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Abstract Infinitely many elliptic curves over Q have a Galois-stable cyclic
subgroup of order 4. Such subgroups come in pairs, which intersect in their
subgroups of order 2. Let Nj(X) denote the number of elliptic curves over Q
with at least j pairs of Galois-stable cyclic subgroups of order 4, and height at
most X. In this article we show that N1(X) = c1,1X

1/3+c1,2X
1/6+O(X0.105).

We also show, as X → ∞, that N2(X) = c2,1X
1/6 + o(X1/12), the precise

nature of the error term being related to the prime number theorem and the
zeros of the Riemann zeta-function in the critical strip. Here, c1,1 = 0.95740 . . .,
c1,2 = −0.87125 . . ., and c2,1 = 0.035515 . . . are calculable constants. Lastly,
we show no elliptic curve over Q has more than 2 pairs of Galois-stable cyclic
subgroups of order 4.

Keywords elliptic curve · Galois-stable subgroup · isogeny · Principle of
Lipschitz
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1 Introduction

Let E/Q be an elliptic curve and let GalQ be the absolute Galois group of
Q. We say that a finite subgroup of E is Galois-stable if it is stable under the
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action of GalQ. Note that such a subgroup is the kernel of a Q-rational isogeny
on E. One can consider the distribution of E/Q with a Galois-stable subgroup
of a given type. The distribution for order 2 subgroups can be found in [4, Thm.
5.5] and order 3 subgroups were recently handled in [6]. This brings us to order
4 Galois-stable subgroups. As a subgroup of E isomorphic to Z/2Z × Z/2Z
is the kernel of the multiplication-by-2 map, it is automatically Galois-stable.
This article studies the distribution of elliptic curves which contain a Galois-
stable copy of Z/4Z.

In Section 3 we prove that Galois-stable cyclic subgroups of order 4 come
in pairs—the two intersect in the same subgroup of order 2. To be clear,
each subgroup in the pair is, itself, Galois-stable. We will show that a given
E/Q can have zero, one, or two pairs of such subgroups. We also provide
necessary and sufficient conditions for E/Q to have at least one pair of such
subgroups and similarly for two pairs. In addition, we work out the rational
parametrization of elliptic curves E/Q with at least one pair, resp. two pairs, of
Galois-stable cyclic subgroups of order 4. We can do a change of coordinates
and parametrize such elliptic curves for the model y2 = x3 + Ax + B. The
resulting parametrizations satisfy the conditions of [4, Prop. 4.1], from which
it follows that the number of them with height at most X is of magnitude
X1/3 in the case of one pair of groups and of magnitude X1/6 in the case of
two pairs.

Let Nj(X) count the number of E/Q of height at most X with at least j
pairs of Galois-stable cyclic subgroups of order 4. In [2], among many other
interesting results, the authors show that N1(X) = c1,1X

1/3 +O(X1/6), with
c1,1 = 0.95740 . . . a calculable constant. This asymptotic plus error estimate
was worked out using the Principle of Lipschitz for counting lattice points.

In Section 4 we use Huxley’s improvement on the Principle of Lipschitz
(see [5]) and thus discover a lower-order main term with a power-saving er-
ror bound below that. As far as we know this is the first time this type of
strong Lipschitz Principle has been used in the arithmetic statistics of el-
liptic curves. We are then able prove our main theorem for E/Q with at
least one pair of Galois-stable cyclic subgroups of order 4, namely: N1(X)
= c1,1X

1/3 +c1,2X
1/6 +O(X0.105), with c1,2 = −0.87125 . . . a calculable con-

stant. The X1/6 term takes into account lattice points giving singular curves
y2 = x3 + Ax + B and N2(X) as well. We report on a computer experiment
in Section 4 that illustrates the above asymptotic.

In Section 5, we find a 3-variable integer parametrization for E/Q of height
at most X with two pairs of Galois-stable cyclic subgroups of order 4. We use
that parametrization in Section 5 to find a bijection between the set of elliptic
curves counted by N2(X) and certain lattice points in a 3-dimensional region
with tails. In Section 5 we compute three constants, which turn out to be
related, that will help us solve our counting problem in each tail. We present
some useful results from analytic number theory in Section 5 and adapt them
to the local restrictions imposed on our counting arguments.

The local restrictions require us to consider subsets of the lattice points
in similar 3-dimensional hyperbolic regions of different sizes. We do this in
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Section 5. In that section we also cover each region by two sets, each set
encompassing a tail, and also consider the intersection of those two sets. We
then count the appropriate lattice points in each of the three subsets in the
covering. In only one of the two tails can we use the Principle of Lipschitz. We
develop new techniques to count the appropriate lattice points in the other
tail.

We assemble those results in Section 5 and prove our main theorem for
E/Q with two pairs of Galois-stable cyclic subgroups of order 4, namely :
|N2(X) − c2,1X1/6| ≤ X1/12/ exp((logX)3/5+o(1))) as X → ∞, with c2,1 =
0.035515 . . . a calculable constant. It is to be remarked that the error estimate
here relies on the best known zero-free region of the Riemann zeta function in
the critical strip. If the Riemann Hypothesis could be assumed, there would
be a corresponding power-saving reduction in the error estimate. We report
on a computer experiment in Section 5 that illustrates the above asymptotic.

Our work is similar to [6]. In that article the authors found that the number
of E/Q of height at most X and with a Galois-stable subgroup of order 3 is

2
3
√
3ζ(6)

X1/2 + η1X
1/3 logX + η2X

1/3 + O(X7/24) for calculable constants η1

and η2. They too were unable to use the Principle of Lipschitz. This work built
on [4] which studies the number of elliptic curves over Q, up to a given height
bound, with each possible subgroup of Q-rational torsion points.

There are many related unsolved problems. For a finite group of order
greater than 4, we can study the distribution of E/Q containing a Galois-stable
subgroup of this type. One difficulty that will be faced dealing with groups of
larger order will be finding a suitable parameterization as in our Propositions 1
and 2. Our work with two pairs of Galois-stable cyclic subgroups of order 4
suggests considering E/Q with more than one Galois-stable subgroup of a
certain type, starting with Z/3Z (which would extend the result of [6]). Note
by Z/3Z we mean the group, not the Galois-module. A short exploration shows
that our work in Section 5, covering each tail of the region with a different
set, is useful in the count of elliptic curves with two Galois-stable subgroups
isomorphic to Z/3Z. We expect this technique to be useful in many such cases.

One could also consider the distribution of E/Q with a given Galois-stable
finite subgroup and a given Galois action on that subgroup. For example, for
Z/2Z × Z/2Z, the results of [2, Prop. 5.3.5] and [4, Thm. 5.5], give us the
distributions for two of the four possible Galois actions. Resolving the other
two requires separating the cases where the Galois group of the field gotten
by adjoining the coordinates of all 2-torsion points is isomorphic to Z/3Z or
S3. This is likely to be tractable.

2 Notation

Let us set down some notation used throughout the article. For a given E/Q,
let E(Q) denote the Mordell-Weil group, i.e. the set of points of E fixed by
GalQ. If G is a group and g ∈ G we use 〈g〉 to denote the cyclic subgroup of
G generated by g.
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There will be several constants defined in this article. In order that they
be easy to find, we define them all here.

Let µ(d) denote the Möbius function. For n > 1 we have
∑∞
d=1 µ(d)/dn

= ζ(n)−1. We will need ζ(2) = π2/6 =̇ 1.644934066848 and ζ(4) = π4/90
=̇ 1.082323233711. (When we write ζ(2) =̇ 1.644934066848, for example,

we mean that |ζ(2)− 1.644934066848| < 5 · 10−13.)

Let

α1 : = ((
√

6 +
√

3)/18)1/3 − ((
√

6−
√

3)/18)1/3 =̇ 0.273145782170,

α2 : =
1

21/331/2
=̇ 0.458243212333,

i1 : = 2

∫ α1

0

(3u2 +
1

41/3
)1/2 du =̇ 0.458048107496,

i2 : = 2

∫ 2α2

α1

(2u2 +
1

271/2u
)1/2 du =̇ 1.359101651471,

i3 : = 2

∫ 2α2

α2

(3u2 − 1

41/3
)1/2 du =̇ 0.780933086923,

i4 : = i1 + i2 − i3 =̇ 1.036216672043, and

c1,1 : =
i4
ζ(4)

=̇ 0.957400377048.

For p8(v, w) = v8 + 14v4w4 + w8, define

s′0 : =
∑

1≤v<w
v 6≡w (mod 2)

1√
p8(v, w)

=̇ 0.064679702530,

s′1 : =
∑

1≤v<w
2 - vw

1√
p8(v, w)

=̇ 0.016169925632,

and let

c2,1 : =
16α2

15ζ(2)ζ(4)
(s′0 + 4s′1) =̇ 0.035515448016,

c1,2 : = − 3α2

ζ(2)
− c2,1 =̇ − 0.871250852070.

3 Characterizing elliptic curves with Galois-stable cyclic
subgroups of order 4

For Lemma 1, Propositions 1 and 3, and Corollary 1, we remove our restriction
that our elliptic curve be defined over Q. Let K be a field of characteristic
other than 2.
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Lemma 1 Let E be an elliptic curve defined over K. Let E be given by y2 =
(x − ρ1)(x − ρ2)(x − ρ3). The four 4-torsion points doubling to the 2-torsion
point (ρ1, 0) have coordinates

(ρ1 ±
√
ρ1 − ρ2

√
ρ1 − ρ3,±

√
ρ1 − ρ2

√
ρ1 − ρ3(

√
ρ1 − ρ2 ±

√
ρ1 − ρ3))

where the first and third ± must agree.

Proof The proof is a straightforward computation. This result appeared in [7,
p. 112].

Proposition 1 and Corollary 1 were independently proven in Lemma 5.1.3
and the proof of Proposition 5.1.4 in [2].

Proposition 1 Let R be a point of order 4 on the elliptic curve E/K. The
following are equivalent.

i) The group 〈R〉 is Galois-stable.
ii) For all σ ∈ GalK (the absolute Galois group of K), we have σR = ±R.

iii) We have x(R) ∈ K (where x(R) denotes the x-coordinate of R).
iv) E/K has a model y2 = x(x2+γx+δ2) with γ ∈ K, δ ∈ K×, and γ2−4δ2 6=

0 where x(R) ∈ {±δ} and 2R = (0, 0).

Proof It is clear that i) and iii) are each equivalent to ii). Let us prove ii)
implies iv). Assume for all σ ∈ GalK , that σR = ±R. Then σ(2R) = 2R so
2R ∈ E(K)[2] (the 2-torsion subgroup of E(K)). So E has a model y2 = x(x2+
γx+ε) with γ, ε ∈ K and 2R = (0, 0). Since the cubic in x cannot have repeated
roots we have ε ∈ K× and γ2 − 4ε 6= 0. From Lemma 1, x(R) ∈ {±

√
ε}. Since

ii) implies iii), we have ε = δ2 for some δ ∈ K×.
Now we prove iv) implies i). It is a straightforward calculation that the

two points with x-coordinate δ, the point (0, 0), and the O-point of the elliptic
curve form a Galois-stable cyclic group of order 4. The same is true if we
replace δ by −δ in the previous sentence.

Corollary 1 The Galois-stable cyclic subgroups of order 4 of E/K, with mod-
el y2 = x(x2 +γx+δ2), come in pairs where the x-coordinate of the generators
of one subgroup is the negative of the x-coordinate of the generators of the
other. The intersection of the two groups of order 4 is the subgroup of each of
order 2. The point generating this subgroup of order 2 is K-rational.

Proof This follows from the proof of Proposition 1.

Temporarily, we return to an elliptic curve E/Q. Note the number of points
of order 4 on E over the algebraic closure of Q is 12. So E has six cyclic
subgroups of order 4. Thus, there are at most three pairs of Galois-stable
subgroups. In Proposition 3, we will show it is impossible to have three pairs
of Galois-stable cyclic subgroups of order 4 over Q. Note, when we refer to a
pair of Galois-stable subgroups, we mean that each subgroup within the pair
is itself Galois-stable.
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Proposition 2 The elliptic curve E/Q has two pairs of Galois-stable cyclic
subgroups of order 4 if and only if E/Q has exactly one model of the form

y2 = x(x− r)
(
x− r

(1− τ2

1 + τ2

)2)
(1)

with r a squarefree positive integer and τ ∈ Q, with 0 < τ < 1.

Proof Assume E has two pairs of such subgroups, namely {G1, G2} and { G3,
G4}. Assume G1 ∩G2 = 〈T1〉 and G3 ∩G4 = 〈T2〉 where T1, T2 are points of
order 2. There are exactly four points of order 4 which double to T1 and those
are the generators of G1 and G2. So T2 6= T1. We see T1, T2 generate E[2],
which from Corollary 1 is contained in E(Q). Combining this with the fact
that E has at least one pair of such subgroups, we get, from Proposition 1,
that E has a model y21 = x1(x1− r1)(x1− r1β2

1) with r1 a nonzero integer and
β1 ∈ Q \ {−1, 0, 1} (so that the cubic does not have a double root).

Without loss of generality, assume T1 = (0, 0) and T2 = (r1, 0). We make
the change of variables x2 := x1 − r1 and get the model for E given by
y21 = x2(x2 + r1)(x2 + r1(1− β2

1)) or y21 = x2(x22 + r1(2− β2
1)x2 + r21(1− β2

1)).
Note T2 has coordinates (x2, y1) = (0, 0). Given that E has a pair of such
subgroups, each containing T2, we see from Proposition 1 that 1−β2

1 = η21 for
some η1 ∈ Q×. We know from a famous parametrization of the unit circle that
η1 = (1− τ21 )/(1 + τ21 ) for some τ1 ∈ Q, with 0 < τ1 < 1 (we remove τ1 = 0, 1
from consideration as the cubic has a double root in those cases). There is a
unique choice of τ1 since (1− τ21 )/(1 + τ21 ) is monotonic on 0 < τ1 < 1.

There is a unique change in variables, by scaling x2 and y1 to x3 and y2,
respectively, so that E/Q has form y22 = x3(x3−r2)(x3−r2((1−τ21 )/(1+τ21 ))2)
with r2 a non-zero squarefree integer. Namely, let r2 be the unique nonzero
squarefree integer such that there exists γ1 ∈ Q∗ such that r1 = γ21r2. Then
we let x3 := x2/γ

2
1 and y2 := y1/γ

3
1 .

To look for other possible models of E/Q, as specified in the statement
of this proposition, we translate each of the two non-zero roots of x3(x3 −
r2)(x3 − r2((1− τ21 )/(1 + τ21 ))2) to zero. First, let x4 := x3 − r2. We get

y22 = x4(x4 + r2)
(
x4 + r2

( 2τ1
1 + τ21

)2)
or y22 = x4(x4 − r3)

(
x4 − r3

(1− τ22
1 + τ22

)2)
where r3 := −r2 and τ2 := 1−τ1

1+τ1
. This is of the form of (1).

Second, let x5 := x3 − r2((1 − τ21 )/(1 + τ21 ))2. When we make the substi-
tution, the coefficient of x5 in the model for the elliptic curve is −(2r2(τ31 −
τ1)/(τ21 + 1)2)2 and hence cannot be a square. So from Proposition 1, we do
not get a third model of the form specified in 1.

Given that r2 is non-zero, exactly one of r2 and r3 is positive — that is
the one we choose for our model.

The proof of the reverse implication is a straightforward computation using
Proposition 1, its proof, and Corollary 1.
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Proposition 3 Let K be a field of characteristic other than 2. Assume E/K
has two pairs of Galois-stable cyclic subgroups of order 4. Then the other pair
of cyclic subgroups of order 4 are defined over K if and only if K contains i.
In the case that K contains i, the other pair of cyclic subgroups of order 4 will
each be Galois-stable.

Proof Identify E[4] with (Z/4Z)2. Without loss of generality, we can iden-
tify the two pairs of Galois-stable cyclic subgroups of order 4 with the fol-
lowing pairs of generators: {(1, 0), (1, 2)} and {(0, 1), (2, 1)}. Then the image
ρE,4(GalK) of the mod 4 representation contains only diagonal matrices. This
image fixes the groups in the third pair (with generators {(1, 1), (3, 1)}) if and
only if the determinant of each element of ρE,4(GalK) is 1. Since the 4-Weil
pairing is bilinear, non-degenerate, and compatible with the Galois-actions on
E[4] and the 4th roots of unity, the latter is true if and only if K contains i.

This result shows that no elliptic curve E/Q has more than 2 pairs of
Galois-stable cyclic subgroups of order 4.

4 Counting elliptic curves with at least one pair of Galois-stable
cyclic subgroups of order 4

From now on, our elliptic curves will be defined over Q. A given E/Q has a
unique model of the form y2 = x3 + Ax + B where A,B ∈ Z and there is
no prime ` such that `4 | A and `6 | B. We define the height of E/Q to be
max{|4A3|, |27B2|}. This gives a bijection between E/Q and pairs (A,B), as
described above, for which 4A3 + 27B2 6= 0. We will count such pairs (A,B)
for which y2 = x3 + Ax + B has height at most X ≥ 1 and at least one pair
of Galois-stable cyclic subgroups of order 4.

The results in the following paragraphs up to Proposition 4 can be found
in [2, pp. 30 - 33]. From Corollary 1, E/Q has a pair of Galois-stable cyclic
subgroups of order 4 if and only if there exists a rational number b, a root
of x3 + Ax + B, and when we replace x by x + b the coefficient of x is a
square. Note that since x3 + Ax + B is monic and A,B ∈ Z, we can replace
the word rational in the previous sentence by the word integer. If we replace
x by x + b in x3 + Ax + B we get x3 + 3bx2 + (3b2 + A)x + (b3 + Ab + B).
So we are looking for integers b for which there is an integer a such that
3b2 +A = a2. We now have a map sending the integer pair (a, b) to the integer
pair (A,B) = (a2 − 3b2, 2b3 − a2b).

Given a height bound X ≥ 1, we define a region, which we denote

R′1(X) := {(a, b) ∈ R×R : 4|a2 − 3b2|3 ≤ X and 27|2b3 − a2b|2 ≤ X}.

Most lattice points (a, b) ∈ R′1(X) give rise to a pair (E/Q, T ) where T is
a pair of Galois-stable cyclic subgroups of E of order 4. The exceptions are
those lattice points giving singular curves. That occurs when 0 = 4A3 + 27B2

= 4(a2 − 3b2)3 + 27(a2b − 2b3) = 4a6 − 9b2a4 = a4(4a2 − 9b2). So we must
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Fig. 1 The region R′
1(1)

remove from consideration the points in R′1(X) on the singular locus: a = 0
and a = ±3b/2.

In Figure 1, the shaded region indicates R′1(1). To avoid clutter, we include
only the b-axis. The red curve is the graph of 4|a2 − 3b2|3 = 1 and the green
curve is the graph of 27|2b3 − a2b|2 = 1. The green components 2b3 − a2b =√

1/27 for b > 0 and 2b3 − a2b = −
√

1/27 for b < 0 are superfluous as
boundaries of R′1(1).

For i = 1, 2, 3, each point Pi is an intersection point of 4|a2 − 3b2|3 = 1
with 27|2b3 − a2b|2 = 1. The b-coordinates of P1, P2, and P3 are α1, α2, and
2α2, respectively. See Section 2 for the definitions of the αi’s. Again referring
to Section 2, we can see from these b-coordinates and curve equations that i4
gives the area of the part of R′1(1) with a ≥ 0. We restrict to a ≥ 0 since
the pairs (a, b) and (−a, b) give the same pair (A,B). The singular locus is
indicated by dashed lines.

An easy exercise shows that for all primes ` we have `4 | A and `6 | B if
and only if `2 | a and `2 | b. Let R1(X) be the subset of R′1(X) for which
a ≥ 0. If we remove from R1(X) the lattice points (a, b) on the singular locus,
and those for which there is a prime ` such that `2 | a and `2 | b, then we get
an injection from the remaining lattice points to pairs (E/Q, T ), where T is
a pair of Galois-stable cyclic subgroups of order 4.

Recall that Nj(X) is the number of E/Q with at least j pairs of Galois-
stable cyclic subgroups of order 4. From Proposition 3, it is impossible for
E/Q to have three pairs of Galois-stable cyclic subgroups of order 4. Thus,
the number of lattice points in R1(X), not on the singular locus, and for which
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there is no prime ` such that `2 | a and `2 | b, gives the number of E/Q for
which there is exactly one pair of Galois-stable cyclic subgroups of order 4
plus twice the number of E/Q for which there is exactly two pairs. We restate
this result in the following proposition.

Proposition 4 The number N1(X) +N2(X) is equal to the number of lattice
points in R1(X), not on a = 0 or a = 3|b|/2, and for which there is no prime
` such that `2 | a and `2 | b.

Proof This follows from [2, pp. 30-33] and Proposition 3.

With the above proposition and an important result of Huxley [5], we
can estimate the count. The Huxley result asserts that if R is a compact,
convex region in the plane, of area A, and with the boundary being piecewise
smooth, with the curvature on each piece non-zero and 3 times continuously
differentiable, then the number of lattice points (i.e., integer points) contained
in R scaled by a large factor r is Ar2 + O(r0.63). (The actual error bound
is r131/208(log r)O(1), see [5, p. 592].) We would like to apply this theorem to
R′1(X), which is a compact region with piecewise smooth boundary and non-
zero curvature scaled by a factor X1/6, however, the boundary segments are
concave with respect to the interior, not convex. We can nevertheless apply the
Huxley theorem by recognizing the region as the union of differences of convex
sets with boundaries being piecewise smooth and with nonzero curvature. (A
simple example is a lune, which is the difference of two convex sets.) Since the
area of R′1(X) is 2i4X

1/3 (see Section 2), it follows that the number of lattice
points in R′1(X) is equal to 2i4X

1/3 +O(X0.105).
We next want to count the number of lattice points in R′1(X) for which

there is no prime ` such that `2 | a and `2 | b. For a given positive integer
d, the number of lattice points (a, b) ∈ R′1(X) for which d2 | a and d2 | b is
equal to the number of lattice points in R′1(X) when it has been scaled down
by d2 in both dimensions. Since the number of lattice points in this scaled
down region is 2i4X

1/3/d4 +O((X1/6/d2)0.63), the number of lattice points in
R′1(X) for which there is no prime ` such that `2 | a and `2 | b is∑

d≤√α2X1/12

(
2i4µ(d)

d4
X1/3 +O

(X0.105

d1.26

))
=

2i4
ζ(4)

X1/3 +O(X0.105).

Here, we used that
∑
d µ(d)/d4 = 1/ζ(4) and that the error in truncating this

sum at
√
α2X

1/12 is, by an elementary argument, O(1/X1/4).
As lattice points on a = 0 give singular curves y2 = x3 + Ax + B, we are

ultimately interested in lattice points with a > 0. The lattice points on a = 0
in R′1(X) are the points (0, b) with |b| ≤ α2X

1/6. For such points, there is a
prime ` such that `2 | a and `2 | b if and only if `2 | b. So the number of lattice
points in R′1(X) on a = 0 for which there is no prime ` such that `2 | a and
`2 | b is 2α2

ζ(2)X
1/6 + O(X1/12), arguing as above. Thus, the number of lattice

points in R1(X) with a > 0 and for which there is no prime ` such that `2 | a
and `2 | b is i4

ζ(4)X
1/3 − α2

ζ(2)X
1/6 +O(X0.105). Recall c1,1 = i4

ζ(4) .
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The remaining pairs (a, b) giving singular curves y2 = x3 + Ax + B are
those on a = 3|b|/2. We have already removed those for which `2 | a and `2 | b.
The part of a = 3|b|/2 in R1(X) is that for which |b| ≤ 2α2X

1/6. The lattice
points on a = 3|b|/2 are of the form (3|k|, 2k) for k ∈ Z with |k| ≤ α2X

1/6. So
there are 2α2X

1/6 +O(1) of them. If ` is prime then `2 | 2k and `2 | 3|k| if and
only if `2|k. So the number of lattice points on a = 3|b|/2 in R1(X) for which
there is no prime ` such that `2 | a and `2 | b is 2α2

ζ(2)X
1/6 + O(X1/12). Thus

N1(X) +N2(X) = c1,1X
1/3 − 3α(2)

ζ(2) X
1/6 +O(X0.105). We show in Theorem 2

that the number of E/Q of height at most X with two pairs of Galois-stable
cyclic subgroups of order 4 is N2(X) = c2,1X

1/6 +O(X1/12).
Recall c1,1 =̇ 0.957400377048 and c1,2 = − 3α2

ζ(2)−c2,1 =̇ −0.871250852070

(see Section 2).

Theorem 1 The number of E/Q of height at most X with at least one pair
of Galois-stable cyclic subgroups is N1(X) = c1,1X

1/3 + c1,2X
1/6 +O(X0.105).

Proof This follows from Proposition 4 and the computations above.

4.1 Numerical illustration — one pair

In this section we numerically illustrate Theorem 1. In the table below we
present N1(X) and N1(X)− c1,1X1/3− c1,2X1/6 (which we round to one digit
past the decimal point) for various values of X.

X N1(X) N1(X)− c1,1X1/3 − c1,2X1/6

1018 956574 44.9

1021 9571217 −31.6

1024 95731445 119.8

1027 957372610 −215.7

1030 9573916722 76.6

5 Counting elliptic curves with two pairs of Galois-stable cyclic
subgroups of order 4

5.1 The parametrization

In this section, we want to find an integer parametrization of elliptic curves
with two pairs of Galois-stable cyclic subgroups of order 4. From Proposition 2
such an elliptic curve has a model of the form in 1 with r a squarefree positive
integer, τ ∈ Q and 0 < τ < 1.

We want to find a model for such an elliptic curve of the form y2 = x3 +
Ax + B with A,B ∈ Z, and for which there is no prime ` such that `4 | A
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and `6 | B. In the model given by (1), we replace τ by v/w where v, w are
variables representing relatively prime integers with 1 ≤ v < w. Then we
replace x by (x + 6r(v4 + w4))/(9(v2 + w2)2) and y by y/(27(v2 + w2)3).
We get y2 = x3 + Ax + B where A = −27r2(v8 + 14v4w4 + w8) and B =
54r3(v12 − 33v8w4 − 33v4w8 + w12). Set

p8(v, w) := v8 + 14v4w4 + w8, p12(v, w) := v12 − 33v8w4 − 33v4w8 + w12.

We now need to ensure there is no prime ` such that `4 | A and `6 | B.

Lemma 2 Let 1 ≤ v < w with gcd(v, w) = 1. If 2 | vw, then gcd(p8(v, w),
p12(v, w)) = 1. If 2 - vw, then 16 | p8(v, w), 64 | p12(v, w), and gcd( 1

16p8(v, w),
1
64p12(v, w)) = 1.

Proof The homogeneous resultant of p8 and p12 is 240312. Since gcd(v, w) = 1,
any prime divisor of both p8(v, w) and p12(v, w) is ` = 2 or ` = 3. We check
all nine cases for v and w mod 3 and note that 3 | p8(v, w) and 3 | p12(v, w) if
and only if 3 | v and 3 | w.

We check all four cases for v and w mod 2 and note that 2 | p8(v, w) and
2 | p12(v, w) if and only if v ≡ w (mod 2). Since gcd(v, w) = 1 it suffices
to consider the case v ≡ w ≡ 1 (mod 2). A straightforward exercise shows
then that p8(v, w) ≡ 16 (mod 64) and p12(v, w) ≡ −64 (mod 256). Therefore
gcd( 1

16p8(v, w), 1
64p12(v, w)) = 1.

Define the functions A(r, v, w) and B(r, v, w) in the following way.

(i) A(r, v, w) := −27r2p8(v, w), B(r, v, w) := 54r3p12(v, w) when 3 - r and
2 | vw,

(ii) A(r, v, w) := − 1
3r

2p8(v, w), B(r, v, w) := 2
27r

3p12(v, w) when 3 | r and
2 | vw,

(iii) A(r, v, w) := − 27
16r

2p8(v, w), B(r, v, w) := 27
32r

3p12(v, w) when 3 - r and
2 - vw, and

(iv) A(r, v, w) := − 1
48r

2p8(v, w), B(r, v, w) := 1
864r

3p12(v, w) when 3 | r and
2 - vw.

Lemma 3 Let E be the elliptic curve with two pairs of Galois-stable cyclic
subgroups of order 4 given by the model in (1). Let τ = v/w with v, w ∈ Z,
1 ≤ v < w, and gcd(v, w) = 1. The unique model for E of the form y2 =
x3 +Ax+B with A,B ∈ Z and for which there is no prime ` such that `4 | A
and `6 | B is given by A = A(r, v, w) and B = B(r, v, w).

Proof At the beginning of this section we found that E has an integer model
y2 = X3 +Ax+B with A = −27r2p8(v, w) and B = 54r3p12(v, w).

Now we consider the cases where there is a prime ` with `4 | A and `6 |
B. Given Lemma 2 and that r is squarefree, A = −27r2p8(v, w), and B =
54r3p12(v, w), the only possible primes ` are ` = 2, 3. We see that 34 | A and
36 | B if and only if 3 | r. If 3 | r then replace A by A/34 and replace B by
B/36. From Lemma 2, we have that 24 | A and 26 | B if and only if 2 - vw,



12 Carl Pomerance, Edward F. Schaefer

and in this case A/24 and B/26 are odd. In this case replace A by A/24 and
B by B/26.

Now there is no prime ` such that `4 | A and `6 | B.

Recall that the height of the elliptic curve y2 = x3 +Ax+B, where A,B ∈
Z, is at most X if and only if |A| ≤ Ab and |B| ≤ Bb where Ab := 1

41/3
X1/3

and Bb := 1
271/2

X1/2.

Lemma 4 Assume the elliptic curve y2 = x3 + Ax + B, where A,B ∈ Z,
has two pairs of Galois-stable cyclic subgroups of order 4. The height of this
elliptic curve is at most X if and only if |A| ≤ Ab where Ab := 1

41/3
X1/3.

Proof Since the elliptic curve has two Galois-stable cyclic subgroups of order
4, the polynomial x3 + Ax + B has three rational roots from Proposition 2.
Therefore the discriminant of x3 +Ax+B is positive. Thus −4A3−27B2 > 0.
Thus −4A3 > 27B2 ≥ 0. Thus max{|4A3|, |27B2|} = |4A3|. So the height of
this elliptic curve is |4A3|.

5.2 Bijections used in counting

We gave a homogeneous integer parametrization in Lemma 3 for E/Q with
two pairs of Galois-stable cyclic subgroups of order 4. A dehomogenization of
this parametrization to a rational parametrization satisfies the conditions of
[4, Prop. 4.1]. It follows that if Spairs is the set of integer pairs (A,B) such
that there is no prime ` such that `4 | A and `6 | B, and y2 = x3 + Ax + B
is an elliptic curve of height at most X with two pairs of Galois-stable cyclic
subgroups of order 4, then #Spairs is of order of magnitude X1/6. We will
prove an even stronger result.

Let SE denote the set of E/Q (up to isomorphism), with two pairs of
Galois-stable cyclic subgroups of order 4 and height at most X. In this section
we determine an asymptotic plus error estimate for the size of SE . There is a
bijection from Spairs to SE sending (A,B) to the elliptic curve y2 = x3+Ax+B.

Let Sr,v,w denote the set of triples (r, v, w) with r a squarefree positive
integer, v, w ∈ Z with 1 ≤ v < w, gcd(v, w) = 1, and |A(r, v, w)| ≤ Ab.
Proposition 5 There is a bijection between Sr,v,w and Spairs sending (r, v, w)
to (A(r, v, w), B(r, v, w)).

Proof This follows from Lemmas 3 and 4, where we take θ = 1, 13 ,
1
2 ,

1
6 in Cases

(i) - (iv) (listed before Lemma 3) respectively.

To determine the size of the set SE we will instead determine the identical
size of the set Sr,v,w. We see, from the four cases presented immediately before
Lemma 3, that we want to count the number of triples (r, v, w) of positive
integers with r2p8(v, w) ≤ ηX1/3 for η a constant, r squarefree, v < w, and
gcd(v, w) = 1.
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5.3 Useful constants

In (r, v, w)-space, the region with all variables positive and r2p8(v, w) ≤
ηX1/3 (for η < 1 a constant) can be considered to have two tails — one for
r large and one for p8 large. Our counting argument of valid triples (r, v, w)
requires us to consider those tails differently. In particular, the Principle of
Lipschitz, commonly used in similar counting arguments, is useful in only one
of the tails. Certain constants arise within the counting argument for each tail
and we compute them here. As the function A(r, v, w) depends on the residue
classes of v and w modulo 2, we will need to take that into consideration when
dealing with these constants. For i, j ∈ {0, 1}, with (i, j) 6= (0, 0), let

Tij = {(v, w) ∈ Z2 | v ≡ i (mod 2), w ≡ j (mod 2)}.

The following proposition will be useful when computing the number of lattice
points in the tail with p8 large.

Proposition 6 Let

α3 =

∫ 1

0

1√
p8(u, 1)

du =̇ 0.691002044641

and let

α4 =

∫ 2

1

∫ 1

g(t)

1√
p8(u, 1)

du dt =̇ 0.122364455649

where g(t) = ((t4 + 48)1/2 − 7)1/4. Then for y ≥ 1,∑
1≤v<w

p8(v,w)>y
(v,w)∈Ti,j

1√
p8(v, w)

=
α3 + α4

8y1/4
+O

( 1

y3/8

)
.

Proof For each fixed value of w > y1/8 and all v with 1 ≤ v < w, we have
p8(v, w) > y. Further∑

1≤v<w
v≡ i (mod 2)

1√
p8(v, w)

=
1

w4

∑
1≤v<w

v≡ i (mod 2)

1√
p(v/w, 1)

=
1

2w3

∑
1≤v<w

v≡ i (mod 2)

1√
p(v/w, 1)

· 2

w
.

This last sum is a Riemann sum for the integral α3, and by monotonicity is
equal to α3 +O(1/w). Thus,∑

1≤v<w
v≡ i (mod 2)

1√
p8(v, w)

=
α3

2w3
+O

(
1

w4

)
.
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Summing this expression for w > y1/8 gives∑
w>y1/8

w≡ j (mod 2)

α3

2w3
+O

(
1

w4

)
=

∑
k>y1/8/2

(
α3

2(2k + j)3
+O

( 1

k4

))
,

which is equal to α3

8y1/4
+O( 1

y3/8
).

We now consider the case w ≤ y1/8. For p8(v, w) > y with 1 ≤ v < w, it is
necessary that w > y1/8/

√
2. For a given value of w we sum on v, noting that

g(y1/4/w2)w ≤ v < w. Thus, we have the contribution∑
g(y1/4/w2)w≤v<w

v≡ i (mod 2)

1√
p8(v, w)

=
1

2w3

∫ 1

g(y1/4/w2)

1√
p8(u, 1)

du+O
( 1

w4

)
.

We now sum this expression on w with y1/8/
√

2 < w ≤ y1/8, w ≡ j (mod 2)
getting ∑

y1/8/
√
2<w≤y1/8

w≡ j (mod 2)

(
1

2w3

∫ 1

g(y1/4/w2)

1√
p8(u, 1)

du+O
( 1

w4

))

=
1

2

∫ y1/8

y1/8/
√
2

1

2x3

∫ 1

g(y1/4/x2)

1√
p8(u, 1)

dudx+O
( 1

y3/8

)
=

1

8y1/4

∫ 2

1

∫ 1

g(t)

1√
p8(u, 1)

dudt+O
( 1

y3/8

)
,

where we use the substitution t = y1/4/x2. This gives the contribution α4

8y1/4
+

O( 1
y3/8

), completing the proof.

Corollary 2 We have∑
1≤v<w

gcd(v,w)=1
p8(v,w)>y
(v,w)∈Tij

1√
p8(v, w)

=
α3 + α4

6ζ(2)y1/4
+O

( log y

y3/8

)
.

Proof First note that∑
1≤v<w
d | v, d |w

1√
p8(v, w)

=
1

d4

∑
1≤v<w

1√
p8(v, w)

= O
( 1

d4

)
.

Thus, ∑
1≤v<w

gcd(v,w)=1
p8(v,w)>y
(v,w)∈Tij

1√
p8(v, w)

=

( ∑
d≤y1/8
d odd

∑
1≤v<w
d | v, d |w
p8(v,w)>y
(v,w)∈Tij

µ(d)√
p8(v, w)

)
+O

( 1

y3/8

)
,
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recalling that µ(d) denotes the Möbius function. By Proposition 6, the double
sum here is∑

d≤y1/8
d odd

µ(d)

d4

(
α3 + α4

8(y/d8)1/4
+O

( 1

(y/d8)3/8

))
=

α3 + α4

6ζ(2)y1/4
+O

( log y

y3/8

)
,

completing the proof. The last step used the fact that for p prime, h > 1 an
integer, and x ≥ 1, we have∑

n≤x, p -n

µ(n)

nh
=

1

ζ(h)(1− p−h)
+O

(
1

(h− 1)xh−1

)
. (2)

Indeed, the infinite sum has an Euler product which we recognize as 1/(ζ(h)
(1 − p−h)). Further, the tail for n > x converges absolutely to a sum that is
O(1/((h− 1)xh−1)).

The following proposition will be useful when computing the number of
lattice points in the tail with r large.

Proposition 7 Let z ≥ 1 and let R2(z) be the region in the v, w plane with

0 ≤ v ≤ w, p8(v, w) ≤ z,

and let A(z) be the area of R2(z). Then A(z) = βz1/4, where

β =
1

2

∫ π/2

π/4

1

p8(1, tan θ)1/4 cos2 θ
dθ =̇ 0.406683250145.

Further, the projection of R2(z) on any line has length O(z1/8).

Proof We have

A(z) =

∫ π/2

π/4

∫ B

0

r dr dθ,

where B is the distance to the origin of the point on p8(v, w) = z with θ =
arctan(w/v). We have at this point that z = p8(v, w) = p8(1, tan θ)v8 and
w = v tan θ. Thus,

B = (v2 + w2)1/2 = v(1 + tan2 θ)1/2 = (z/p8(1, tan θ))1/8(1 + tan2 θ)1/2

=
z1/8

p8(1, tan θ)1/8 cos θ
.

Thus,

A(z) =

∫ π/2

π/4

1

2
B2 dθ =

1

2
z1/4

∫ π/2

π/4

1

p8(1, tan θ)1/4 cos2 θ
dθ,

completing the proof. The final assertion of the lemma follows from the fact
that all points (v, w) ∈ R2(z) satisfy max{|v|, |w|} ≤ z1/8.
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Corollary 3 Let z ≥ 1 and let L(z) denote the number of lattice points (v, w)
in R2(z) with (v, w) ∈ Ti,j and let L′(z) be the number of lattice points (v, w)
in R2(z) with (v, w) ∈ Ti,j and gcd(v, w) = 1. Then

L(z) =
β

4
z1/4 +O(z1/8) and L′(z) =

β

3ζ(2)
z1/4 +O(z1/8 log z).

Proof The first assertion is immediate from Proposition 7 and the Principle of
Lipschitz. For the second assertion, let Ld(z) be the number of lattice points
(dv, dw) 6= (0, 0) in R2(z), where d is a positive integer. We have

L′(z) =
∑
d odd

µ(d)Ld(z) =
∑

d<z1/8

d odd

µ(d)Ld(z),

since if d ≥ z1/8, then Ld(z) = 0. Note that Ld(z) is the number of lattice
points in R2(z/d8) \ {(0, 0)}. So, by Equation (2),

L′(z) =
β

4
z1/4

∑
d<z1/8

d odd

µ(d)

d2
+O

(
z1/8

∑
d<z1/8

d,odd

1

d

)
=

β

3ζ(2)
z1/4 +O

(
z1/8 log x

)
.

5.4 Facts from analytic number theory

We now present some useful facts from analytic number theory. Let

M(x) :=
∑
n≤x

µ(n), Q(x) :=
∑
n≤x

µ(n)2, Z(x) :=
∑
n≤x

µ(n)

n
, S(x) :=

∑
n≤x

µ(n)2√
n
.

Proposition 8 We have the following inequalities: As x→∞,

(1) |M(x)| ≤ x/ exp((log x)3/5+o(1)),
(2) |Q(x)− x/ζ(2)| ≤ x1/2/ exp((log x)3/5+o(1)),
(3) |Z(x)| ≤ exp(−(log x)3/5+o(1)), and
(4) |S(x)− (2/ζ(2))

√
x| ≤ exp(−(log x)3/5+o(1)).

Proof Facts (1) and (2) may be found in Walfisz [9, p. 146].

For fact (3), first note that from the prime number theorem,
∑
n≥1

µ(n)
n

= 0, see [8, p. 43]. Thus, by partial (Abel) summation,

Z(x) = −
∑
n>x

µ(n)

n
= −

∫ ∞
x

M(t)−M(x)

t2
dt

and the result follows from fact (1).
For fact (4), let ε > 0 be arbitrarily small, and fixed. We let

y = exp((log x)3/5−ε)
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and let z = (x/y)1/2. We have

S(x) =
∑
n≤x

∑
d2 |n

µ(d)√
n

=
∑
ad2≤x

µ(d)

d
√
a

=
∑
a≤y

∑
d≤
√
x/a

µ(d)

d
√
a

+
∑
d≤z

∑
a≤x/d2

µ(d)

d
√
a
−
∑
a≤y

∑
d≤z

µ(d)

d
√
a

= s1 + s2 − s3,

say. Using
∑
a≤y 1/

√
a = O(

√
y), we have, as x→∞,

|s1| ≤ exp(−(log x)3/5+o(1)),

from fact (3). Almost the same calculation works for s3. Note that∑
n≤x

1/
√
n = 2

√
x+ ζ(1/2) +O(1/

√
x), when x ≥ 1,

see Apostol [1, Theorem 3.2 (b)]. Thus,

s2 =
∑
d≤z

µ(d)

d

(
2
√
x/d2 + ζ(1/2) +O(1/

√
x/d2)

)
= 2
√
x
∑
d≤z

µ(d)

d2
+

(
ζ(1/2)

∑
d≤z

µ(d)

d

)
+O(z/

√
x).

Note that z/
√
x = exp(− 1

2 (log x)3/5−ε). We shall use fact (3) on the second
sum here, and for the first sum,∑

d≤z

µ(d)

d2
=

1

ζ(2)
−
∑
d>z

µ(d)

d2
=

1

ζ(2)
−
∫ ∞
z

(M(t)−M(z)) · 2

t3
dt.

We can estimate the integral using fact (1), so that

|s2 − 2
√
x/ζ(2)| = O

(
exp

(
− 1

2
(log x)3/5−ε

))
.

Since ε > 0 is arbitrary, this completes the proof of fact (4) and the proposition.

As the definition of A(r, v, w) depends on whether or not 3 | r, we must
adapt Proposition 8 to each of these two cases. It suffices to consider the case
3 | r, since then the case 3 - r can be found by subtracting from the full sum.
Let

M3(x) :=
∑
n≤x
3 |n

µ(n), Q3(x) :=
∑
n≤x
3 |n

µ(n)2, Z3(x) :=
∑
n≤x
3 |n

µ(n)

n
,

S3(x) :=
∑
n≤x
3 |n

µ(n)2√
n
.
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Corollary 4 We have the following inequalities: As x→∞,

1. |M3(x)| ≤ x/ exp((log x)3/5+o(1)),
2. |Q3(x)− x/(4ζ(2))| ≤ x1/2/ exp((log x)3/5+o(1)),
3. |Z3(x)| ≤ exp(−(log x)3/5+o(1)), and
4. |S3(x)−

√
x/(2ζ(2))| ≤ exp(−(log x)3/5+o(1)).

Proof We show by induction that

M3(x) = −
∑
j≥1

M(x/3j). (3)

Indeed, this holds trivially for x < 3. Assume it holds for x < 3k. Then for
x < 3k+1, we have

M3(x) =
∑

m≤x/3

µ(3m) = −
∑

m≤x/3
3 -m

µ(m) = −M(x/3) +M3(x/3),

and so (3) follows by using the induction hypothesis on M3(x/3). Next, (3)
implies that

M3(x) = −
∑
j≥1

3j≤
√
x

M(x/3j)−
∑

3j>
√
x

M(x/3j).

For the first sum we use (1) of Propostion 8 on each term, and for the second
sum we use the trivial bound |M(x/3j)| ≤ x/3j , thus establishing part (1) of
the corollary.

Similar induction proofs show that

Q3(x) =
∑
j≥1

(−1)j−1Q(x/3j), Z3(x) = −
∑
j≥1

1

3j
Z(x/3j), and

S3(x) =
∑
j≥1

(−1)j−1

3j/2
S(x/3j),

and so parts (2)–(4) follow from parts (2)–(4) of Proposition 8.

5.5 Breaking the region into four cases

The different formulae for A(r, v, w) depending on whether 3 | r and the
values of v and w modulo 2 suggest that we break the computation into four
cases:
(i) 3 - r, 2 | vw,

(ii) 3 | r, 2 | vw,
(iii) 3 - r, 2 - vw, and
(iv) 3 | r, 2 - vw.
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We give the details in the first case, and show how the constants change
in the subsequent cases. Let N (i)(X) be the number of (r, v, w) in the first
of the four cases with |A(r, v, w)| = 27r2p8(v, w) ≤ Ab, that is, r2p8(v, w) ≤

1
41/327

X1/3. Define

S0 := {(v, w) | v 6≡ w (mod 2), 1 ≤ v < w, gcd(v, w) = 1},

s0 :=
∑
S0

1√
p8(v, w)

.

Let N (i)(Y,X) be the number of triples r, v, w counted by N (i)(X) with

p8(v, w) ≤ Y , let N
(i)
Z (Y,X) be the number of these triples where also r ≤ Z,

and let N
(i)
Z (X) be the number of triples with r ≤ Z and p8(v, w) unrestricted.

Then, if Z2Y = ηX1/3, for η = 1
41/327

, we have

N (i)(X) = N (i)(Y,X) +N
(i)
Z (X)−N (i)

Z (Y,X).

We will choose Z = Xδ, where δ > 0 is fairly small. We then have Y =
ηX1/3−2δ.

The calculation of N (i)(Y,X)

Let Q′3(x) = Q(x)−Q3(x), so that from Proposition 8 and Corollary 4 we
have

Q′3(x) =
3

4ζ(2)
x+R′3(x), where |R′3(x)| ≤ x1/2/ exp((log x)3/5+o(1)) (4)

as x→∞. Thus,

N (i)(Y,X) =
∑

(v,w)∈S0
p8(v,w)≤Y

∑
r≤ η

1/2X1/6√
p8(v,w)

r squarefree
3 - r

1 (5)

=
3η1/2

4ζ(2)
X1/6

∑
(v,w)∈S0
p8(v,w)≤Y

1√
p8(v, w)

+
∑

(v,w)∈S0
p8(v,w)≤Y

R′3

( η1/2X1/6√
p8(v, w)

)
.

Since η1/2X1/6/
√
p8(v, w) ≥ η1/2X1/6/Y 1/2 = η1/2Z = η1/2Xδ, the remain-

der term has absolute value at most

X1/12

exp((logX)3/5+o(1))

∑
(v,w)∈S0
p8(v,w)≤Y

1

p8(v, w)1/4
=

X1/12

exp((logX)3/5+o(1))

as X →∞, since the sum here is O(log Y ).
The main term for N (i)(Y,X) is

3η1/2

4ζ(2)
X1/6

( ∑
(v,w)∈S0

1√
p8(v, w)

−
∑

(v,w)∈S0
p8(v,w)>Y

1√
p8(v, w)

)
.
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The first sum is the constant s0. The second sum is estimated in Corollary 2
for the cases i, j being 0, 1 and 1, 0. Thus, we have, as X →∞,

N (i)(Y,X) =
3η1/2

4ζ(2)
s0X

1/6 − η1/2(α3 + α4)

4ζ(2)2
X1/6

Y 1/4
+O

(X1/6 log Y

Y 3/8

)
+ E1(X),

where |E1(x)| ≤ X1/12/exp((logX)3/5+o(1)). We shall take δ < 1/18, and so
since Y = ηX1/3−2δ, the O-term above is absorbed into E1(X), and we have,
as X →∞,

N (i)(Y,X) =
3η1/2

4ζ(2)
s0X

1/6 − η1/2(α3 + α4)

4ζ(2)2
X1/12+δ/2 + E2(X),

where |E2(X)| ≤ X1/12/exp((logX)3/5+o(1)).

It is convenient to compute the infinite sum s0 numerically without the
coprimality condition for v and w, so let

s′0 =
∑

1≤v<w
v 6≡w (mod 2)

1√
p8(v, w)

=̇ 0.064679703204

(as in Section 2). Note that if v = dv0 and w = dw0, for some d, then
√
p8(v, w)

= d4
√
p8(v0, w0). So

s0 = s′0
∑
d odd

µ(d)

d4
.

From (2), we have s0 = 16
15ζ(4)s

′
0.

The calculation of N
(i)
Z (Y,X)

The calculation of N
(i)
Z (Y,X) parallels that of N (i)(Y,X). In place of (5)

we have

N
(i)
Z (Y,X) =

( 3

4ζ(2)
Z +R′3(Z)

) ∑
(v,w)∈S0
p8(v,w)≤Y

1.

By Corollary 3 in the cases i, j being 0, 1 and 1, 0, the sum here is 2βY 1/4

3ζ(2)

+O(Y 1/8 log Y ). By (4) we thus have, as X →∞,

∣∣∣N (i)
Z (Y,X)− η1/4β

2ζ(2)2
X1/12+δ/2

∣∣∣ ≤ X1/12

exp((logX)3/5+o(1))
.

The calculation of N
(i)
Z (X)
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We have

N
(i)
Z (X) =

∑
r≤Z

r squarefree
3 - r

∑
(v,w)∈S0

p8(v,w)≤ηX1/3/r2

1

=
∑
r≤Z

r squarefree
3 - r

(
2η1/4βX1/12

3ζ(2)r1/2
+O

(X1/24 logX

r1/4

))
,

using Corollary 3 for i, j being 0, 1 and 1, 0. The remainder term here is
O(X1/24Z3/4 logX), which is negligible. For the main term we need to sum
1/r1/2 fairly precisely, which follows from Proposition 8 and Corollary 4. So,
as X →∞, ∣∣∣N (i)

Z (X)− η1/4β

ζ(2)2
X1/12+δ/2

∣∣∣ ≤ X1/12

exp((logX)3/5+o(1))
.

5.6 The main theorem for two pairs

Recall N (i)(X) is the number of (r, v, w) in the first of the four cases de-
scribed at the beginning of Section 5, such that |A(r, v, w)| ≤ Ab. And recall

N (i)(X) = N (i)(Y,X) +N
(i)
Z (X)−N (i)

Z (Y,X), which is

3

4
· 1

21/3271/2ζ(2)
· 16

15ζ(4)
s0X

1/6 +
η1/4

4ζ(2)2
(2β−α3−α4)X1/12+δ/2 + E3(X),

where |E3(X)| ≤ X1/12/exp((logX)3/5+o(1)) as X → ∞. This holds for any
value of δ with 0 < δ < 1

18 . Yet if 2β 6= α3 + α4, then the above statement
cannot be true for more than one value of δ. So 2β = α3 +α4 and, as X →∞,∣∣∣N (i)(X)− 3

4
· 1

21/3271/2ζ(2)
· 16

15ζ(4)
s0X

1/6
∣∣∣ ≤ X1/12

exp((logX)3/5+o(1))
.

We can also prove 2β = α3 + α4 directly. We have

α3 + α4 =

∫ 1

0

∫ p8(u,1)
−1/2

0

∫ p8(u,1)
1/4

0

dtdzdu =

∫ 1

0

∫ p8(u,1)
−1/4

0

dadu.

Make the change of variables a = x2, u = y/x. The Jacobian has value 2.
The region described by the limits of integration of the last double integral
is transformed to the region in the first quadrant of the xy-plane bounded by
p8(x, y) = 1, y = 0, and y = x. The latter region has the same area as R2(1),
i.e. β.

The remaining three cases are similar. Let

s′1 =
∑

1≤v<w
2 - vw

1√
p8(v, w)

=̇ 0.016169925632
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(as in Section 2). If N (j)(X) is the count of the number of (r, v, w) with
A(r, v, w) ≤ Ab in Case (j) of the four cases, then as X →∞ we have

∣∣∣N (ii)(X)− 1

4
· 1

21/3(1/3)1/2ζ(2)
· 16

15ζ(4)
s′0X

1/6
∣∣∣ ≤ X1/12

exp((logX)3/5+o(1))
,∣∣∣N (iii)(X)− 3

4
· 1

21/3(27/16)1/2ζ(2)
· 16

15ζ(4)
s′1X

1/6
∣∣∣ ≤ X1/12

exp((logX)3/5+o(1))
,∣∣∣N (iv)(X)− 1

4
· 1

21/3(1/48)1/2ζ(2)
· 16

15ζ(4)
s′1X

1/6
∣∣∣ ≤ X1/12

exp((logX)3/5+o(1))
.

Recall (from Section 2) that

c2,1 =
16

21/3271/25ζ(2)ζ(4)
(s′0 + 4s′1) .

Theorem 2 The number of E/Q of height at most X with two pairs of Galois-
stable cyclic subgroups is N2(X) = c2,1X

1/6+O±(X1/12/ exp((logX)3/5+o(1)))
as X →∞, where c2,1 =̇ 0.035515448016 as in Section 2.

Proof This follows from Proposition 5 and the computations above.

We remark that if the Riemann Hypothesis is assumed we can obtain
power-saving error estimates over those recorded in Proposition 8 and Corol-
lary 4 and so obtain an error estimate for N2(X) that shaves a constant off of
the exponent 1/12.

5.7 Numerical illustration — two pairs

In this section we numerically illustrate Theorem 2. In the table below
we present N2(X) and N2(X) − c2,1X1/6 for various values of X. In the last
column, we round to one digit past the decimal point.

X N2(X) N2(X)− c2,1X1/6

1030 3544 −7.5

1036 35486 −29.4

1042 355140 −14.5

1048 3551596 51.2

1054 35515580 132.0

1060 355154548 67.8
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