ON THE EQUATION ¢(n) = ¢(n + 1)

PAUL KINLAW!, MITSUO KOBAYASHI?, AND CARL POMERANCE?

ABSTRACT. We consider solutions of the equation p(n) = ¢(n+1), where ¢ denotes Euler’s
function. Improving on previous work, we show that the reciprocal sum over all such n is
less than 8.

1. INTRODUCTION.

We study solutions of the equation ¢(n) = ¢(n + 1), where ¢ denotes Euler’s function.
Let S = {n e N:pn) =¢n+ 1)} ={1,3,15,...} and let S(x) denote the number of
n € S not exceeding x. In 1936, Erdés [5] proved that S has asymptotic density zero. In
1987, Erdés et al. [6, Theorem 3] proved that S(z) < z/e V8% for all sufficiently large .
The cube root of log x was improved recently to the square root by Yamada [13].

It is still not known if there are infinitely many solutions. However, it is conjectured in [6]
that S(z) > 2'~¢ for all ¢ > 0 and = > C..

From the upper bound results for S(x) it follows that the reciprocal sum is finite. As with
Brun’s constant, where one attempts to get good estimates for the reciprocal sum of primes
p with p + 2 also prime, it is a challenge to get good estimates for the reciprocal sum of
members of S. It is shown in [2] that the reciprocal sum is less than 441702 and conjectured
that the value is less than 2. We improve the upper bound.

Z% < 7.9702.

nes

Theorem 1.1. We have

The proof makes use of the exact computation of S up to 10'3. Beyond that point, an
averaging argument is employed to greatly limit the possibilities for the odd member of
{n,n + 1} for n € S. Indeed, for n € S we have ¢(n)/n ~ ¢(n+1)/(n+ 1), and the even
member has this ratio at most 1/2. The averaging argument shows that only a small density
of odd numbers n have ¢(n)/n so small.

To be sure, even if a set has a very small density, if that density is positive, then the
reciprocal sum will be infinite. So averaging arguments can take us only so far. Several new
techniques are used to deal with the large range, n > ¢'*°. These include methods suggested
by Patrick Letendre, and similar to the methods employed by Yamada [13]. We use several
techniques from [9] on the distribution of numbers with no large prime factors. Most helpful
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is a new paper of Bennett et al. [3] on numerically explicit estimates for the distribution of
primes in residue classes.

2. NOTATION AND PRELIMINARY LEMMAS

We split the sum into three intervals, with cutoffs at 10! and X, = €'®°. We let exp(z)
and log x denote the natural exponential and logarithmic functions. We let  denote a real
number, m and n denote positive integers, p, ¢, r denote prime numbers, P(n) denote the
largest prime factor of n, and 7(z) denote the prime counting function.

We state several preliminary lemmas that will be used in the proof of Theorem We
will use the bounds [11, (3.5, 3.6)] of Rosser and Schoenfeld and [4, Cor 5.2, Thm. 5.6-5.7]
of Dusart for the prime counting function.

Lemma 2.1. For all x > 1, we have
7(x) < 1.25506x/ log z,
m(z) < z/logz (1+1.2762/logz),
m(z) < z/logz (1+1/logz + 2.53816/log” z) .
For all x > 17, we have m(x) > x/logx.
Lemma 2.2. For all x > 2278383 we have
0.2
<

~ log®x’

1
Z— — (loglogz + B)

p<w

where B = 0.2614972128 ... denotes the Mertens constant.

Let m(z;m,a) = [{p <2 :p=a (mod m)}|

Lemma 2.3. Form < C < D, we have

1 2 1
quq) 5 < m (loglog(D/m) — loglog(C/m) + —log(D/m)> )
p=a(m)

Lemma [2.3| follows directly from the Brun-Titchmarsh theorem by partial summation, see
for instance [9, Lem. 2.8]. A more elementary result that can complement Lemma is the
following.

Lemma 2.4. Suppose that m is a positive integer coprime to 6. We have

Z 1 - 2.0156.

m
p<398m p
p=1(m)

Proof. Since m is odd, the primes in the sum are the primes in the set {2m + 1,4m +
1,...,396m + 1}. If m = 1 (mod 3) then the numbers 2jm + 1 with j = 1 (mod 3) are
divisible by 3, and if m = 2 (mod 3), the numbers 2jm + 1 with j = 2 (mod 3) are divisible
by 3. Thus, the sum in the lemma is either at most

1 1 1 1

eAD DI ) D

m 279 m 279

j<198 j<198

J#ELB) i#£2(3)
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The second sum here is larger than the first sum, and the second sum is < 2.0156. U

Corollary 2.5. Forr > 3 prime and x > 398r, we have

1 2
Z 5 < 1 (loglog(x/r) —0.78169 +

p<z
p=1(r)

We will also use the following inequality.

Lemma 2.6. For a positive integer m < 1200 and x > 50m?, we have

1.5 n 2.5 n 1.5
logz  logZz = log(50m?)

1 1
Z -< — <log log z — loglog(50m?) —

50m?<p<z p gp(m)
p=1(m)

Proof. This follows from a partial summation argument and the following new result, see [3,
Cor. 1.6]: under the hypotheses of the lemma,

T

T n(am) < — (142D
¢o(m)logx T, o(m)log x logz )

We also use the following bound [9, Lemma 2.7].

Lemma 2.7. For all y > 1 we have

Z_

—y ylogy

Corollary 2.8. For all y > 6241, we have

=P \/_ logy
a>2

Proof. Using the bound

Z Z -y z% < 0.773157 — )y ]%,

p* >y p>2 p*<y p*<y
a>2 a>2 a>2

a computer check shows that the claim holds for 6241 < y < 10%. Assume that y > 10%. We
split the sum into two cases, p > \/E and p < \/g We bound the first case as

Y Y Y AL Y
P>y P>y a>2 p>\f p>\f
pe>y, a>2

2 1
2 (s )
ﬂlogy( VY —1



using Lemma . We next address the second case. For p < ,/y let a, be the least integer
such that p® > y. We have

I
@ = wl—1/p
e B A T /p

P>y, a>3
We consider two cases, a, = 3 and a, > 3. For the first case, we have
11 1/ 1
Zﬁl_l/p<ylg/js_1 Z ]ﬁ
pg\/ﬂ p>y1/3
P>y

By partial summation and Lemma [2.1]

1 1/3  3r(t 2.4356 0.1131
Z___MjL/ Wi)d< 2/3 < ‘
NV y?Blogy — \/ylogy

3
poyl/d p Y

For the second case, we have
1 1 27.5742 101
Z51—1/p< v ooy
2.3242 n 0.1699
y Vilogy

(7r(y1/3) — 25)

p<yl/3

Combining these bounds, we have

1 2.2878
> Lo

P>y \/ﬂ lOg y
a>2
for all y > 10®. This completes the proof of Corollary U

3. AN AVERAGING METHOD

Recall that S(z) = {n < x : ¢(n) = p(n + 1)}|. Let N(z) denote the number of odd
n <z with p(n)/n < 1/2.

Proposition 3.1. We have N(z) < 0.017876x + 670.515/x + 5.4 for all x > 0.
We will prove Proposition |3.1] after noting the following corollary.
Corollary 3.2. We have S(z) < 0.035752x + 1341.03\/z + 10.8 for all z > 0.

Corollary [3.2]follows from Proposition[3.Iand the observation that if n > 3-5-17-257-65537
and p(n) = @(n + 1), then

max {p(n)/n,¢(n+1)/(n+1)} < 1/2.

See for instance [2, Prop. 2.2]. The bound is doubled to account for the possibility of
consecutive triples p(m — 1) = ¢(m) = p(m + 1), where m is an odd number.
4



Proof of Proposition 3.1 For a real number T' > 1, let gr denote the multiplicative function
supported on the squarefree numbers such that g7(p) = (p/(p — 1))T — 1. Thus,

ZQT = (n/e( ))

Noting that 323323 is the product of all of the primes from 7 to 19, we partition the odd
numbers n such that g@(n) /n < 1/2 into four classes:

(1) ged(n,6) =
(2) ged(n,30) =
(3) ged(n, 30) = 15 and ged(n, 323323) = 1,
(4) ged(n,30) = 15 and ged(n, 323323) > 1.

Let B;(z) denote the number of n < z in each case i. For any T' > 1,

Bl(x)SziT >, (so—n> QT > 2 or(d)

n<w n<z dln
(n,6)=1 (n,6)=1

Changing the order of summation, we obtain

1" x| 2
< (= i
() X oo (g+3)
(d,6)=1
using the bound |{n <t:ged(n,6) =1} <t/3 +2/3. Thus,

Biw) <o | oog D S
s o © HET gr(d)

d<z
(d,6)=1

Let S; and S5 denote the first and second sums, respectively. We have

6)19T€§d)_p1:[5<1+ng )_exp (;10 ( >>>

We choose T' as 69. Computing the sum for p < 10 and then majorizing the tail using
Lemmas or 2.2 we get

S log (1 n gT(p)) < 34.3844.
p

p>5

Thus, S; < (4.839 - 107")z.
We next turn to S;. By Rankin’s trick,

S o< v Y 200 = vaT] 1+ 22)

d<z d<z p>5

(d,6)=1 (d,6)=1
gr(p)
= /T exp Zlog<1—|— ))
<p25 \/ﬁ
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Splitting the sum at 10° as before, we compute

9r(p)
> log (1 + 75 ) < 49.1683,

p=>5

so that Sy < 2.549,/.
We next bound Bs(x). For a positive integer u, let

() i =11 =
plu

and let g7, be the multiplicative function supported on the squarefree numbers coprime to
u such that gr,(p) = gr(p) for p{wu. Thus,

ZgTu u ) .

dlm
We have
1 n \7' 3\” T
B < — - S
wem ¥ () -(3) T s
n<x m<3
(n,30)=3 (m,10)=1

and so, using the bound [{n <t : ged(n,10) = 1} < 2t/5+4/5,

By(x) < (E)T > D grald) < (%)T Z gr.3(d) <%+%>

m<% d|lm

(m,10)=1 (d,10)=
2 (3 9T3 4 (3
15 (4) “T5\a Z gra(d
(d,10)= d<glC
(d,10)=1

Let S, and S, denote the left and right sums, respectively. We have

Z 9T3 o H <1 X 9T3(P)> — exp (Zlog <1 I gT,3(p)>> .
(d,10)=1 p>7 p p>T7 p
We choose T' = 29 and as before, we split the sum at 10°, getting
Y log ( | gral >> < 4.85969.
p>7 p

This gives S; < 0.004095z. By Rankin’s method, we have

ot <\[FIL(+277)
- \/gexp (pzz;log <1+ gT\’j%”)) .

6
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Splitting the sum at 10° as above, we obtain Sy < 6.765y/z, so that By(z) < 0.0040952 +
6.765/.

We next turn to Bs(x). Noting that the product of the primes to 19 is 9699690, we have

By <5 Y (L)T - (g)T > S

2T — o(n) 16 =
(n,9699690)=15 (n,646_61§i):1

Note that }_,, gr15(d) = f15(n)T and ¢(646646) = 207360. One finds via a computer

search among numbers to 646646 that for any ¢t > 0, the number of d < ¢ coprime to 646646

is at most 207360¢/646646 + 5.525. We have as above that Bs(x) is less than

207360 /15\ " gT15(p)
]_ g v/
646646 (16> 15 11 ( +

p>23

+5525(16) \/>p1>_£( L 9rs(p )

Taking 7" = 72 and estimating the products as above, we find that Bs(z) < 0.00182x +
661.201/.

Finally, we obtain an upper bound for B,(z). The conditions that ged(n,30) = 15 and
ged(n,323323) > 1 put n in one of 115963 residue classes modulo 9699690. We find the
optimal bound

115063 204775
B < 0.011962 + 5.3835
1(®) < 5500600 + 33033 v

by a computer search to 9699690.
Combining our bounds for B;(x) proves the proposition. 0

Remark. After work of Schoenberg [12] we know the density § of numbers n with p(n)/n <
1/2 exists. Since every even number n > 2 satisfies this inequality, we have that § — 1/2
is the density of odd n with ¢(n)/n < 1/2, that is, the density of the numbers counted by
N(zx). Thus, Proposition shows this density is smaller than 0.017876. It is not hard to
get a positive lower bound, and in fact, this density is computable in principle. It would
be an interesting project, following the methods in [7] and [§], to find the density to several
decimal places.

The following results can be proved in a similar way as we proved Proposition [3.1}

Proposition 3.3. Let M(x) denote the number of odd m < x such that p(m)/m < 0.5001.
We have M(x) < 0.01794z + 680.18y/x + 5.4 for all x > 0. Moreover, for all x > 0 and
D > 0, we have

M(D + z) — M(D) < 0.01794x + 1360.36v/D + z + 10.8.

The proof of Proposition |3.3]is nearly identical to that of Proposition (3.1 with the following
changes. For the first assertion, the factor of 1/27 is replaced with 0.50017. For the second
assertion, the factor of \/z is replaced with v/D + x. For example, in the case that m is
coprime to 6, and D = 0, we get the bound

(2) (4.91 x 107")x + 2.58444/7,
7



which can be compared with our estimate for Bj(x) in the proof of Proposition . Also,
we replace the bound for item (1) by

{n € (D,D + x| : ged(n,6) = 1} < x/3 +4/3,

where the constant term is doubled due to the periodicity and symmetry of ged(n, 6) as well
as the left-continuity of [{n < z : ged(n,6) = 1}| —2/3, and similarly for items (2)—(4). This
change does not affect the constant in the main term but doubles each of the constants of
lower order in the bound for M (z).

We will also use the following proposition.

Proposition 3.4. Suppose that n is odd with ¢(n)/n < 1, p | n with p > 5000 and s | n+ 1
with s > 1 and s coprime to 30030. The number of n <t with these properties is at most

¢ 7 7
0.02194 + 197.761,/ — + 23.36\/j +16.
ps ps p

This estimate holds equally if the roles of n and n + 1 are reversed.

Proof. The proof parallels that of Proposition [3.1} and in particular we have the same 4
cases. But here we replace “323323” with “1001”.

Write n = mp and ¢(n)/n < 3, so that ¢(m)/m < 1 + ¢, where ¢ = 107*. We first count
the number of choices for n <t with ged(n,6) = 1. This is at most the number of m < ¢/p
coprime to 6, with ¢(m)/m < $+¢€ and mp = —1 (mod s). Let b be an integer with bp = —1
(mod s), so that m = b (mod s). We have

Ny = Z 1< (% + e)T Z (m/p(m))T.

m<t/p m<t/p
ged(m,6)=1 ged(m,6)=1
m=b (mod s) m=b (mod s)
p(m)/m<L+e

Since } 4, 97(d) = (m/o(m))T, we have

N1§<%+6>T > gr(d) > L.

d<t/p k<t/pd
ged(d,6s)=1 ged(k,6)=1
k=bd~! (mod s)

If d > t/ps, then k < s, so there is at most one k in the inner sum, and the contribution to
the expression is at most

1 T
(3) Ny o= (§+e> S gr(d).
d<t/p
ged(d,6)=1

The remaining part is at most

Nig:= (% + e)T Z gr(d) Z 1.

d<t/ps k<t/pd
ged(d,6s)=1 ged(k,6)=1
k=bd~! (mod s)
8



The inner sum on k is at most ¢/3psd + 2, since in any interval of length 6s there are exactly
2 numbers coprime to 6 and in the residue class bd~! (mod s), so there are at most 2 of
them in an interval of length smaller than 6s. Thus,

NLQS(%“)T 2. 9T(d>(3td+2>

d<t/ps
ged(d,6)=1
1 Tt gr(d) 1 T
— (s +e) — 2(5 +e) d).
<2+E> 3ps Z d * 2—|P6 Z gr(d)
d<t/ps d<t/ps
ged(d,6)=1 ged(d,6)=1

With this expression and we have 3 sums to estimate. We take T' = 69. We have

1 gT
<491 %1077
( ) 3ps Z

d<t/ps ps
ged(d,6)=1
Also,
1 T t 1 T gT(d) t
2(—+e) 3 gT(d)gz,/—(—+e> 3 < 7753,/ —.
2 d<t/ps ps 2 ged(d,6)=1 \/;l ps
ged(d,6)=1
Similarly,
t/1 T gT(d) t
Nl,l S \/j<—+€> Z . —.
p 2 ged(d,6)=1 \/E p

Summing up, we have

t t t
Ny <491 x 1077 — + 7.753, | — + 3.88\/:
ps ps p
We next consider

Ny= > 1§<§+%>T S fam)

m<t/p m<t/3p
ged(m,30)=3 ged(m,10)=1
m=b (mod s) m=0b (mod s)

gp(m)/m<%+e
Then, as with the work for Ny, we get
3 3e\T 2t
N<(B+5) d )5 +3) .
2 S\ 7715 ( Z gr3(d) + Z gr,3(d) 53psd+
d<t/3p d<t/3ps
ged(d,10)=1 ged(d,10)=1

Choosing T' = 29, we get

N, < 0. 00412— 125, 513, [t is 51\/7
pS



We also have

N3 := Z 1< (1—2 + %)T Z fis(m)T.

m<t/p m<t/15p
ged(m,30030)=15 ged(m,2002)=1
m=b (mod s) m=b (mod s)

p(m)/m< 1+

We introduce gr 15 and note that the number of integers to ¢/15pd coprime to 2002 and in a
residue class mod s is at most 24¢/1001psd 4+ 15. So N3 is at most

(% + %>T< Z gras(d) + Z gr5(d) <$‘isd + 15)).

d<t/15p d<t/15ps
(d,2002)=1 (d,2002)=1

Choosing T' = 36, we get

N, < 0. 0()846— +164.495, / —+10. 97\[

We next consider the case when gcd(n 30) =15 and ged(n, 1001) > 1. In this case, the
number of integers n <t is at most

1 281 t
30 1001 ps
Putting our estimates together, we complete the proof. 0

4. PROOF OF THEOREM [L.1l.

Recall that X, = €', We partition solutions of ¢(n) = ¢(n + 1) into a small range
n < 1013, middle range 10! < n < Xj, and large range n > X,.

4.1. The Small Range, n < 10'3. By computation using an exhaustive list of all 10755
solutions up to 10 (see [10]) we have

1
Z Z = 1.432488. . ..
n

nes
n<1013

4.2. The Middle Range, 10® < n < X,. By Corollary and partial summation, we

have » <
1 S(Xy) S(10%) / 0 S(t)
- = — —2dt < 4.3293.
TLGZS n X(] 1013 + 1013 t2
1013 <n< Xy

4.3. The Large Range, n > X,. Here is the plan for the proof. Let n € S. We show that,
but for a small number of exceptions, P(n) and P(n + 1) are large and that neither n nor
n + 1 is divisible by a large proper power of a prime. We then deal with the situation when
the largest prime ¢ dividing n(n + 1) is very large (approximately, it is > n%3). Here we
consider the two cases: P(q—1) is large and P(q— 1) is small. Finally, we have the situation
when ¢ is not so large. Here we concentrate on the odd member of the pair, doubling our
estimate since we do not know which of n, n + 1 is odd. The advantage to us of working

with the odd member is that we can bring in Proposition to help with the estimate.
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Let I, = (¥, ef!) and S, = I, N'S. Let ap = 3.5 for 150 < k < 400 and oy = 4 for
k> 400. Let 8 = 4 for 150 < k < 200, 8 = 4.5 for 200 < k < 400, and 8, = 5 for k > 400.

Let

k/|og logkzj’ ’ 0.3k VE/Bk 0.7\/E_

Tp=¢e r,=e"", zz=e , 2y =€

Also, let
=2t = x'UogtJ, 2 =2(t) = Z,Llogtj'

Define the following sets of natural numbers:

Ch ={n € S : ¢“|n(n + 1) for some a > 2, where ¢* > 2, or ¢ > 2.},

Ci ={n €S :wn)orwn+1)>alogllogn]},

— S\ (CEuCh).

We will use the convention C; = J,~,5, CF. We first bound the contribution to the reciprocal
sum from Cy. -

Proposition 4.1. We have

> % < 0.2516.

n€eCo

Proof. We handle the case when ¢* | n and double the estimate to allow for the parallel case
q“|n+1. Let T, ={¢°:a>2,q* > zx}. By [9, Lem. 2.2], we have

DD DI DI DI SH i

k>150 ek <n<eh+1 k>150 seT), k>150 seT),
Is€Ty:s|n s<ekt1 s<ek+1
The right sum is

k+1)/2 1 -
< - 1077,

D SR T P = e <210

k>150 s€Ty, k>150
Sgek""l

Here we used inequality (3.7) in the proof of [9, Prop. 3.3] to bound the number of proper
prime powers up to ¢ as less than t'/2 for ¢t > 200. For the left sum, we use Corollary to

bound
>3 Zflogxk

k>150 €T, © k=150
Computing the sum directly to k& = 10® and bounding the remaining sum with an integral,
this expression is less than 0.12345 + 0.00155 = 0.12500, the two numbers coming from the
ranges 150 < k < 399 and k > 400, respectively.
We proceed in the same way, but now use Lemma and T}, = {¢* : ¢ > 2,}. The
reciprocal sum is bounded above by

1 1 1
)DL D DD DD DD Dl
k>150 ek <p<eh+1 k>150 scT] k>150 seT!
Is€T):s|n s<ek+1 s<ek+1
By Lemma 2.7, we compute that this expression is smaller than 0.00079. Noting that
2(0.12500 + 0.00079) < 0.2516, completes the proof. O
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Proposition 4.2. We have

> % < 0.1430.

neCy

Proof. As before, we treat the case of n, doubling the estimate to account for the case of
n + 1. Following [9, Prop. 3.2], we have 75(n) > 5“("), where 75(n) denotes the number of
ordered factorizations of n into five positive integers. By [9, Lem. 2.5] we have

DR DD DR

€150 < <400 151<k<400  eb—l<n<ek
w(n)>3.5log|logn| w(n)>3.5log(k—1)
< Z 5—35log(k—1) Z 75(n)
n
151<k<400 n<ek

Z 120 (k — 1)3-5log5 < 0.07006.

151<k<400

Note that this sum, if extended to infinity, diverges. However, by changing 3.5 to 4, the sum
converges, and we have

Z %g Z L M<0.00142.

190 (k — 1)4log5
n>e400 k>401 120 (k 1) ®
w(n)>4log|logn|
Noting that 2(0.07006 4+ 0.00142) < 0.1430, the proof is complete. O
For n € C§, we may assume that w(n) < ailog|logn], since n ¢ C;. Therefore, the
largest prime power dividing n exceeds n'/loxlosllogn]] > gk/laxlogk] = Tt follows that this

prime exactly divides n since n ¢ Cp, so that P(n) > xy and P(n)||n. These conclusions

hold as well for n 4 1.
We use the notation ¢ = P(n(n + 1)) and p = P(n). We define the following sets:

C;={neCs:q>uz, Plg—1) <z},
Ci ={neCy:q>u, Plg—1) >z},
Ch={neCi\(CsUCs): Plp—1) <z},
Ch={neCi\(C;UCs): P(p—1)> z}.

We continue with the convention C; = Uy>150CF.

Proposition 4.3. We have

> % < 0.2543.

neCs

Proof. Write the one of n,n 4+ 1 which is a multiple of ¢ as gm. We will sum 1/¢gm and
double the estimate to allow for the ambiguity of whether ¢ | n or ¢ | n+1. We first consider

the case that ¢ > ¢%%°*. Let S(x,y) denote the reciprocal sum of those integers j > z with
12



P(j) <y. By |9, Lem. 2.2, 2.10],

DEDIEEDS
kJZlBO q>eo-45k q e: m 8/92»1
P(g-1)<2},

< 0.00063(1 + ¢/2),
noting that ¢ — 1 is even. Also, we bound
1 1 1 z, —1 055k
S OX LY sy gs(fha)aeen
k>150 3! <q<e045k 1 ek _ kil k>150
P(g—1)<z, !

< 0.12564.

Here we used [9, Lem. 2.10] to sum over k& > 300, obtaining a bound of 0.00801, and [9, Lem.
2.9] with s, = log(e®?uy loguy)/log 2, to sum over 150 < k < 299, obtaining a bound of

0.11763. Combining and doubling, we complete the proof of Proposition 4.3 O
Proposition 4.4. We have
1
D = <0.6485.
n
neCy

Proof. Let n € Cy. Since n ¢ Cy, 7 = P(q—1) | p(n), and r > Z/L there are primes p, p’

with ¢ = max{p,p'}, p||n, p'||n+1and p=p' =1 (mod r).
Writing n = pm and n+1 = p'm’, we have pm+1 = p'm/ and (p—1)p(m) = (p' —1)p(m’).
Thus,

logn|’

p'(m'p(m) — mp(m')) = (m + 1)e(m) — mep(m).
If the left side is zero, consider that since ged(m, m') = 1, we would then have m | ¢(m) and
m’ | o(m’), so that m = m’ = 1. But this does not occur for n > 1, so the left side is not
zero. Therefore p’ (and also p) are fixed by the ordered pair (m,m’), so that n is completely
determined by the pair (m,m’).
Let A(t) = {n <t:n € Cys} and let yj, = ke*\/2, /25 and y = y|1ogs)- Then

A(t) = Aq(t) U As(t),
where
Ai(t) ={n € A(t) : pp’ <y} and Ax(t) = {n € A(t) : pp’ > y}.
Let A;(t) denote the cardinality of A;(t), ¢ = 1,2. The system of congruences n = 0
(mod p), n+1=0 (mod p’) has a unique solution n modulo pp’ by the Chinese remainder

theorem. Thus,
t
w0y ¥ ()

r>z' pp'<y

max{p,p'} >z’
p=p'=1(r)
For a prime r > 2/ let
t
D i’
pp'<y

max{p,p’} >z’
p=p' =1(r)

13



0.4 — o0-12[logt]  Congider the case when r > 2. We have

2

Se<St[ Y glr <3 (;T)Q(mg(t/w) +1)2

Let 2" ==z

r>x’ r>x’ J<t/2r r>x’
t(log(t/2z") + 1)?
" 2
< gm” 5 (log(t/22") + 1) < 1o Tog "

using Lemma [2.7, Applying partial summation, the contribution to the reciprocal sum is
< 4 x 107°. Now assume that r € (2/,2”]. We have

(4) P2 Z Z pp/ ’

z' <p<y/(2r) » <y/z'
p=1(r) p'=1(r)

doubled because we assume p > z’. We have by Lemma [2.3] and Corollary [2.5] that

y o leallos 1332ﬁr),

/
z'<p<y/2r b p Sufe g
pP= 1 (T‘) =1 (T)
where
2r Yy v .
s1(r) r—1 ( 0808 (2r)? T osoe 2r * log(y/(2r)?)/’
2r

So(r) = <log log L 0.78169 +

)
-1 gl 2r)))

We assemble these estimates into (). Note that s;(r)s2(r) is increasing in the variable r for
2 <r <a’. Let xf = 2"(e*) = %1% Via partial summation, we have the reciprocal sum
in this case at most

" 1
s1(z; 52 x 2s1(x)so(x
QZ Z <QZZ 3 kSZ (/k)(/k)’
2z, log 2
k>150 zk<r<x;€’ k>150 T>Zk k>150

using Lemma We have the contribution to the reciprocal sum for r € (2/, 2”] is less than
0.03732.
We next estimate the sum of the error term 1. This is

(5) 2> > >

r>z' p'<y/x’ x' <p<y/p’
p'=1(r) p=1(r)

Writing p = ar + 1, p’ = br + 1, the contribution when r > z” is at most

y y y(log(y/=") +1)
> > 1=y G(legsry) < (") log(a")

r>x' ab<y/r? r>x!!

using Lemma and the elementary estimate that the number of pairs a,b with ab < x is
at most x logx + x. Dividing our expression by ¢ and integrating from X, to co, we get less
than 0.00047.

So now we assume that 2z’ < r < z”. Using the Brun-Titchmarsh inequality, the inner

sum in (9] is at most 2(y/p’)/((r — 1) log(y/(p'r)). Note that not both 2+ 1, 4r + 1 can be
14



prime, since one of them is divisible by 3. Thus, the contribution to when p’ < 6r is at
most

4y 2y 1 1
2 D losy /(@) < logly/2e7) (1 * ?) 2

2l<ra” r>z

Using Lemma [2.7] and partial summation, the contribution to the reciprocal sum in this case
is less than 0.01145. We now assume that p’ > 6r in (5)). We find that for a given r, the
expression is at most

8y r?

r2 (r—1)2

(A+ B),
where A = 1/(log(y/z'r)log(x’/r)) and
B = m(log log(y/z'r) — loglog(z'/r) — loglog 6 + log log(y/6r%)).

Using that (1+1/(r —1))%(A+ B) is increasing in r on (2’, 2], using partial summation and
Lemma [2.7] we get that the contribution to the reciprocal sum is less than 0.26596.

We next consider an upper bound for As(t). If n € A(t) then pp’ > y, and since
pp'mm’ =n(n+1) < t(t+ 1), we have

mm’ < t(t + 1)y = 25t(t + 1)/ (ke®\/2,) = w = w(t), say.

Further, one of m,m’ is odd and the other is even, so assume m is odd, m’ is even. We
double our estimate to take into account the other possibility. There are two cases: 3 | m
and 3 1 m. Let Ay () denote the set of such ordered pairs (m,m’) when 3 | m, and Ay 5 (%)
the set of such pairs with 3 f m. Let A, ;(¢) denote their cardinalities for i = 1, 2, respectively.
Since the pair (m,m’) fixes p and p’ (and therefore n), we have

As(t) = Agq(t) + Aga(t).

Note that p > 2r +1 > 22’ +1 > 5000 since p = 1 (mod r) and r > 2’. Thus, p(m)/m <
0.5001, so we may apply the averaging argument in Proposition[3.3] Since m,m’ are coprime,

Ayq(t) <2 Z Zlﬁg Z (%+1)>

m<w m'<w m<w
ged(m,6)=3  2|m’ ged(m,6)=3
»(m)/m<0.5001 3}m/ »(m)/m<0.5001
w
Az (t) <2 E E 1< E —
m
m<w m'<w m<w
ged(m,6)=1  2|m’ ged(m,6)=1
p(m)/m<0.5001 p(m)/m<.5001

Letting M;(x) be the number of m < z with ged(m,6) = 1 and ¢(m)/m < 0.5001 and

noting that the first such m is m; := 37182145, we have from and partial summation
15



that

m<w
ged(m,6)=1
p(m)/m<0.5001

2-2.6
VAL

<5x 1077 +5x 107" (logw — logmy) +
<5x 107" logw + 8.6 x 107,

For the sum of w/m+1 for m < w, ged(m, 6) = 3, and ¢(m)/m < 0.5001, we use Proposition
3.3, and relax the condition ged(m, 6) = 3 to ged(m, 2) = 1. Computing directly the sum of
1/m to 10, an upper bound for the sum is 0.2331. Thus,

1
} = <0.01794logw — 0.15277.
m

m<w
ged(m,2)=1
p(m)/m<.5001

Further, using w > 3 x 10%2 and Proposition , we have the number of integers m in the
sum at most .01795w. Thus,

As(t) < 0.0119605w log w — 0.08902w.

The contribution to the reciprocal sum from this term is at most

/ SAa(t)dt < > / —(0.0119605w log w — 0.08902w)dt
Xo E>150
<> 5(0.0119605@0(@1‘?) log w(e) — 0.08902w(e*))
k>150
< 0.33324.
Combining these bounds, we complete the proof of Proposition [4.4] O

Proposition 4.5. We have

> % < 0.2790.

néeCs

Proof. Assume that n € C; and write n = pm. We also assume that n is odd. The case when
n is even is completely parallel, so we double our estimates to reflect this case. We bound
the reciprocal sum for zy < p <z} and r = P(p — 1) < z; by

1
)N X w

m
k>150 xk<p<xk k+1

& m<e
Pr-1<2k 1 odd. o(m)/m<0.5001
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noting that ¢(m)/m < p/(2(p — 1)) < 0.5001 for p > x150. We first bound the inner sum.
Recall that M (z) = [{m < x: p(m)/m < 0.5001}|. Let D = e¥/p. By partial summation,

De D p t?

T %<M(D6) M(D) PeM()

ok )
3 <m< Y
m odd, ¢(m)/m<0.5001

Let a = 0.01794, b = 1360.36, ¢ = 10.8. By Proposition

M(De) M(D)+a(e—1)D+by/(e—1)D +c
De = De

and
De p(t) M(D) M(D) a 2b 2b c ¢
—dt < —~ + =t —.
p t D De e +De D De D
Combining terms, the sum over m is less than 0.01795.

Turning to the sum over p, we first bound this sum over k£ > 2000. Using the notation
of |9, Lem. 2.10] and observing that p — 1 is even,

> Y tep > s(2 )

k>2000 p>xg k>2000

P(p—1)<z
D3

k>2000
< 0.04598,

950 (1+e)u 2108;(% logug)/log 2, _ 1)_1

(ug log uy, )

where ¢ = 2.3-107% and u; = log((xx — 1)/2)/log 2. Here we computed the sum over
2000 < k < 108 directly and then compared the remaining series to an integral. Using the
first inequality of [9, Lem. 2.9] with sy = log(e"uyloguy)/log z; and noting that p — 1 is
even, we have

l\DI»—t

> Z Soos (ku— 1,zk> < 0.010329.

1500<k<1999 p>T) 1500<k<1999
P(p—1)<z

We next sum over 1000 < k£ < 1499, 700 < k£ < 999, 556 < k < 699, with parameters s, =
log(efuy loguy)/log z, ¢ = 0.5, 0.45, 0.4, to obtain bounds 0.120102, 0.643079, 1.211382,
respectively.

Finally, for the interval 150 < k& < 555, we directly evaluate the sum of reciprocals of even
zp-smooth numbers p — 1 > x;, — 1 as follows. The sum of reciprocals of all even z,-smooth
numbers is equal to H3§p§2k p%l. For each 150 < k < 555 we subtract from this quantity
the sum of reciprocals of even zi-smooth numbers not exceeding =, — 1. Summing over
150 < k£ <199, 200 < k < 399, 400 < k < 555, we obtain the bounds 3.439039, 1.941653,
0.35777, respectively.

Summing these bounds, multiplying by 0.01795, and doubling, we complete the proof of
Proposition [4.5] O
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Proposition 4.6. We have

> % < 0.6320.

n€eCs

Proof. We assume that n is odd and double the bound, noting that a symmetric argument
applies to the case that n+1 is odd. Recall that p = P(n). There is a prime r > 2|jog,| such
that 7 | p—1, and thus r|¢(n) = ¢(n+1). Either 7? | n+1 or there is a prime p’ | n+ 1 with
p' =1 (mod r). In this proof we let the letter s denote either 2 or p'. Since n ¢ Cy,Cy, we
have s < x/,,,,,- Consider the counting function of such n < t. Noting that p,p’ ,r2 < 03
and applying Proposition |3.4] we find that the counting function is bounded above by

Z Z Z (0 02194t +197. 761\/>+23 36\[+16>

r>z r<p<lz’ s<za’

p=1(r)

where & = Z|10g¢|, 2 = Z|logt|, and s Tuns over primes p’ = (mod r) or s = r?. For t > X
and p,s < 2’ <193, we have

t t t t t
23.36\/i 116 < 23.37\[, 0.02194— + 197.761,/ — < 0.02195—.
p p ps ps ps

Decoupling the possibilities for s, our counting function is majorized by S; + S5, where

0.02195¢ t
=> ) ( o 23.37\/;>,

r>z ];<p§m
p=1(r)

Z Z Z <002195t 23'37\/2).

r>z a:<p<gc p' <z’
=1(r)p'=1(r)

We can make a further consolidation in S, since n ¢ Cy implies that r < 2’. Thus, for

t > X, we have
0 02196t
5oy Yy Lo

>z ar;<p<x
=1(r)
We use Lemma 2.3 to sum 1/p, Lemma [2.7] to sum 1/r% and we majorize 1/(r — 1) (from
Lemma [2.3)) with 1/(z —1). After partial summation to extract the reciprocal sum from the
counting function, we have a contribution of at most

2(0.00206 + 0.00328 + 0.00085) = 0.01238

to the reciprocal sum. (The three terms correspond to the three expressions for zj.)
We now turn to Sy. Via partial summation, the reciprocal sum of integers counted by Ss

002195 L 1
DY ( +23.37¢ \/]3).

k>150 r>zk @ <p<z) p <af

p=1(r ) p —1()
18




For the the term involving 1/pp’, let

1 1

P(k,r)= > > Qk,r) = >
T <p<a), p' <z},

p=1(r) p'=1(r)

We split up the range for the variables k,r into 3 regions:

e k> 1258,
e 150 < k <1257, r > 1201,
e 150 < k <1257, r < 1201.

In the first region, for each k& we segment the interval of primes r > z; into intervals
(1009~ 2., 100 z;,] for j such that 1007z, < 100z’”. In each of these intervals we use Lemma
to bound P(k,r) and Corollary [2.5/to bound Q(k, 7). In doing this, note that our bound
for (r/(r — 1))2P(k,7)Q(k,r) is increasing in r on each interval, so we replace r in the ex-
pression with the upper bound of the interval, and then use Lemma to bound the sum
of 1/r? in each interval. After applying partial summation, multiplying by 0.02195, and
doubling, we get a contribution of less than 0.09481 to the reciprocal sum. For larger values
of r, we use Corollary 2.5 to majorize both P(k, r) and Q(k,r), so that now the upper bound
for (r/(r —1))2P(k,r)Q(k,r) is decreasing in 7. After using Lemma for the sum on 7,
summing on k, and performing the requisite doubling, we find that the contribution to the
reciprocal sum is less than 2.2 x 107, For the second region we proceed in a similar manner,
except that we use 2% instead of :c,t/ ? and for the interval when J = 1 we use the lower bound
1201 for r (in the upper intervals, it is larger). We get an upper bound, after doubling,

0.003893 + 0.011933 + 0.010115 < 0.02595,

the 3 numbers corresponding to the changing choices for xy, z;. For the third region, we use
Lemma 2.6, Write P(k,r) = Pi(k,r) + Py(k,r) and Q(k,r) = Q1(k.r) + Q2(k, r), where

Pi(kr)= > 1, Py(k,r) = > !

xp <p<50r? max{ack,507‘2}<10§ac;C
p=1(r) p=1(r)
1 1
Qukr)= > = Qkr)= > =
p’' <5072 50r2<p’' <z} p
p' =1(r) p'=1(r)

Since r < 1201 and k < 1257, we can compute P; and (), directly, and as mentioned, we use
Lemma [2.6| on the remaining sums. We get that the contribution to the reciprocal sum is at
most

2(0.04007 + 0.11131 + 0.09799) = 0.49874.
To complete the proof, we deal with

>3 a3 YN %.

k>150 >z, zp<p<z) p <z},
p=1(r) p'=1(r)
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Using the Brun—Titchmarsh inequality and partial summation, we have

1 2/}, VI
2 T T Dloal -1 W)

xp<p<T),
p=1(r)

where li is the logarithmic integral function. We have the contribution here smaller than
2(1.19 x 1077 +4.92 x 1077 +2.2 x 107) < 2.5 x 107°.
Adding the various contributions, we have that the reciprocal sum is smaller than
0.01238 + 0.09481 + 0.02595 + 0.49874 + 2.5 x 10™° < 0.6320.

In sum, the large range bound for the reciprocal sum is
0.2516 + 0.1430 + 0.2543 4 0.6485 + 0.2790 + 0.6320 = 2.2084.

Combining the bounds from the small, middle, and large ranges,

1
Z = < 1.4325 + 4.3293 + 2.2084 = 7.9702.
n
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