frac{\log p}{\log x} \exp\left(-\frac{\log x}{21 \log p}\right) \ll \frac{1}{\log^2 x},$$

by the prime number theorem.

Proof of Proposition 1. We follow the proof of Saias [13, Prop. 1], who established this result in the case when $\theta(n) = yn$ with $y \ge 2$ (integers with y-dense divisors) and in the case when $\theta(n) = \sigma(n) + 1$ (practical numbers) and z = 1. Let f(n) be an increasing function with $\theta(n) \le nf(n)$ for all $n \ge 1$ and $f(n) \ll l(n)$. Suppose $n \in \mathcal{B}_{z\theta}$, where $n = p_1 p_2 \dots p_k$ with $p_1 \le p_2 \le \dots \le p_k$. Since f is increasing, $p_j \le zp_1 \cdots p_{j-1}f(p_1 \cdots p_{j-1})$, so $p_j^2 \le znf(n) \le zxf(x)$ for $n \le x$. By sorting the integers counted in B(x, y, z) according to their largest prime factor, we get

$$B(x, y, z) \le 1 + \sum_{p \le \min(y, \sqrt{zxf(x)})} B(x/p, p, z),$$

the analogue of [13, Lemma 8].

Let $\Psi(x, y)$ denote the number of integers $n \leq x$ with $P^+(n) \leq y$. We write $u = \log x / \log y$ and $\tilde{v} = \log x / \log(2z)$. Let $\tilde{\rho}(u) = \rho(\max\{0, u\})$, where $\rho(u)$ is Dickman's function. Let $\tilde{D}(x, y, z)$ be the function defined in [13, p. 169]. It satisfies

$$\tilde{D}(x, y, 2z) \asymp \frac{x}{\tilde{v}} \tilde{\rho} \left(u \left(1 - 1/\sqrt{\log y} \right) - 1 \right) \qquad (0 < u < 3(\log x)^{1/3})$$

and

$$\tilde{D}(x, y, 2z) = \Psi(x, y)$$
 $(u \ge 3(\log x)^{1/3}),$

Lemma 9 of [13] shows that

$$\tilde{D}(x, y, 2z) \ge 1 + \sum_{p \le \min(y, \sqrt{2zx}l(x))} \tilde{D}(x/p, p, 2z),$$

for $z \ge 1$, $y \ge 2$, $\tilde{v} \ge v_0$ and $0 < u \le 3(\log x)^{1/3}$. We claim that

(7)
$$B(x, y, z) \le cD(x, y, 2z),$$

for some suitable constant c. If $2 \le x \le x_0$, we have $\tilde{D}(x, y, 2z) \asymp 1$, so we may assume $x \ge x_0$ and hence $\sqrt{f(x)} \le l(x)$. If $0 < \tilde{v} \le u < 3(\log x)^{1/3}$, then $2z \ge y$ and $B(x, y, z) = \Psi(x, y) \ll \tilde{D}(x, y, 2z)$, where the last estimate is derived in the penultimate display on page 182 of [13]. If $0 < u \le \tilde{v} \le v_0$, then $\tilde{D}(x, y, 2z) \asymp x$ so (7) holds. If $u \ge 3(\log x)^{1/3}$, then $\tilde{D}(x, y, 2z) = \Psi(x, y)$ and (7) holds. Assume that c is such that (7) holds in the domain covered so far. In the remainder we may assume that $u \le 3(\log x)^{1/3}$ and $\tilde{v} \ge v_0$. We show by induction on k that (7) holds for $y \ge 2, z \ge 1, 2 \le x \le 2^k$. We have

$$\begin{split} B(x,y,z) &\leq 1 + \sum_{p \leq \min(y,\sqrt{zxf(x)})} B(x/p,p,z) \\ &\leq 1 + c \sum_{p \leq \min(y,\sqrt{zxf(x)})} \tilde{D}(x/p,p,2z) \\ &\leq c \left(1 + \sum_{p \leq \min(y,\sqrt{2zx}l(x))} \tilde{D}(x/p,p,2z) \right) \\ &\leq c \tilde{D}(x,y,2z). \end{split}$$

It remains to show that

$$\tilde{D}(x, y, 2z) \ll x \frac{\log(2z)}{\log x} e^{-u/3}.$$

We may assume $x \ge x_0$. If $u \le 3(\log x)^{1/3}$, then $y \ge y_0$ and the result follows from $\rho(u) \ll e^{-u}$. If $u > 3(\log x)^{1/3}$, then

$$\tilde{D}(x, y, 2z) = \Psi(x, y) \ll x e^{-u/2} \ll \frac{x}{\log x} e^{-u/3} \ll \frac{x \log(2z)}{\log x} e^{-u/3},$$

where the upper bound for $\Psi(x, y)$ is [21, Thm. III.5.1].

3. Some Lemmas

The following observation follows immediately from the definition of the set \mathcal{B}_{θ} in (1).

Lemma 2. Let $\theta(n) \geq n$ for all $n \in \mathbb{N}$. If $n \in \mathcal{B}_{\theta}$ and $P^+(k) \leq n$, then $nk \in \mathcal{B}_{\theta}$.

If $\theta(n) = yn$, we write \mathcal{D}_y for \mathcal{B}_{θ} . For an integer n > 1, let $P^-(n)$ denote the least prime dividing n, and let $P^-(1) = +\infty$.

Lemma 3. There is a number y_0 such that if $x \ge z^4 \ge 1$ and $y \ge \max\{y_0, z + z^{0.535}\}$, we have

$$|\{n \le x : n \in \mathcal{D}_y, P^-(n) > z\}| \asymp \frac{x \log(y/z)}{\log(xy) \log(2z)}$$

This conclusion continues to hold if $z + 1 \le y \le y_0$ and (z, y] contains at least one prime number.

Proof. When $x \ge y \ge y_0$ and $z \ge 3/2$, then $\log(xy) \asymp \log x$ and the result follows from [14, Thm. 1] and [22, Rem. 2]. When y > x, the result follows from $|\{n \le x : P^-(n) > z\}| \asymp x/\log(2z)$. If $1 \le z \le 3/2$,

the result follows from [13, Thm. 1]. If $y \leq y_0$, the result follows from iterating [14, Lemma 8] a finite number of times.

Lemma 4. For $d \in \mathbb{N}$, $x \ge 1$, $z \ge 1$ and $y \ge 2z$, we have

$$|\{n \le x : n \in \mathcal{D}_y, P^-(n) > z, d \mid n\}| \ll 1_{d \in \mathcal{D}_y} + \frac{x \log(dy)}{d \log(xy) \log(2z)}.$$

Proof. We first assume that $x/d \ge z^4$. If d = 1 the result follows from Lemma 3, so we assume d > 1. We have

$$\begin{aligned} |\{dw \le x : dw \in \mathcal{D}_y, P^-(w) > z\}| \le |\{w \le x/d : w \in \mathcal{D}_{dy}, P^-(w) > z\}| \\ \ll \frac{x \log(dy)}{d \log(xy) \log(2z)}, \end{aligned}$$

by Lemma 3.

If $x/d \leq z^4$, then $\log(xy) \leq \log(ydz^4) \leq 5\log(yd)$, so the result follows from $|\{2 \leq w \leq x/d : P^-(w) > z\}| \ll x/(d\log(2z))$.

Lemma 5. Assume $\theta(n) \ge n$ for all $n \in \mathbb{N}$. For all $h \in \mathbb{N}$ that are not divisible by $\prod_{p < \theta(1)} p$, we have

$$|\{x/p_0 < n \le x : n \in \mathcal{B}_{\theta}, \gcd(n,h) = 1\}| \gg \frac{x}{\log x \log(2h) \log_2 h},$$

for $x \ge K \log^5(2h)$, where $p_0 \le \theta(1)$ is the smallest prime not dividing h, and K is some positive constant depending only on θ . Moreover, there exists a constant $\eta > 0$ such that if $L \ge 1$ satisfies

$$\sum_{p \mid h, \ p > L} \frac{\log p}{p} < \eta$$

then, for $x \ge KL^5$,

$$|\{x/p_0 < n \le x : n \in \mathcal{B}_{\theta}, \gcd(n,h) = 1\}| \gg \frac{x}{L \log x \log(2L)}$$

Proof. Let $p_0 \leq \theta(1)$ be the smallest prime with $p_0 \nmid h$. Let $k \in \mathbb{N}$, $L_k = p_0^k/2$, and assume $x \geq 2L_k^5$. Since $\theta(n) \geq n$,

$$\begin{aligned} |\{x/p_0 < n = p_0^k w \le x : n \in \mathcal{B}_{\theta}, P^-(w) > L_k\}| \\ \ge |\{x/p_0^{k+1} < w \le x/p_0^k : w \in \mathcal{D}_{p_0^k}, P^-(w) > L_k\}|. \end{aligned}$$

We would like to use Lemma 3 to obtain a lower bound for this count, but the fact that w is not free to roam over the entire interval $[1, x/p_0^k]$ is problematic. We note though that Lemma 3 implies there is a set $\mathcal{K} \subset \mathbb{N}$ with bounded gaps such that if $x \geq 2L_k^5$ and $k \in \mathcal{K}$, we have

$$|\{x/p_0^{k+1} < w \le x/p_0^k : w \in \mathcal{D}_{p_0^k}, \ P^-(w) > L_k\}| \gg \frac{x \log(p_0^k/L_k)}{p_0^k \log x \log L_k} \\ \asymp \frac{x}{L_k \log x \log L_k}$$

We have

$$\begin{split} |\{w \le x/p_0^k : w \in \mathcal{D}_{p_0^k}, \ P^-(w) > L_k, \ \gcd(h, w) > 1\}| \\ \le \sum_{p \mid h \atop p > L_k} |\{w \le x/p_0^k : w \in \mathcal{D}_{p_0^k}, \ P^-(w) > L_k, \ p \mid w\}| \\ \ll \sum_{\substack{p \mid h \atop L_k L_k} \frac{x \log p}{L_k p \log x \log L_k}, \end{split}$$

by Lemma 4, since $\log(pp_0^k) \ll \log p$ for $p > L_k$. The sum of 1 is clearly $\leq L_k \leq (x/2)^{1/5}$. The second statement of the lemma now follows with the smallest $k \in \mathcal{K}$ such that $L_k \geq L$.

Since h has at most $\log h / \log L_k$ prime factors $> L_k$, the last sum above is

$$\ll \frac{\log h}{\log L_k} \cdot \frac{x}{L_k \log L_k \log x} \cdot \frac{\log L_k}{L_k} = \frac{x \log h}{L_k^2 \log L_k \log x}.$$

We need this to be $\langle x/(CL_k \log x \log L_k)$ for some sufficiently large constant C > 0, that is, $L_k \geq C \log(2h)$. The first statement of the lemma now follows with the smallest such $k \in \mathcal{K}$.

4. The lower bound of Theorem 1

Let h be a fixed integer that is not a multiple of $\prod_{p \le \theta(1)} p$. Let $\delta = 1/\log_2 x$ and define

$$\mathcal{Q} = \{ q \in (x^{1/2-\delta}, x^{1/2}/\log^{10} x] : \ \gcd(q, h) = 1, \ q \in \mathcal{B}_{\theta} \}.$$

Let $\mathcal{N}_h(x)$ denote the set of pairs (q, m) with $q \in \mathcal{Q}$, $qm + h \leq x$, and qm + h prime, and let $N_h(x) = |\mathcal{N}_h(x)|$. Thus,

$$N_h(x) = \sum_{q \in \mathcal{Q}} \pi(x; q, h).$$

Now, by the Bombieri–Vinogradov theorem, see [21, p. 403], we have

$$\sum_{q \in \mathcal{Q}} \left| \pi(x; q, h) - \frac{\pi(x)}{\varphi(q)} \right| \ll \frac{x}{\log^6 x}$$

Thus,

$$N_h(x) = \sum_{q \in \mathcal{Q}} \pi(x; q, h) = \sum_{q \in \mathcal{Q}} \frac{\pi(x)}{\varphi(q)} + O\left(\frac{x}{\log^6 x}\right).$$

Further, using Lemma 5, we have

$$\sum_{q \in \mathcal{Q}} \frac{1}{\varphi(q)} \ge \sum_{q \in \mathcal{Q}} \frac{1}{q} \gg_h \delta.$$

We conclude that

(8) $N_h(x) \gg_h \delta x / \log x.$

Let $\mathcal{N}_{h,1}(x)$ denote the set of those pairs (q,m) in $\mathcal{N}_h(x)$ with $x^{\delta} < P^+(m) < x^{1/2-\delta}$.

Lemma 6. We have $|\mathcal{N}_{h,1}(x)| = |\mathcal{N}_h(x)| + O(\delta^2 x / \log x),$

Proof. Let $q \in \mathcal{Q}$. The number of integers $m \leq (x-h)/q$ with $P^+(m) \leq x^{\delta}$ is $\ll (x-h)/(q \log^{10} x)$, see [21, Lem. III.5.19], and so such numbers m are negligible. For m = rk, where $r = P^+(m) \geq x^{1/2-\delta}$, we have $k \leq x^{2\delta}$. Thus, the number of such pairs (q, rk) is at most

$$\sum_{q \in \mathcal{Q}} \sum_{k \le x^{2\delta}} \sum_{\substack{r \le (x-h)/qk \\ r \text{ prime} \\ qrk+h \text{ prime}}} 1$$

The inner sum, by Lemma 1, is $\ll_h x/(\varphi(q)\varphi(k)\log^2 x)$. Summing on k gives us $\ll_h \delta x/(\varphi(q)\log x)$, and then summing on q gives us $\ll_h \delta^2 x/\log x$, using $q/\varphi(q) \ll \sigma(q)/q$, Corollary 5, and partial summation. This concludes the proof.

Corollary 6. For a pair (q,m) in $\mathcal{N}_{h,1}(x)$ we have $qm \in \mathcal{B}_{\theta}$.

Proof. Since $P^+(m) < x^{1/2-\delta} < q$, it follows from Lemma 2 that $qm \in \mathcal{B}_{\theta}$.

Let $v_2(n)$ denote the number of factors 2 in the prime factorization of n and let $\Omega(n)$ denote the total number of prime factors of n, counted with multiplicity. Let $\varepsilon > 0$ be arbitrarily small but fixed. Let $\mathcal{N}_{h,2}(x)$ denote the set of pairs $(q, m) \in \mathcal{N}_{h,1}(x)$ with

$$\Omega(m) \le I := \lfloor (1+\varepsilon) \log_2 x \rfloor$$
 and $v_2(m) \le 4 \log_3 x$.

Lemma 7. We have

$$|\mathcal{N}_{h,2}(x)| = |\mathcal{N}_h(x)| + O_h(\delta^2 x / \log x).$$

Proof. Assume $(q,m) \in \mathcal{N}_{h,1}(x)$. Let $r = P^+(m)$, so that $r > x^{\delta}$, and write m = rk. If $(q,m) \notin \mathcal{N}_{h,2}(x)$ then either $\Omega(k) > I - 1$ or $v_2(k) > 4 \log_3 x$. For a given number k, the number of primes $r \leq (x - h)/qk$ with qrk+h prime is, by Lemma 1, $\ll_h x/(\varphi(q)\varphi(k)\log^2(x/qk))$. Summing this expression over k with $v_2(k) > 4 \log_3 x$ and $q \in \mathcal{Q}$, it is $\ll_h \delta^2 x/\log x$, since $2^{-4\log_3 x} < \delta^2$. We now wish to consider the case when $\Omega(k) > I - 1$. Following a standard theme (see Exercises 04 and 05 in [6]) we have uniformly for each real number z with 1 < z < 2that

(9)
$$\sum_{n \le x} \frac{z^{\Omega(n)}}{\varphi(n)} \ll \frac{1}{2-z} (\log x)^z.$$

Applying this with $z = 1 + \varepsilon$, we have

$$\sum_{\substack{k \le x^{1/2} \\ \Omega(k) > I-1}} \frac{1}{\varphi(k)} \le z^{-I+1} \sum_{k \le x^{1/2}} \frac{z^{\Omega(k)}}{\varphi(k)} \ll (\log x)^{1+\varepsilon - (1+\varepsilon)\log(1+\varepsilon)}.$$

This last expression is of the form $(\log x)^{1-\eta}$, where $\eta > 0$ depends on the choice of ε . Thus, the number of pairs (q, m) in this case is $\ll_h \delta x/(\log x)^{1+\eta}$, which is negligible.

Let $\Omega_3(n) = \Omega(n/v_2(n))$ denote the number of odd prime factors of n counted with multiplicity, and let $\mathcal{N}_{h,3}$ denote the number of pairs $(q,m) \in \mathcal{N}_{h,2}$ with $\Omega_3(q) \leq J := \lfloor (e+\varepsilon) \log_2 x \rfloor$.

Lemma 8. We have $|\mathcal{N}_{h,3}(x)| = |\mathcal{N}_h(x)| + O_h(\delta^2 x / \log x).$

Proof. By the same method that gives (9), we have

(10)
$$\sum_{n \le x} \frac{z^{\Omega_3(n)}}{\varphi(n)} \ll \frac{1}{3-z} (\log x)^z,$$

uniformly for 1 < z < 3. Assuming that ε is small enough that $z = e + \varepsilon < 3$, we have

$$\sum_{\substack{q \in \mathcal{Q} \\ \Omega_3(q) > J}} \frac{1}{\varphi(q)} \le \sum_{\substack{q \le x^{1/2} \\ \Omega_3(q) > J}} \frac{1}{\varphi(q)} \le z^{-J} \sum_{q \le x^{1/2}} \frac{z^{\Omega_3(q)}}{\varphi(q)} \ll (\log x)^{z - (e+\varepsilon)\log z}.$$

Since $z - (e + \varepsilon) \log z = -\eta < 0$, where η depends on the choice of ε , this calculation shows that those pairs with $\Omega_3(q) > J$ are negligible. \Box

Let $K = \lfloor 4 \log_3 x \rfloor + 1$. For a given pair $(q, m) \in \mathcal{N}_{h,3}(x)$, we count the number of pairs $(q', m') \in \mathcal{N}_{h,3}(x)$ with q'm' = qm. The pair (q', m') is determined by (q, m) and m', so all we need to do is count the number of divisors d of qm with $\Omega(d) \leq I$ and $v_2(d) < K$. This count is at most

$$K\sum_{i\leq I} \binom{I+J}{i} \ll K\binom{I+J}{I}.$$

Stirling's formula shows that

$$K\binom{I+J}{I} \ll (\log x)^{\alpha+\eta} \log_3 x,$$

where $\alpha = (e+1)\log(e+1) - e\log e = 2.16479...$ and $\eta \to 0$ as $\varepsilon \to 0$. It follows from (8) and Lemma 8 that

$$S_h(x) \gg \frac{\delta x}{\log x} \cdot \frac{1}{(\log x)^{\alpha+\eta} \log_3 x} \gg \frac{x}{(\log x)^{1+\alpha+2\eta}} = \frac{x}{(\log x)^{3.16479\dots+2\eta}}$$

Remark 2. The proof of the lower bound of Theorem 1 would be somewhat simpler if instead of the Bombieri–Vinogradov theorem we had used a very new result of Maynard [9]. With the choice of parameters $\delta = 0.02$, $\eta = 0.001$ in his Corollary 1.2, one has for the set Q of integers $q \leq x^{0.52}$ with a divisor in $(x^{0.041}, x^{0.071})$ that

$$\sum_{\substack{q \in \mathcal{Q} \\ \gcd(q,a)=1}} \left| \pi(x;q,a) - \frac{\pi(x)}{\varphi(q)} \right| \ll_{a,A} \frac{x}{\log^A x},$$

for any fixed integer $a \neq 0$ and any positive A. We note that all of the members of $\mathcal{B}_{\theta} \cap (x^{0.041}, x^{0.52}]$ are in \mathcal{Q} .

5. Proof of Theorem 2

Let h be an integer in (x/2, x] that is not a multiple of $\prod_{p \le \theta(1)} p$. Define

$$\mathcal{D} = \{ q \in \mathcal{B}_{\theta} \cap (x^{1/2-\delta}, x^{1/2}/\log^{10} x] : \gcd(q, h) = 1 \}.$$

By Lemma 5,

(11)
$$|\mathcal{D}| \gg \frac{x^{1/2}}{\log^{12} x \log \log x}.$$

For each $q \in \mathcal{D}$, if $p \leq x/2 < h$, where p is a prime that satisfies $p \equiv h \mod q$, then p = h - qm for some $m \in \mathbb{N}$. Let $M_h(x)$ denote the number of pairs (p,q) with p prime, $p \leq x/2$, $p \equiv h \mod q$ and $q \in \mathcal{D}$. As in Section 4, we have

$$M_h(x) = \sum_{q \in \mathcal{D}} \pi(x/2; q, h) = \sum_{q \in \mathcal{D}} \frac{\pi(x/2)}{\varphi(q)} + O\left(\frac{x}{\log^6 x}\right).$$

From (11), we have

$$F := \sum_{q \in \mathcal{D}} \frac{1}{\varphi(q)} \ge \sum_{q \in \mathcal{D}} \frac{1}{q} \ge \frac{|\mathcal{D}|}{x^{1/2}/\log^{10} x} \gg \frac{1}{\log^2 x \log \log x}.$$

We conclude that

(12)
$$M_h(x) \gg F \frac{x}{\log x} \gg \frac{x}{\log^3 x \log \log x}.$$

We claim that most of the pairs (p,q) counted in $M_h(x)$ are such that $qm = h - p \in \mathcal{B}_{\theta}$. Since $q > x^{1/2-\delta}$ and $qm < h \leq x$, we have $m \leq x^{1/2+\delta}$. If $P^+(m) \leq x^{1/2-\delta}$, then $P^+(m) < q$ and $mq \in \mathcal{B}_{\theta}$. If $P^+(m) > x^{1/2-\delta}$, write $r = P^+(m) > x^{1/2-\delta}$ and m = ra with $a < x^{2\delta}$. Given a and q, the number of primes r < x/(aq) with h - aqr prime is

(13)
$$\ll \frac{hx}{\varphi(h)\varphi(q)\varphi(a)\log^2 x}$$

by Lemma 1. We have $h/\varphi(h) \ll \log \log x$ and

$$\sum_{a < x^{2\delta}} \frac{1}{\varphi(a)} \ll \delta \log x$$

Thus, summing (13) over $q \in \mathcal{D}$ and $a < x^{2\delta}$ amounts to

$$\ll F \frac{x\delta \log \log x}{\log x} = o\left(F \frac{x}{\log x}\right)$$

since $\delta = 1/(\log \log x)^2$. By (12), the number of pairs (p,q) with h = p + qm, p prime and $qm \in \mathcal{B}_{\theta}$ is

$$\gg F \frac{x}{\log x} \gg \frac{x}{\log^3 x \log \log x}$$

which is at least 1 when x is sufficiently large. This completes the proof of Theorem 2.

5.1. Checking Margenstern's conjecture numerically. For positive coprime integers u, v, let p(u, v) be the least prime $p \equiv u \pmod{v}$, and let $M(v) = \max_{\gcd(u,v)=1} p(u,v)$. For example, M(8) = 17, since p(1,8) = 17, p(3,8) = 3, p(5,8) = 5, and p(7,8) = 7.

Lemma 9. Suppose that a is a positive integer with $M(2^a) < 2^{2a+1}$. Then every odd number $n \in (M(2^a), 2^{2a+1})$ is the sum of a prime and a practical number.

Proof. For each odd $n \in (M(2^a), 2^{2a+1})$ let $q = n - p(n, 2^a)$. Note that $0 < q < 2^{2a+1}$ and $2^a \mid q$. Since 2^a is practical and $\sigma(2^a) + 1 = 2^{a+1} > q/2^a$, it follows that q is practical. Thus, $n = q + p(n, 2^a)$ is a representation of n as the sum of a prime and a practical. \Box

Note that the condition in Lemma 9 that $M(2^a) < 2^{2a+1}$ is not guaranteed by any known result in analytic number theory. We do know that $M(2^a) \leq 2^{O(a)}$ with a fairly modest *O*-constant, but we are not close to proving the condition in the lemma. (Heuristically, we should have $M(2^a) = O(2^a a^2)$.) For a given numerical value of *a*, one might actually compute the exact value of $M(2^a)$. And if f it is smaller than 2^{2a+1} , we have verified Margenstern's conjecture for the interval $(M(2^a), 2^{2a+1})$. For example, since $M(2^3) = 17$, we automatically have the conjecture for odd numbers in the interval (17, 128).

We have computed that $M(2^{23}) = 997,427,777$. This number is less than 2^{47} , in fact, it is less than 10^9 . Thus, Margenstern's conjecture holds for all odd numbers (greater than 1) up to 2^{47} . Moreover, since $M(2^{35}) = 9,968,601,716,713 < 2^{47}$, the conjecture holds up to 2^{71} . It would not be difficult to push this calculation further.

6. The upper bound in Theorems 3 and 4

For a natural number n, a divisor d of n is said to be *initial* if $P^+(d) \leq P^-(n/d)$. Let $I_y(n)$ be the largest initial divisor of n with $d \leq y$. Note that if $n \in \mathcal{B}_{\theta}$, then $I_y(n) \in \mathcal{B}_{\theta}$ for all y.

Assume $n \leq x$ and $n, n + h \in \mathcal{B}_{\theta}$. Let $q = I_{x^{1/3}}(n), q' = I_{x^{1/3}}(n + h)$. Since $n, n + h \in \mathcal{B}_{\theta}$ and $\theta(n) = n^{1+o(1)}$, we may assume that $q, q' \in [x^{1/7}, x^{1/3}]$. Write n = qm and n + h = q'm'. We have $q, q' \in \mathcal{B}_{\theta}$ and $P^{-}(m) \geq P^{+}(q) =: r, P^{-}(m') \geq P^{+}(q') =: r'$. Given $q, q' \in \mathcal{B}_{\theta}$ with $d = \gcd(q, q')$, we need m, m' such that q'm' - qm = h. This equation only has solutions if d|h, in which case all solutions have the form

$$m = m_0 + jq'/d, \quad m' = m'_0 + jq/d, \quad j \in \mathbb{Z}.$$

If m_0, m'_0 are the smallest positive solutions to q'm' - qm = h, then $1 \le n = mq \le x$ implies $0 \le j \le dx/qq' \le hx/qq'$. Let

$$\mathcal{A} = \{ (m_0 + jq'/d)(m'_0 + jq/d) : 0 \le j \le hx/qq' \},\$$

and let $S(\mathcal{A})$ be the number of elements of \mathcal{A} remaining after removing all products mm', where either m is a multiple of a prime $p < r, p \nmid hqq'$, or m' is a multiple of a prime $p < r', p \nmid hqq'$. For each prime $p \nmid hqq'$, each of the conditions p|m and p|m' is equivalent to j belonging to a unique residue class modulo p (because $p \nmid qq'$), and those two residue classes are distinct (because $p \nmid h$). Selberg's sieve [3, Prop. 7.3 and Thm. 7.14] shows that

$$S(\mathcal{A}) \ll \frac{hx/qq'}{\log r \log r'} \left(\frac{hqq'}{\varphi(hqq')}\right)^2 \ll_h \frac{xqq'}{\varphi(q)^2 \varphi(q')^2 \log P^+(q) \log P^+(q')}$$

Summing this estimate over $q, q' \in [x^{1/7}, x^{1/3}] \cap \mathcal{B}_{\theta}$, the upper bound in Theorem 3 follows from Lemma 10 with $\alpha = 2$.

This argument generalizes naturally to yield Theorem 4: For $1 \leq i \leq k$, let $n + h_i = m_i q_i \in \mathcal{B}_{\theta}$, where $q_i = I_{x^{1/(k+1)}}(n + h_i)$, so that $q_i \in \mathcal{B}_{\theta} \cap [x^{1/(2k+3)}, x^{1/(k+1)}]$. One finds that if $gcd(q_i, q_l)|(h_l - h_i)$, for $1 \leq i < l \leq k$, then

$$m_i = m_{i,0} + j \operatorname{lcm}(q_1, \dots, q_k) / q_i \qquad (1 \le i \le k),$$

where $0 \leq j \leq x/\operatorname{lcm}(q_1, \ldots, q_k) \leq \frac{x}{q_1 \ldots q_k} \prod_{1 \leq i < l \leq k} (h_l - h_i)$. Eliminating values of j for which $p|m_i$, where $p < P^+(q_i)$, $p \nmid \prod_{i \leq k} q_i$ and $p \nmid \prod_{1 < i < l < k} (h_l - h_i)$, we find that

$$S(\mathcal{A}) \ll_{h_1,\dots,h_k} x \prod_{i=1}^k \frac{q_i^{k-1}}{\varphi(q_i)^k \log P^+(q_i)}.$$

Theorem 4 now follows from Lemma 10 with $\alpha = k$.

Lemma 10. Let $\alpha \in \mathbb{R}$. Assume (2) and $\theta(n) \ll n l(n)$ for $n \ge 1$. We have

$$\sum_{q \ge x, \ q \in \mathcal{B}_{\theta}} \frac{q^{\alpha - 1}}{\varphi(q)^{\alpha} \log P^+(q)} \ll_{\alpha} \frac{1}{\log x}.$$

Proof. It suffices to estimate the sum restricted to $q \in I := [x, x^{4/3}]$. We write q = mr, where $r = P^+(q)$. Note that $q \in \mathcal{B}_{\theta} \cap I$ and $\theta(n) < n^{1+o(1)}$ implies that $r \leq x^{3/4}$. We have

$$\sum_{q \in \mathcal{B}_{\theta} \cap I} \frac{q^{\alpha - 1}}{\varphi(q)^{\alpha} \log P^+(q)} \ll \sum_{\substack{r \le x^{3/4} \\ P^+(m) \le r}} \frac{1}{r \log r} \sum_{\substack{m \in \mathcal{B}_{\theta} \cap (I/r) \\ P^+(m) \le r}} \left(\frac{m}{\varphi(m)}\right)^{\alpha} \frac{1}{m}.$$

Since $m/\varphi(m) \ll \sigma(m)/m$, partial summation and Corollary 4 applied to the inner sum shows that the last expression is

$$\ll_{\alpha} \sum_{r \le x^{3/4}} \frac{1}{r \log r} \cdot \frac{\log r}{\log x} \exp\left(-\frac{\log x}{3 \log r}\right) \ll \frac{1}{\log x},$$

by the prime number theorem.

7. The lower bound in Theorem 3

Lemma 11. Assume (2) and $\theta(n) \ll n l(n)$ for $n \ge 1$. For $L \ge 1$ and $x \ge 1$, we have

-

$$\sum_{\substack{n \in \mathcal{B}_{\theta} \\ n \le x}} \sum_{\substack{p \mid n \\ p > L}} \frac{\log p}{p} \ll \frac{x \log(2L)}{L \log(2x)}.$$

• (- -)

Proof. As in the proof of Corollary 4,

$$\sum_{\substack{n \in \mathcal{B}_{\theta} \\ n \le x}} \sum_{p > L} \frac{\log p}{p} = \sum_{L
$$\ll \sum_{L$$$$

by Proposition 1 and the prime number theorem.

Say a pair $n_1, n_2 \in \mathcal{B}_{\theta}$ is *h*- ε -special if $gcd(n_1, n_2) = h$ and $\Omega_3(n_i) \leq (e + \varepsilon) \log_2 n_i$ for i = 1, 2.

Lemma 12. Assume (2) and $n \leq \theta(n) \ll n l(n)$ for $n \geq 1$. For $h \geq 1$ satisfying (5) and $0 < \varepsilon < 1$, the number of $h \cdot \varepsilon$ -special pairs $n_1, n_2 \in \mathcal{B}_{\theta}$ with $N/3 < n_1, n_2 < N$ and $v_2(n_1), v_2(n_2) \leq C$, where C is some number depending only on h, is $\gg_{h,\varepsilon} N^2/\log^2 N$.

Proof. Write $h = 2^a 3^b h'$, where $P^-(h') > 3$, $a, b \ge 0$, but assume that $a \ge 1$ or $a \ge 2$, according to the two cases in (5). We consider $n_1 \in \mathcal{B}_{\theta}$ of the form

$$n_1 = 2^{a+k} 3^b h' n_1' = 2^k h n_1'$$

where $P^{-}(n'_1) > \max\{3, P^{+}(h)\} =: p \text{ and } 2^k > 2p$. Since $\theta(n) \ge n$, the number of such n_1 with $N/2 < n_1 \le N$ is at least

(14)
$$\left| \left\{ \frac{N}{h2^{k+1}} < n_1' \le \frac{N}{h2^k} : n_1' \in \mathcal{D}_{h2^k}, P^-(n_1') > p \right\} \right| \asymp_h \frac{N}{\log N}$$

by Lemma 3, for a suitable k with $2^k > 2p > 2^{k+O(1)}$. In particular, $v_2(n_1) \ll_h 1$.

As in the proof of the lower bound of Theorem 1, we can remove those n_1 with $\Omega_3(n_1) > (e + \varepsilon) \log_2 n_1$ without affecting (14). This follows from an estimate analogous to (10):

$$\sum_{n \le x} z^{\Omega_3(n)} \ll \frac{x}{3-z} \log^{z-1} x$$

uniformly for 1 < z < 3 (cf. [21, Exercise 217(b)]).

Let $\eta > 0$ be an arbitrary constant. Lemma 11 shows that we can choose a sufficiently large constant $L = L(\eta)$ such that removing those n_1 for which

$$\sum_{p|n_1 \atop p > L} \frac{\log p}{p} > \eta$$

will not affect (14). For each of the $\asymp_{h,\varepsilon} N/\log N$ values of n_1 that remain, consider $n_2 \in \mathcal{B}_{\theta}$ of the form

$$n_2 = 2^a 3^{b+j} h' n_2' = 3^j h n_2'$$

where $gcd(n'_2, 2n'_1) = 1$, and j is the smallest integer with $3^j > p$. Given n_1 , the number of such $n_2 \leq N$ is at least

$$\sum_{\substack{N/h3^{j+1} < n'_2 \le N/h3^j \\ n'_2 \in \mathcal{D}_{h3^j} \\ \gcd(n'_2, 2n'_j) = 1}} 1 \gg_h \frac{N}{\log(NL)\log(2L)} \gg \frac{N}{\log N},$$

by Lemma 5 with $p_0 = 3$. As with n_1 , this estimate is unchanged if we remove those n_2 with $\Omega(n_2) > (e + \varepsilon) \log_2 n_2$. Further, $v_2(n_2) = v_2(h) \ll_h 1$.

Let $N = \sqrt{xh}$. Suppose $a, a' \in \mathcal{B}_{\theta} \cap (N/3, N]$ is an $h \varepsilon$ -special pair, with $v_2(a), v_2(a') \leq C$, where C = C(h) is as in Lemma 12. For each such pair $\{a, a'\}$, there is a unique pair $\{b, b'\}$ such that ab - a'b' = hand $1 \leq b \leq a'/h, 1 \leq b' \leq a/h$. We have $ab, a'b' \leq aa'/h \leq x$. Now $b, b' \leq \sqrt{x/h} < 3a/h, 3a'/h$, so $ab, a'b' \in \mathcal{B}_{\theta}$ by the assumption on θ . By Lemma 12, it would seem we have created $\gg_{h,\varepsilon} x/\log^2 x$ pairs $\{ab, a'b'\} \subset \mathcal{B}_{\theta} \cap [1, x]$ with ab - a'b' = h, but we have to check for possible multiple representations.

Note that in a graph of average degree $\geq d$, there is an induced subgraph of minimum degree $\geq d/2$. This folklore result can be proved by induction on d, see [1]. (Also see [7, Prop. 3] for a somewhat sharper version.) We apply this to the graph on members of $\mathcal{B}_{\theta} \cap (N/3, N]$, where two integers are connected by an edge if they form an h- ε -special pair. From Lemma 12 the average degree in this graph is $\gg N/\log N$, so there is a subgraph G of minimum degree $\gg N/\log N$.

We use this to say something about $\Omega_3(b)$, $\Omega_3(b')$. For edges (a, a') in G, note that for any residue class mod a' there are at most 2 choices for a, and similarly for any residue class mod a there are at most 2 choices for a'. For (a, a') with corresponding pair (b, b') as above, let f(a, a') = b and g(a, a') = b'. For each fixed a' the function f is at most two-to-one in the variable a, since $(a/h)b \equiv 1 \pmod{a'/h}$ and $b \leq a'/h$. Similarly, for each fixed a, the function g(a, a') = b' is at most two-to-one in the variable a'. Thus, for each fixed a' there are $\gg N/\log N$ distinct values of b and for each fixed a there are $\gg N/\log N$ distinct values of b'. Now $b, b' \leq N$ and as we have seen, the number of integers $n \leq N$ with $\Omega_3(n) > (e + \varepsilon) \log_2 x$ is $o(N/\log N)$. So, by possibly discarding $o(x/\log^2 x)$ pairs (a, a'), we may assume that the corresponding pair (b, b') satisfies $\Omega_3(b), \Omega_3(b') \leq (e + \varepsilon) \log_2 x$.

The numbers ab and a'b' might arise from many different pairs (a, a'). However, we have $\Omega_3(ab), \Omega_3(a'b') \leq 2(e + \varepsilon) \log_2 x$, so the number of odd divisor pairs of ab, a'b' is

$$\leq 2^{4(e+\varepsilon)\log_2 x} = (\log x)^{4(e+\varepsilon)\log 2}.$$

Since $v_2(a), v_2(a') \ll_h 1$, there are $\gg_{h,\varepsilon} x/(\log x)^{2+4(e+\varepsilon)\log 2}$ pairs $n, n+h \in \mathcal{B}_{\theta}$ with $n \leq x$. This completes the proof of the theorem.

Acknowledgments. We thank David Eppstein for informing us of [7] and Paul Pollack for [18].

References

- [1] M. DeVos, Graph theory lecture notes, www.sfu.ca/~mdevos/notes/graph/.
- [2] P. Erdős, On a diophantine equation, Mat. Lapok 1 (1950), 192–210.
- [3] J. Friedlander and H. Iwaniec, Opera de cribro. American Mathematical Society Colloquium Publications, 57, American Mathematical Society, Providence, 2010.
- [4] V. Guo and A. Weingartner, The practicality of shifted primes, *Integers* 18 (2018), A93, 7 pp.
- [5] R. K. Guy, Unsolved problems in number theory. Third ed. Springer-Verlag, New York, 2004.
- [6] R. R. Hall and G. Tenenbaum, Divisors, Cambridge University Press, 1988.
- [7] D. R. Lick and A. T. White, k-degenerate graphs, Canadian J. Math. 22 (1970), 1082–1096.
- [8] M. Margenstern, Les nombres pratiques: théorie, observations et conjectures, J. Number Theory 37 (1991), 1–36.
- [9] J. Maynard, Primes in arithmetic progressions to large moduli I: fixed residue classes, arXiv:2006.06572v1 [math.NT] 11 Jun 2020.
- [10] G. Melfi, On two conjectures about practical numbers, J. Number Theory 56 (1996), 205–210.
- [11] G. Melfi, A note on twin practical numbers, *Matematiche (Catania)* 57 (2002), 111–117 (2004).
- [12] H. Riesel and R. Vaughan, On sums of primes, Arkiv. för Mat. 21 (1983), 45–74.
- [13] E. Saias, Entiers à diviseurs denses 1, J. Number Theory 62 (1997), 163–191.
- [14] E. Saias, Entiers à diviseurs denses 2, J. Number Theory 86 (2001), 39–49.
- [15] W. Sierpinski, Sur une propriété des nombres naturels, Ann. Mat. Pura Appl. (4) 39 (1955), 69–74.
- [16] A. K. Srinivasan, Practical numbers, Current Sci. 17 (1948), 179–180.
- [17] B. M. Stewart, Sums of distinct divisors, Amer. J. Math. 76 (1954), 779–785.
- [18] Z.-W. Sun, Write 2n + 1 = p + q with p prime and q practical, https://mathoverflow.net/questions/360288/
- [19] Z.-W. Sun, Conjectures on representations involving primes, in Combinatorial and additive number theory II, M. B. Nathanson, ed., Springer PROMS 220, New York, 2018, pp. 279–310.
- [20] G. Tenenbaum, Sur un problème de crible et ses applications, Ann. Sci. École Norm. Sup. (4) 19 (1986), 1–30.

- [21] G. Tenenbaum, Introduction to analytic and probabilistic number theory. Third ed. Graduate Studies in Mathematics, Vol. 163, American Math. Soc., Providence, 2015.
- [22] A. Weingartner, Integers with dense divisors, J. Number Theory 108 (2004), 1–17.
- [23] A. Weingartner, Practical numbers and the distribution of divisors, Q. J. Math. 66 (2015), 743–758.
- [24] A. Weingartner, The constant factor in the asymptotic for practical numbers, Int. J. Number Theory 16 (2020), 629–638.

MATHEMATICS DEPARTMENT, DARTMOUTH COLLEGE, HANOVER, NH 03784 *E-mail address*: carl.pomerance@dartmouth.edu

Department of Mathematics, Southern Utah University, Cedar City, UT84720

E-mail address: weingartner@suu.edu