ON PRIMES AND PRACTICAL NUMBERS
CARL POMERANCE AND ANDREAS WEINGARTNER

ABSTRACT. A number n is practical if every integer in [1,n] can
be expressed as a subset sum of the positive divisors of n. We
consider the distribution of practical numbers that are also shifted
primes, improving a theorem of Guo and Weingartner. In addition,
essentially proving a conjecture of Margenstern, we show that all
large odd numbers are the sum of a prime and a practical number.
We also consider an analogue of the prime k-tuples conjecture for
practical numbers, proving the “correct” upper bound, and for
pairs, improving on a lower bound of Melfi.

In memory of Ron Graham (1935-2020)
and Richard Guy (1916-2020)

1. INTRODUCTION

After Srinivasan [16], we say a positive integer n is practical if every
integer m € [1,n] is a subset-sum of the positive divisors of n. After the
proof of Erdds [2] in 1950 that the practical numbers have asymptotic
density 0, their distribution has been of some interest, with work of
Margenstern, Melfi, Tenenbaum, Saias, and the second-named author
of this paper. In particular, we now know, [23], [24], that there is a
constant ¢ = 1.33607 ... such that the number of practical numbers in
[1,z] is ~ cx/logx as © — oo. For other problems and results about
practical numbers see [5, Sec. B2].

The problem of how frequently a shifted prime p— h can be practical
was considered recently in [4]. Since practical numbers larger than 1 are
all even, one assumes that the shift A is a fixed odd integer. Under this
assumption, it would make sense that the concept of being practical
and being a shifted prime are “independent events” and so it is natural
to conjecture that the number of primes p < x with p— h practical is of
magnitude x/log® z. Towards this conjecture it was shown in [4] that
the number of shifted primes up to = that are practical is, for large x
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depending on h, between

T T
and

(log 2:)5-7683.. (log 2:)1-0860-..
Here we make further progress with this problem, proving the conjec-
ture for the upper bound of the count and reducing the lower bound
exponent 5.7683 ... to 3.1647... .
As in [4] we consider a somewhat more general problem. Let 6 be
an arithmetic function with (n) > 2 for all n and let By be the set of
positive integers containing n = 1 and all those n > 2 with canonical

prime factorization n = pi"p3®---pp*, p1 < ... < D, a1, > 1,
which satisfy
(1) p; <O .py) (1< <k)

(It is not necessary that p; be the i-th prime number.) Stewart [17]
and Sierpinski [15] showed that if 8(n) = o(n) + 1, where o(n) is the
sum of the positive divisors of n, then the set By is precisely the set
of practical numbers. Tenenbaum [20] found that if #(n) = yn, where
y > 2 is a constant, then By is the set of integers with y-dense divisors;
i.e., the ratios of consecutive divisors are at most y.

Throughout this paper, all constants implied by the big O and <
notation may depend on the choice of 6. For several of our results we
assume that there are constants A, C' such that

(2) 0(mn) < Cm™0(n), m,n > 1.

This holds for (n) = o(n) + 1 with A = 2, C' = 1, since we trivially
have o(mn) < o(m)o(n) and o(m) < m?.

We write log, z = loglogx for x > e® and log, x = 1 for 0 < z < e°,
and write logs v = log, logx for x > 1. Let

log x
l(z) =exp | —————
log, z logs

Sn(z) = |{p < x : p prime, p —h € By}|.

and

Theorem 1. Fiz a nonzero integer h. Assume (2) and n < 0(n) <
nl(n) for n > 1. For x sufficiently large depending on the choice of
0, h, we have

€ x
“ (Togayrom < ) < fog e

where h € Z and h is not divisible by Hpgeu)p in the lower bound.
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The exponent in the lower bound can be taken as any number larger
than (e+1)log(e+1) —e+ 1. In the case of practical numbers, where
0(n) = o(n) +1 and [] .y, p = 2, Theorem 1 implies the following.

Corollary 1. For any fixed odd h € Z, the number of primes p < x
such that p — h is practical satisfies (3).

It seems likely that the upper bound in (3) is best possible, apart
from optimizing the implied constant as a function of the shift param-
eter h. Our proof shows that this constant is < h/p(h).

Margenstern [8, Conjecture 7] conjectured that every natural num-
ber other than 1 is the sum of two numbers that are either practical
or prime. The case of even numbers was settled by Melfi [10, Theorem
1], who showed that every even number is the sum of two practical
numbers. Somewhat weaker versions of the problem for odd numbers
were recently stated by Sun [18]. (Also see [19] for several other re-
lated problems.) We show that, in the case of odd numbers, there
are at most a finite number of exceptions to Margenstern’s conjecture.
Tomas Oliveira e Silva has told us that Margenstern’s conjecture has
no counterexamples to 10° and we have verified this via a direct search.
We have used this result to bootstrap the calculation to a considerably
higher bound, see Section 5. It may be difficult by our methods to get
a numerical bound z( for which every odd number > x; is the sum of a
prime and a practical number, but such a calculation is tractable using
our proof if one is prepared to use the extended Riemann Hypothesis in
place of the Bombieri-Vinogradov theorem. However, it may be that
even this hypothetical xg is too large for a feasible calculation to close
the gap.

Theorem 2. Assume 0(n) > n. Every sufficiently large integer not
divisible by Hpge(l)p 1s the sum of a prime and a member of By.

Corollary 2. Fvery sufficiently large odd integer is the sum of a prime
and a practical number.

Margenstern [8, Theorem 6] showed that for every fixed even number
h, there are infinitely many practical numbers n such that n + A is also
practical. He conjectured [8, Conjecture 2] that the number of practical
pairs {n,n + 2} up to z is asymptotic to cz/log® z for some positive
constant c. Let

Th(z):={n<x:n€By,n+heBy}.

Theorem 3. Fiz a nonzero integer h. Assume (2) and 0(n) < nl(n)
forn >1.
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(i) We have

(4) Th(z) < -

logz’

(i) Assume further that 6(n) > n for all n, and that n € By and
m < 3n/|h| imply mn € By. Moreover, if (1) < 3, assume that

) he2Z ifh(2) >3,
hedZ if0(2) < 3.

Then for sufficiently large x, depending on the choice of h,

x
When h € 2Z and 6(n) = o(n) + 1, all conditions of Theorem 3 are
satisfied, since for practical n we have o(n)+1 > 2n, by [8, Lemma 2.

Corollary 3. For every nonzero even integer h, the number of practical
n up to x, such that n+ h is also practical, satisfies (4) and (6).

Corollary 3 improves on the lower bound by Melfi [11, Thm. 1.1] for
twin practical numbers, Ty(z) > x/ exp(k+/log x) for k > 2 +1og(3/2).

The upper bound in Theorem 3 generalizes as follows to the distri-
bution of practical k-tuples.

Theorem 4. Fiz integers 0 < hy < hy < ... < hy. Assume (2) and
O(n) < nl(n) forn > 1. We have
x

..... log—kx

When k£ > 3 getting a lower bound of the same quality for these
k-tuples seems difficult. In some cases with the practical numbers we
know there are no large examples, such as when the h; do not all have
the same parity, or for the example 0,2, 4,6 when at least one of n+ h;
must be 2 (mod 4) and not divisible by 3, cf. [8]. However, when
the k-tuple is admissible, i.e., not ruled out by congruence conditions,
it would seem likely that the “independent events” heuristic would
again apply and that the upper bound in Theorem 4 is correct up to a
constant factor. In our proof of the lower bound in Theorem 3 we use
the Bombieri-Vinogradov theorem. If instead the Elliott—Halberstam
conjecture is assumed, it may be possible to get a reasonable lower
bound in Theorem 4 when the k-tuple is admissible in the sense above.
Finally, we remark that in certain special cases, such as when the h;
are 0,2,4, we at least know that there are infinitely many practical
examples, see Melfi [10].
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2. THE UPPER BOUND OF THEOREM 1

Lemma 1. There exists a constant K > 0 such that for all a,b € Z\{0}
and all x > 1 we have

alb| x
p(alb]) log*z
This result follows immediately from [12, Lemma 5.

Let P*(n) denote the largest prime factor of n > 1 and P*(1) = 1.
Define

H{m <z :m and am + b are both prime}| < K

B(z,y,z) = {n < x:n € By, PT(n) <y}
Proposition 1. Assume 0(n) < nl(n). Forx >2,y>2 and z > 1,

log(2
B(I, y’ Z) << Me_u/?”
log x
where u = log x/logy.
Before proving this we establish some consequences.

Corollary 4. Let a € R. Assume (2) and 6(n) < nl(n) forn > 1.
Forx>1,y>2 22>1,

¢ log(2 1
Z (U(TL)) <. $1 og(2z) exp (_ (l)g$ )
n<z, n€B,y n Og<2x) 3 Ogy
Pt (n)<y

Proof. When a < 0, the result follows from Proposition 1. We will

show the result for @ € N by induction. Note that because of (2)
we have that kd € By implies k € By,, where 04(n) = Cd*0(n). By
Proposition 1 with z replaced by 2C'd4,

5 (9 2 ()5

n<z,n€B,y n<z,n€B, g dln
PT(n)<y PT(n)<y
_ -1
o(d)* o(k)\"
< 2
d> k
d<z k<wz/d, kE€Bp ,
Pt (k)<y

o(d)* 1 zlog(2dz) log(x/d)
<<C“Z & dlog(22/d) <_ 3log y )

< log ) o ( log d > (log, d)°~1 log(2dz)
zlog(22)
27

<L T exp 310 3logy d2 log(Q:E/d)
z)

log x
exp
) ~3logy

Oé

x log
log(2z)
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since exp((logd)/(3logy)) < d*/2. O
With y =z, 2 =1 and a = 1 in Corollary 4, we get

Corollary 5. Under the assumptions of Corollary 4 we have, forx > 1,

o(n) x
o s
n log

n<z
neBy

Remark 1. Corollary 5 allows us to replace the relative error term
O(log, z/log ) in [23, Theorem 1.1], the asymptotic for the count of
practical numbers up to x, by O(1/logz). Indeed, in the proof of [23,
Theorem 1.1], the estimate o(n)/n < log, n leads to the extra factor
of log, z. Using instead Corollary 5 in the proofs of Lemmas 5.3 and
5.6 of [23], the factor log,  can be avoided.

Proof of the upper bound in Theorem 1. Assume x > 2|h|. We con-
sider those n € By with n + h prime and n + h < x. We may assume
that n > x/log? 2. Write n = mq, where ¢ = P*(n). We have m € By,
Pt(m) < qand g < 60(m) < ml(m). So, assuming z is large, we have
m > z'/3. By Lemma 1,

Sh(z) < Z |{q prime : mq + hprime, ¢ < (z — h)/m}|
m|h| (x —h)/m
2 p(ml[h]) log*(2(z — h)/m)

<

meBg, m>z1/3
mP+(m)<z—h

— I 2 + .
P | 2 olm)log” PH(m)

We will show that the last sum is < 1/log®z. With p = P*(m) and
m = kp, we have k € By and k > /7. The last sum is

ko1

YLy bl

p>2p g p keBy, k>zl/7 gp(k‘) k
P+(k)Sp

Since k/p(k) < o(k)/k, Corollary 4 (with @« = z = 1) and partial
summation applied to the inner sum shows that the last expression is

1 logp log x 1
< logZp logz P\ 2110 <<1 2
»oo Plogmp 108 gp og

by the prime number theorem. U
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Proof of Proposition 1. We follow the proof of Saias [13, Prop. 1], who
established this result in the case when 0(n) = yn with y > 2 (in-
tegers with y-dense divisors) and in the case when 6(n) = o(n) + 1
(practical numbers) and z = 1. Let f(n) be an increasing function
with 6(n) < nf(n) for all n > 1 and f(n) < I(n). Suppose n € B.y,
where n = p1py...pr with p; < ps < .-+ < pi. Since f is increasing,
b < 21 opy 1 f(pr i), 50 B < 2nf(n) < () for n < 1
By sorting the integers counted in B(z,y, z) according to their largest
prime factor, we get

B(z,y,z) <1+ > Blz/p.p.2),
p<min(y,/zzf(x))

the analogue of [13, Lemma 8].

Let U(x,y) denote the number of integers n < x with P*(n) <y. We
write u = log z/logy and © = log x/log(2z). Let p(u) = p(max{0, u}),
where p(u) is Dickman’s function. Let D(z,, z) be the function defined
in [13, p. 169]. It satisfies

D(z,y,2z) = %ﬁ(u(l —1//logy) — 1) (0 < u < 3(logz)"?)

and

D(z,y,22) = ¥(z,y)  (u>3(loga)"?),
Lemma 9 of [13] shows that

D(z,y,22)>1+ > D(x/p,p22),
p<min(y,v2zzl(x))

for 2> 1,y >2,9>wvyand 0 < u < 3(logz)"/3.
We claim that

(7) B(z,y,2) < cD(x,y,22),

for some suitable constant c¢. If 2 < x < xg, we have D(x, y,2z) < 1,
so we may assume x > xo and hence /f(z) < I(z). If 0 < v <
u < 3(logz)'/3, then 2z > y and B(z,y,2) = ¥(z,y) < D(x,y,22),
where the last estimate is derived in the penultimate display on page
182 of [13]. If 0 < u < & < vy, then D(x,y,22) < x so (7) holds. If
u > 3(log x)'/3, then D(x,y,22) = ¥(z,y) and (7) holds. Assume that
¢ is such that (7) holds in the domain covered so far. In the remainder
we may assume that v < 3(logz)'/3 and & > v,. We show by induction
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on k that (7) holds for y > 2,2 > 1,2 < x < 28, We have
B(r,y,z) <1+ > B(x/p,p, 2)

p<min(y,\/zzf(x))
<l+c Z D(z/p,p,2z)
p<min(y,/zef(x))
<c|1l+ Z D(z/p, p,22)
p<min(y,v/2zzl(z))
< eD(z,y,22).

It remains to show that

~ log(2
D(z,y,22) < mMe_“/g.
log x

We may assume z > xo. If u < 3(log x)/?, then y > yo and the result

follows from p(u) < e™™. If u > 3(log x)'/3, then

~ log(2
Dla.1,22) = W, y) < we—? < —eu/3 « T108C2) s
log z log x
where the upper bound for ¥(z,y) is [21, Thm. II1.5.1]. O

3. SOME LEMMAS

The following observation follows immediately from the definition of
the set By in (1).

Lemma 2. Let O(n) > n for alln € N. If n € By and P (k) < n,
then nk € By.

If O(n) = yn, we write D, for By. For an integer n > 1, let P~ (n)
denote the least prime dividing n, and let P~ (1) = +oc.

Lemma 3. There is a number yo such that if x > z* > 1 and y >
max{yo, z + 2"%3}, we have

z log(y/=2)
log(zy) log(2z)

This conclusion continues to hold if z+ 1 <y < yo and (z,y| contains
at least one prime number.

H{n<z:neD, P (n) >z} =

Proof. When © > y > yo and z > 3/2, then log(zy) =< logx and the
result follows from [14, Thm. 1] and [22, Rem. 2]. When y > z, the
result follows from [{n <z : P~(n) > z}| < x/log(2z). If 1 <z < 3/2,
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the result follows from [13, Thm. 1]. If y <y, the result follows from
iterating [14, Lemma 8| a finite number of times. O

Lemma 4. Ford e N, x> 1, 2> 1 and y > 2z, we have

N xlog(dy)
dlog(zy)log(2z)

Proof. We first assume that z/d > z%. If d = 1 the result follows from
Lemma 3, so we assume d > 1. We have

Hdw <z :dw e Dy, P~ (w) > z}| < {w < z/d:w € Dy, P~ (w) > z}|

{n<z:neDy, P (n) >z d|n} < lsep,

x log(dy)
dlog(zy)log(2z)’
by Lemma 3.
If #/d < 2%, then log(zy) < log(ydz*) < 5log(yd), so the result
follows from {2 <w < z/d: P~ (w) > z}| < z/(dlog(2z)). O

Lemma 5. Assume 6(n) > n for alln € N. For all h € N that are not
divisible by Hpgeu) p, we have

x
log x log(2h) log, h’

H{z/po <n <x:n€ By, ged(n,h) =1} >

for x > K log”(2h), where py < (1) is the smallest prime not dividing
h, and K is some positive constant depending only on 6. Moreover,
there exists a constant n > 0 such that if L > 1 satisfies

Z logp <7

plh, p>L p

then, for x > KL?,

Hz/po <n<x:née€bBy ged(n,h) =1} >

T
Llogxlog(2L)
Proof. Let pg < 6(1) be the smallest prime with py t h. Let k € N,
Ly = pf/2, and assume x > 2L%. Since §(n) > n,

{x/po <n = phw <z :n € By, P~ (w) > L}
> a/pitt <w <az/pfiwe Dk, P~ (w) > Li}].
We would like to use Lemma 3 to obtain a lower bound for this count,

but the fact that w is not free to roam over the entire interval [1, z/p]
is problematic. We note though that Lemma 3 implies there is a set
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K C N with bounded gaps such that if x > 2L? and k € K, we have

xlog(pk /L)
pklog x log Ly,
x

Ha/ph™ <w <az/pk: we Dyr, P~ (w) > Li}t| >

= Lilogxzlog Ly,
We have
Hw < z/pk:we Dys, P (w) > Ly, ged(h, w) > 1}

<> Kw<a/pf:weDy, P (w) > Ly, p|w}

plh
p>Lk
xlogp
< 1+ )
% Zh Liplogxlog Ly
Lk<I;§2Lk pI;Lk

by Lemma 4, since log(ppl) < logp for p > Lj. The sum of 1 is clearly
< Ly < (/2)'/°. The second statement of the lemma now follows with
the smallest & € K such that L > L.

Since h has at most log h/log Ly prime factors > Ly, the last sum
above is

log h x log Ly xlogh

< log Ly, L log Lylogz L,  LilogLilogz’

We need this to be < x/(CLylogzlog Ly) for some sufficiently large
constant C' > 0, that is, Ly > C'log(2h). The first statement of the
lemma now follows with the smallest such k € K. O

4. THE LOWER BOUND OF THEOREM 1

Let h be a fixed integer that is not a multiple of HpS@(l)p' Let
d = 1/log, x and define

Q={qe ("% 2% /1log" 2] : ged(q,h) =1, q € By}.
Let N}, (x) denote the set of pairs (¢, m) with ¢ € Q, gm + h < x, and
gm + h prime, and let Nj,(z) = |N,(z)|. Thus,
Nu(w) =) m(x;9,h).
qeQ

Now, by the Bombieri-Vinogradov theorem, see [21, p. 403], we have

2

qeQ

()
©(q)

T

m(z;q,h) —

<

log® 2
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Thus,

Ni(z) = > w(xiq.h) :ZM+0( - )

qeQ qeQ
Further, using Lemma 5, we have

We conclude that
(8) Ni(z) >, 0/ log .

Let A1 (7) denote the set of those pairs (¢, m) in N, (x) with 2° <
P+(m) < /279,

Lemma 6. We have [Ny, 1(z)| = |Niu(z)| + O(6%x/ log ),

Proof. Let ¢ € Q. The number of integers m < (z—h)/q with PT(m) <
2% is < (z—h)/(qlog' z), see [21, Lem. I111.5.19], and so such numbers
m are negligible. For m = rk, where r = PT(m) > 2?7, we have
k < 2. Thus, the number of such pairs (¢, 7k) is at most

2.2 > b

qeQ k<26 r<(x—h)/qk
T prime
qrk-+h prime
The inner sum, by Lemma 1, is < x/(¢(q)¢(k)log®z). Summing
on k gives us <, 0x/(¢(q)log ), and then summing on ¢ gives us <,
62z /log x, using q/¢(q) < o(q)/q, Corollary 5, and partial summation.
This concludes the proof. O

Corollary 6. For a pair (g,m) in Ny 1(z) we have gm € By.

Proof. Since P*(m) < /279 < ¢, it follows from Lemma 2 that gm €
By. O

Let vg(n) denote the number of factors 2 in the prime factorization of
n and let Q(n) denote the total number of prime factors of n, counted
with multiplicity. Let € > 0 be arbitrarily small but fixed. Let N, 2(z)
denote the set of pairs (¢,m) € N 1(x) with

Q(m) <I:=[(1+¢)log,z| and ve(m) < 4logs .
Lemma 7. We have

|Nh72(l‘)| = |Nh(ZL‘)| + Oh(52$/ 10g$).
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Proof. Assume (q,m) € Ny i(x). Let r = P*(m), so that r > 29,
and write m = rk. If (¢,m) ¢ Nj2(x) then either Q(k) > I — 1 or
v9(k) > 4logy z. For a given number k, the number of primes r < (z —
h)/qk with qrk+h prime is, by Lemma 1, <, x/(¢(q)(k) log?®(z/qk)).
Summing this expression over k with ve(k) > 4log; x and ¢ € Q, it is
<, 0%z /log x, since 2741983 < 52 We now wish to consider the case
when (k) > I — 1. Following a standard theme (see Exercises 04 and
05 in [6]) we have uniformly for each real number z with 1 < z < 2
that

0 ZQ(n) 1 |
< z,
) > o < g loss
Applying this with 2 = 1 + ¢, we have
1 —I+1 2 I4e—(14¢) log(14¢)
Z 0] <z Z B < (logx) :
k<gl/2? <zxl/2
Q(k)>I-1

This last expression is of the form (logx)'™", where n > 0 depends
on the choice of . Thus, the number of pairs (¢,m) in this case is
<, 0z /(log x)*" which is negligible. O

Let Q3(n) = Q(n/vy(n)) denote the number of odd prime factors of
n counted with multiplicity, and let N}, 3 denote the number of pairs
(g,m) € Npo with Q3(q) < J := |(e+¢)logyz].

Lemma 8. We have [Ny, 3(x)| = |[Nu(x)| + On(6%x/log z).

Proof. By the same method that gives (9), we have
P 1

(10) S < (loga),

p(n)

n<x

uniformly for 1 < z < 3. Assuming that ¢ is small enough that z =
e+ ¢ < 3, we have

1 1
E — < E _ ) (e—&—a)logz'
qeQ ( ) q<zl/? ( ) 21/2
Q3(q)>J Q3(q)>J

Since z—(e+¢)log z = —n < 0, where ) depends on the choice of ¢, this
calculation shows that those pairs with 23(q) > J are negligible. [

Let K = |4logs x| 4+ 1. For a given pair (¢,m) € N, 3(x), we count
the number of pairs (¢',m’) € Nj3(x) with ¢m’ = gm. The pair
(¢',m’) is determined by (q,m) and m’, so all we need to do is count
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the number of divisors d of gm with Q(d) < I and vy(d) < K. This

count is at most
I+J I+J
K K .

i<I
Stirling’s formula shows that

I
K( ?J) < (logz)**"og, z,

where a = (e +1)log(e + 1) — eloge = 2.16479... and n — 0 as € — 0.
It follows from (8) and Lemma 8 that

ox 1 T T

> log x . (log x)a+n logs > (log $)1+a+2n B (log x)3.16479...+2n‘

Sh(ZL')

Remark 2. The proof of the lower bound of Theorem 1 would be some-
what simpler if instead of the Bombieri—Vinogradov theorem we had
used a very new result of Maynard [9]. With the choice of parameters
0 = 0.02, » = 0.001 in his Corollary 1.2, one has for the set Q of
integers ¢ < x%%2 with a divisor in (2094, 2097) that

7(x) x
Z 7T(:L‘; Q7a> - T <<a,A 1 A
qeQ P og T
ged(g,a)=1
for any fixed integer a # 0 and any positive A. We note that all of the
members of By N (x%%4 2952] are in Q.

5. PROOF OF THEOREM 2

Let h be an integer in (z/2, 2| that is not a multiple of J], 4.
Define

D= {qeByn (27 Y2 /1og" 2] : ged(q, h) = 1}.
By Lemma 5,

2172

11 Dl > )

(11) D] log"? z1oglog x

For each ¢ € D, if p < x/2 < h, where p is a prime that satisfies
p = h mod ¢, then p = h — gm for some m € N. Let M,(x) denote the
number of pairs (p, ¢) with p prime, p < z/2, p=h mod g and ¢ € D.
As in Section 4, we have

My (x) = Zw(x/2;q, h) = Z m(2/2) —i—O( ° )

6
gt = ¢ela) log” x
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From (11), we have

1 1 |D| 1
F = E - > E - > > .
- — .1/2 10 2
<D v(q) e Y /2/1og”xz ~ log” wloglogx

We conclude that

(12) My (z) > F— *

log > log® zloglog x

We claim that most of the pairs (p,q) counted in My(z) are such
that ¢gm = h — p € By. Since ¢ > 2'/?7% and ¢m < h < x, we have
m < /20 If PH(m) < 2%/27% then P*(m) < ¢ and mq € By. If
Pt(m) > 2'/27% write r = P*(m) > 2?79 and m = ra with a < 2%.
Given a and ¢, the number of primes r < x/(aq) with h — agr prime is

hax

p(h)p(q)¢(a)log”z’
by Lemma 1. We have h/p(h) < loglogz and

Z L < dlog .
p(a)

a<x?9

(13) <

Thus, summing (13) over ¢ € D and a < 2% amounts to

log1
< F:U(S oglogz _ (. |
log = log =

since 6 = 1/(loglog x)?. By (12), the number of pairs (p,q) with h =
P+ gm, p prime and gm € By is

x
> F

> )
log x log® zlog log =
which is at least 1 when z is sufficiently large. This completes the proof
of Theorem 2.

5.1. Checking Margenstern’s conjecture numerically. For posi-
tive coprime integers u, v, let p(u, v) be the least prime p = u (mod v),
and let M(v) = maXgeq(u,0)=1p(u,v). For example, M(8) = 17, since
p(1,8) =17, p(3,8) = 3, p(5,8) = 5, and p(7,8) = 7.

Lemma 9. Suppose that a is a positive integer with M(2%) < 2%+,
Then every odd number n € (M(2%),2%1) is the sum of a prime and
a practical number.

Proof. For each odd n € (M(2%),2%¢t!) let ¢ = n — p(n,2%). Note
that 0 < ¢ < 22¢*! and 2% | q. Since 2¢ is practical and o(2%) + 1 =
201 > ¢/2% it follows that ¢ is practical. Thus, n = ¢ + p(n,2%) is a
representation of n as the sum of a prime and a practical. O
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Note that the condition in Lemma 9 that M(2%) < 22! is not
guaranteed by any known result in analytic number theory. We do
know that M(2%) < 29(@ with a fairly modest O-constant, but we are
not close to proving the condition in the lemma. (Heuristically, we
should have M (2%) = O(2%a?).) For a given numerical value of a, one
might actually compute the exact value of M (2%). And if f it is smaller
than 2%¢t1 we have verified Margenstern’s conjecture for the interval
(M (2%),22*+1). For example, since M (23) = 17, we automatically have
the conjecture for odd numbers in the interval (17,128).

We have computed that M (2%3) = 997,427,777. This number is less
than 247, in fact, it is less than 10°. Thus, Margenstern’s conjecture
holds for all odd numbers (greater than 1) up to 217. Moreover, since
M(2%°) = 9,968,601,716,713 < 217 the conjecture holds up to 2. Tt
would not be difficult to push this calculation further.

6. THE UPPER BOUND IN THEOREMS 3 AND 4

For a natural number n, a divisor d of n is said to be initial if
P*t(d) < P~(n/d). Let I,(n) be the largest initial divisor of n with
d <y. Note that if n € By, then I, (n) € By for all y.

Assume n <z and n,n+h € By. Let ¢ = I,1/3(n), ¢ = Las(n+h).
Since n,n + h € By and 0(n) = n'*°M we may assume that ¢,¢ €
(27, 2'/3]. Write n = gm and n + h = ¢'m’. We have ¢,¢ € By and
P~(m) > P*(q) =:r, P~(m/) > P™(¢) =: r'. Given ¢q,q € By with
d = ged(q,q'), we need m, m’ such that ¢'m’ — gm = h. This equation
only has solutions if d|h, in which case all solutions have the form

m=mg+jq¢/d, m =m{+jq/d, jETL.

If mg, my are the smallest positive solutions to ¢'m’ — ¢gm = h, then
1<n=mqg<zimplies 0 <j <dz/q¢ < hx/qq. Let

A= {(mo + jq' /d)(mi + jg/d) : 0 < j < hx/qq'},

and let S(A) be the number of elements of A remaining after removing
all products mm/, where either m is a multiple of a prime p < r, p 1 hqq/,
or m’ is a multiple of a prime p < ', pt hqq’. For each prime p{ hqq/,
each of the conditions p|m and p|m’ is equivalent to j belonging to a
unique residue class modulo p (because p t ¢¢'), and those two residue
classes are distinct (because p 1 h). Selberg’s sieve [3, Prop. 7.3 and
Thm. 7.14] shows that

ha/qq ( haq )2 zqq
S(A) < < )
(A) logrlogr \ ¢(hqq') & ©(q)%*p(¢")?log P*(q) log P+ (¢')
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Summing this estimate over ¢,q’ € [z'/7,2'/3] N By, the upper bound
in Theorem 3 follows from Lemma 10 with a = 2.

This argument generalizes naturally to yield Theorem 4: For 1 <
i <k, let n+ h; = myq; € By, where ¢; = I1/011(n + h;), so that
¢ € By N [x!/E+3) 21/+D] One finds that if ged(q;, q)|(h — k), for
1 <i< <k, then

m; =mipo + jlem(qr, ..., qr)/ (1<i<k),

where 0 < j < z/lem(q1, ..., qx) < ﬁ [Ti<ici<x(hi—hi). Eliminating
values of j for which p|m;, where p < P™(¢:), p { [[;<, @ and p {
H1§i<l§k(hl — h;), we find that

Theorem 4 now follows from Lemma 10 with o = k.

Lemma 10. Let a € R. Assume (2) and 0(n) < nl(n) forn > 1. We

have .
3 q*”
<L .
e +
i, Pla)¥log P¥(g) — logx
Proof. It suffices to estimate the sum restricted to ¢ € I := [z, 2%/3].

We write ¢ = mr, where r = P%(q). Note that ¢ € By N I and
O(n) < n'*°W implies that r < 2. We have

a—1 a
q 1 m 1
)3 <X e X (o) o
«a +
Loy @) log P*(q) Tgxs/u“logrmefw/,,) p(m)) m
PT(m)<r

Since m/p(m) < o(m)/m, partial summation and Corollary 4 ap-
plied to the inner sum shows that the last expression is

1 logr log 1
<<a * - << 5
Z rlogr logx P ( 310gr) log

7’S$3/4

by the prime number theorem. U

7. THE LOWER BOUND IN THEOREM 3

Lemma 11. Assume (2) and 6(n) < nl(n) forn >1. For L > 1

and x > 1, we have
lo log(2L
22 gp<<:21g((2 %
ne€Bg pln p Og X
n<z p>L




ON PRIMES AND PRACTICAL NUMBERS 17

Proof. As in the proof of Corollary 4,

Zzlogp Z logp21< Z 10%]921

n€By pln L<p<:p2/3 mp€By L<p<x2/3 meBg
n<z p>L m<z/p m<z/p

logp xlogp xlog(2L)
< Z " plog(2) < Llog(2z)’

L<p<a?/3
by Proposition 1 and the prime number theorem. 0
Say a pair ny,ny € By is h-e-special if ged(ny,n2) = h and Q3(n;) <

(e +¢)logyn,; for i =1,2.

Lemma 12. Assume (2) and n < 6(n) < nl(n) forn > 1. For
h > 1 satisfying (5) and 0 < ¢ < 1, the number of h-e-special pairs
ni,ny € By with N/3 < ny,ny < N and ve(ny),ve(ng) < C, where C' is
some number depending only on h, is >, . N2/log2 N.

Proof. Write h = 2431/, where P~(h') > 3, a,b > 0, but assume that
a > 1 or a > 2, according to the two cases in (5). We consider n; € By
of the form

ny = 2°7F3'n! = 2hn),
where P~ (n}) > max{3, PT(h)} =: p and 2% > 2p. Since 0(n) > n, the
number of such ny; with N/2 < n; < N is at least

N N N
(14) ‘{h2k+1<n1§hk ny € Dpor, P~ (n )>p}‘ logN

by Lemma 3, for a suitable k& with 2¥ > 2p > 29 In particular,
va(ng) <y 1.

As in the proof of the lower bound of Theorem 1, we can remove
those ny with Q3(ny) > (e + ¢)logyny without affecting (14). This
follows from an estimate analogous to (10):

Z ZQS (n) <
n<x

uniformly for 1 < z < 3 (cf. [21, Exercise 217(b)]).
Let n > 0 be an arbitrary constant. Lemma 11 shows that we can
choose a sufficiently large constant L = L(n) such that removing those

ny for which
1
I
p

plny
p>L

T logz—l
—Z
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will not affect (14). For each of the x;,. N/log N values of n; that
remain, consider ny € By of the form

ny = 23" h/nl, = 37 hnl,
where ged(nb,2n}) = 1, and j is the smallest integer with 3/ > p.
Given nq, the number of such ny < N is at least

N
Z 1> > ,
N <N b log(NL)log(2L) = log N
n’2 GDhgj

ged(nh,2n) )=1

by Lemma 5 with po = 3. As with n;, this estimate is unchanged if
we remove those ny with Q(ng) > (e + ¢)log, ny. Further, vg(ng) =
va(h) < 1. O

Let N = v/zh. Suppose a,da’ € By N (N/3, N] is an h-e-special pair,
with va(a),ve(a’) < C, where C' = C(h) is as in Lemma 12. For each
such pair {a,a’}, there is a unique pair {b,0'} such that ab — o't/ = h
and 1 < b <d'/h,1 <V < a/h. We have ab,a’'t < aa’/h < x. Now
bt/ < /x/h < 3a/h,3d'/h, so ab,ad'tl € By by the assumption on
6. By Lemma 12, it would seem we have created > . =/ log® x pairs
{ab,d't’'} C By N [1,z] with ab — o'’ = h, but we have to check for
possible multiple representations.

Note that in a graph of average degree > d, there is an induced
subgraph of minimum degree > d/2. This folklore result can be proved
by induction on d, see [1]. (Also see [7, Prop. 3] for a somewhat sharper
version.) We apply this to the graph on members of By N (N/3, N],
where two integers are connected by an edge if they form an h-e-special
pair. From Lemma 12 the average degree in this graph is > N/log N,
so there is a subgraph G of minimum degree > N/log N.

We use this to say something about Q3(b), Q3(0'). For edges (a,a’) in
G, note that for any residue class mod a’ there are at most 2 choices for
a, and similarly for any residue class mod a there are at most 2 choices
for a’. For (a,a’) with corresponding pair (b, ') as above, let f(a,a’) = b
and g(a,a’) = b'. For each fixed a’ the function f is at most two-to-one
in the variable a, since (a/h)b =1 (mod a'/h) and b < a’/h. Similarly,
for each fixed a, the function g(a,a’) = ¥’ is at most two-to-one in
the variable a’. Thus, for each fixed a’ there are > N/log N distinct
values of b and for each fixed a there are > N/log N distinct values of
b'. Now b,b' < N and as we have seen, the number of integers n < N
with Q3(n) > (e 4 ¢€)log, x is o(N/log N). So, by possibly discarding
o(z/log® x) pairs (a,d’), we may assume that the corresponding pair
(b, V') satisfies Q3(b), Q23(V') < (e + ¢) log, .
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The numbers ab and a’d’ might arise from many different pairs (a, a’).
However, we have Q3(ab), Q3(a't’) < 2(e + €)log, z, so the number of
odd divisor pairs of ab,a’'b’ is

< 24(e+s) logoz _ (log x>4(e+e) 10g2‘

Since vy(a), va(a’) <, 1, there are >, . z/(log z) 24+ 182 pairs n, n+
h € By with n < x. This completes the proof of the theorem.

Acknowledgments. We thank David Eppstein for informing us of [7]
and Paul Pollack for [18].
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