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Abstract. In this paper we investigate the asymptotic effective-
ness of the Gaudry-Hess-Smart Weil descent attack and its gener-
alization on the discrete logarithm problem for elliptic curves over
characteristic-two finite fields. In particular we obtain nontrivial
lower and upper bounds on the smallest possible genus to which it
can lead.

1. Introduction

Let E be an elliptic curve defined over a finite field Fq, and let
P ∈ E(Fq) be a point of order d; see [22] for a background on elliptic
curves. Given Q ∈ 〈P 〉, the elliptic curve discrete logarithm problem
(ECDLP) is that of finding the integer λ ∈ [0, d−1] such that Q = λP .
Intractability of the ECDLP is the basis for the security of all elliptic
curve cryptographic systems [1, 2].

The fastest general-purpose algorithm known for solving the ECDLP
is Pollard’s rho method [19] which has a fully-exponential expected

running time of
√

πd/2 = O(q1/2). For a fixed field Fq, resistance to
Pollard’s rho method is maximized by selecting an elliptic curve E for
which d is prime and as large as possible, that is, d ≈ q. Elliptic curves
for which such a choice is possible are said to be cryptographically

interesting. In the remainder of this paper we restrict our attention to
cryptographically interesting elliptic curves.

ECDLP solvers that are faster in practice than Pollard’s rho method
are known for special classes of elliptic curves, including those for
which the multiplicative order of q modulo d is small [7, 16], and for
prime-field anomalous curves [20, 21, 23]. Another attack known on
the ECDLP is the Gaudry-Hess-Smart (GHS) Weil descent attack [9]
which, for elliptic curves defined over characteristic-two finite fields
Fqn, maps the ECDLP to the discrete logarithm problem (DLP) in the
divisor class group of a hyperelliptic curve defined over the subfield
Fq of Fqn, and thereafter employs a (hopefully faster) algorithm for
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solving the resulting DLP (see Section 2). The GHS attack has been
shown to be faster than Pollard’s rho method for some cryptograph-
ically interesting elliptic curves defined over F2N for some composite
N ∈ [160, 600]; see [15]. Furthermore, it has been shown in [18] to
be faster than Pollard’s rho method for (almost) all cryptographically
interesting elliptic curves defined over fields F25ℓ with ℓ ∈ [32, 120]; see
also [17].

In this paper, we study the asymptotic effectiveness of Weil descent
attacks for solving the ECDLP. More precisely, we ask if there are any
infinite families of characteristic-two finite fields Fqn for which Weil
descent attacks are effective in the sense that they can solve the ECDLP
for (almost) all cryptographically interesting elliptic curves E defined
over the fields Fqn faster than the best algorithms known for solving
the ECDLP directly in E(Fqn).

We obtain nontrivial upper bounds on the genus of the curve over
Fq obtained as a result of the Weil descent. These bounds, although
of independent interest, are unfortunately exponential in n and thus
are too high to guarantee the efficiency of the corresponding attack.
Furthermore, we show that for almost all elliptic curves over Fqn there
is a lower bound that is also exponential in n. This lower bound result
shows that asymptotically, the Weil descent attacks are almost never
computationally efficient.

The remainder of this paper is organized as follows. The GHS attack
and its generalization by Hess are outlined in Section 2. The asymptotic
effectiveness of the generalized GHS (gGHS) attack is examined in
Section 3. This is closely related to the size of the genus g of the curve
obtained as a result of the Weil descent. In turn g can be estimated
in terms of a certain kind of decomposition of finite field elements;
such decompositions are a central part of the generalized GHS attack.
In Section 4, we establish some asymptotic bounds for the number of
these decompositions which in particular imply their existence. Our
lower and upper bounds on g are derived in Section 5.

2. Weil Descent Attacks

Let ℓ and n be positive integers, and let N = ℓn and q = 2ℓ. For
a ∈ Fqn, we use

(1) Tr2(a) =
N−1
∑

i=0

a2i

and Trq(a) =
n−1
∑

i=0

aqi

to denote the absolute trace and the relative trace with respect to Fq,
respectively.
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Let δ ∈ Fqn be an element with Tr2(δ) = 1. Then there are 2(qn −1)
isomorphism classes of ordinary elliptic curves defined over Fqn with
representatives

(2) E : y2 + xy = x3 + ax2 + b, a ∈ {0, δ}, b ∈ F
∗
qn.

For a polynomial

f(X) =

m
∑

i=0

ciX
i ∈ F2[X]

we denote the corresponding linearized polynomial

fπ(X) =
m
∑

i=0

ciX
qi

.

For γ ∈ Fqn , let Ordγ(X) denote the unique nonzero polynomial f ∈
F2[X] of least degree satisfying fπ(γ) = 0. Note that f | Xn + 1.

Now, let E be a cryptographically interesting elliptic curve defined
over Fqn by (2). Let α, β ∈ Fqn be such that b = (αβ)2. If Tr2(a) = 1,
we further assume that

(3) Trq(α) 6= 0 or Trq(β) 6= 0.

Let r = deg(Ordα), s = deg(Ordβ), and

t = deg lcm (Ordα, Ordβ).

Via a birational transformation the defining equation of E can be
brought into the form y2 + y = α/x + a + βx. Then Hess’s general-
ization [10, Theorems 11,12] of the GHS attack constructs an explicit
group homomorphism

φ : E(Fqn) → JC(Fq),

where C is a curve defined over Fq of genus

(4) g = 2t − 2t−r − 2t−s + 1,

and JC is the divisor class group of C. Note that if α = 1, then the
generalized GHS attack specializes to the GHS attack, in which case
the curve C is hyperelliptic. Since #JC(Fq) ≈ qg and JC(Fq) should
contain a subgroup of order d ≈ qn for the attack to have a chance of
working, we require that g ≥ n.

Since t ≤ n, we have g ≤ 2n − 1. In order to minimize the time
to solve the resulting instance of the DLP in JC(Fq), a decomposition
b = (αβ)2 should be chosen so that g is as small as possible. The
running time of the generalized GHS attack is then determined by the
time to find a suitable decomposition and the time to solve the DLP
in JC(Fq).
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3. Analysis

At the time the GHS attack was first formulated, it was believed to be
asymptotically effective for the case n > 4 fixed and q → ∞; see [9, 11].
This is because the fastest algorithm known at the time for computing
logarithms in the divisor class group of a genus-g hyperelliptic curve
over Fq had (heuristic) running time O(q2) (for fixed g and q → ∞),
see [8], which was faster than the running time O(qn/2) of Pollard’s rho
method for computing discrete logarithms in E(Fqn).

However, recent progress by Diem [3, 4] and others on algorithms for
computing discrete logarithms has made this result obsolete.

We now summarize the state-of-the-art rigorous algorithms for the
ECDLP and the DLP in the divisor class group of curves:

(i) Assume that n ≥ 2 is fixed. Then the ECDLP over Fqn can be
solved in expected time q2−2/n(log q)O(1), see [3].

(ii) Assume that g ≥ 2 is fixed. Then the DLP in the divisor class
groups of genus-g curves over Fq can be solved in expected time
q2−2/g(log q)O(1), see [3].

(iii) Assume that n → ∞ and n = O(
√

log q). Then the ECDLP
over Fqn can be solved in expected time qO(1), see [4].

The algorithms in (i), (ii) and (iii) are based purely on index calcu-
lus. We see that since g ≥ n in order for JC(Fq) to contain a subgroup
of order n, the gGHS (and GHS) Weil descent attacks mentioned in
Section 2 are asymptotically ineffective for the case n fixed and q → ∞.
Note that this statement does not contradict the claims made in Sec-
tion 1 about the effectiveness of GHS attacks in practice since, for some
fixed n and q in ranges of practical interest, Pollard’s rho method [19] is
indeed faster than the ECDLP solver in (i) and Gaudry’s algorithm [8]
for computing discrete logarithms in the resulting hyperelliptic curves
is indeed faster than the DLP solver in (ii).

Furthermore, the fastest general rigorous algorithm known for com-
puting discrete logarithms in the divisor class groups of genus-g alge-
braic curves over finite fields Fq is due to Hess [12] and has subex-
ponential running time Lqg [1/2, (1 + o(1))κ] for some constant κ > 0,
provided that log q = o(g log g), where as usual for 0 < c < 1 and κ > 0
we define

(5) Lqg [c, κ] = eκ(log qg)c(log log qg)1−c

= qκgc((log g+log log q)/ log q)1−c

.

Hence

Lqg [1/2, κ] ≥ qκ
√

g log g/
√

log q.
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Since log q = o(g log g), we conclude that the running time of Hess’s
algorithm is not polynomial in q, and hence the gGHS Weil descent
strategy cannot be effective for the case n = O(

√
log q).

Enge and Gaudry [5] have recently devised and analyzed a new
subexponential-time algorithm for computing discrete logarithms in
the divisor class group of a special class of curves. Their algorithm has
(heuristic) expected running time Lqg [1/3 + ε, 1] for some fixed ε > 0,
provided that g ≥ (log q)δ for any fixed δ > 2. By (5), we have

Lqg [1/3 + ε, 1] = q(g(log q)−2)
1/3+ε

(log g+log log q)2/3−ε(log q)3ε

.

Since g ≥ (log q)δ with δ > 2, we conclude that the running time of
the Enge-Gaudry algorithm is not polynomial in q, and hence the Weil
descent strategy once again is ineffective for the case n = O(

√
log q).

Let us now consider the case where n and q grow in such a way

(6) n/
√

log q → ∞, as q → ∞,

(thus the algorithm of [4] does not apply). In this case, Pollard’s rho
method is the fastest known DLP solver for E(Fqn), having running
time O(qn/2). Let us make the optimistic assumption that Hess’s algo-
rithm [12] has running time Lqg [1/2, (1 + o(1))κ], with some constant
κ > 0, for all genus-g curves over Fq (that is, even without the con-
dition log q = o(g log g)). Now, in order for the gGHS attack to be
effective, we require that at least Lqg [1/2, κ] ≤ qn/2. From (5), we get

(7) g(log g + log log q) = O(n2 log q).

Under the condition (6) we see that (7) implies g = O(n4).
Recall that the gGHS attack yields a curve of genus g, where n ≤

g ≤ 2n−1 − 1. This means that in order for this attack to be successful
the genus of the curves obtained via the gGHS Weil descent have to be
close to the lower end of the range.

Here we obtain a nontrivial bound on the smallest achievable genus
g, which however is much higher than the above threshold g = O(n4).
Furthermore, we show that for almost all curves, g is much larger.

4. The Number of Decompositions

In this section, we drop the restriction that the characteristic of Fq

is 2. Thus we let q = pℓ for some prime p. For γ ∈ Fqn, the unique
polynomial f ∈ Fp[X] of least degree satisfying fπ(γ) = 0 is denoted
Ordγ(X); note that f is a factor of Xn − 1. It is well known [14,
Theorem 3.62] that if h ∈ Fp[X] is a degree-k divisor of Xn − 1, then
hπ(X) | Xqn − X and the roots of hπ(X) form a k-dimensional vector
space of Fqn over Fq.
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Now, let F, G ∈ Fp[X] be two divisors of Xn − 1, and let b ∈ Fqn. In
this section, we establish asymptotic bounds for the number NF,G(b) of
decompositions b = αβ, where α and β are roots of F π(X) and Gπ(X),
respectively.

Theorem 1. For any b ∈ F
∗
qn, we have

∣

∣

∣

∣

NF,G(b) − qn − 1

q2n−r−s

∣

∣

∣

∣

< 2qn/2

where r = deg F and s = deg G.

Proof. As we have mentioned, the condition F (X) | Xn − 1 implies
that F π(X) | Xqn −X, and thus the set of all qr roots of F π(X) forms
an r-dimensional linear space LF . Let ω1, . . . , ωr be a basis of LF over
Fq, which we extend to a basis ω1, . . . , ωn of Fqn over Fq. Let ρ1, . . . , ρn

be the dual basis [14, Definition 2.30], so

Trq(ωiρj) =

{

1, if i = n − j + 1,

0, otherwise,
1 ≤ i, j ≤ n,

where as before Trq is the relative trace function with respect to Fq

given by (1). Then α ∈ Fqn is a root of F π(X) if and only if

(8) Trq(αρj) = 0, j = 1, . . . , n − r.

Similarly, there are n−s elements ϑ1, . . . , ϑn−s ∈ Fqn that are linearly
independent over Fq such that β ∈ Fqn is a root of Gπ(X) if and only
if

(9) Trq(βϑk) = 0, k = 1, . . . , n − s.

We now fix a nontrivial additive character χ of Fq and recall the
orthogonality property of additive characters

∑

u∈Fq

χ(uz) =

{

0, if z ∈ F
∗
q,

q, if z = 0.

Then, using (8) and (9) we write

NF,G(b) =
∑

α∈F
∗

qn

1

q2n−r−s

∑

u1,...,un−r∈Fq

v1,...,vn−s∈Fq

χ

(

n−r
∑

j=1

uj Trq(αρj) +
n−s
∑

k=1

vk Trq(bα
−1ϑk)

)

.



ON THE ASYMPTOTIC EFFECTIVENESS OF WEIL DESCENT ATTACKS 7

After changing the order of summation and then separating the term
(qn − 1)/q2n−r−s corresponding to

u1 = · · · = un−r = v1 = · · · = vn−s = 0,

we obtain
∣

∣

∣

∣

NF,G(b) − qn − 1

q2n−r−s

∣

∣

∣

∣

≤ 1

q2n−r−s

∑

u1,...,un−r∈Fq

v1,...,vn−s∈Fq

∗

∑

α∈F
∗

qn

χ

(

Trq

(

α

n−r
∑

j=1

ujρj + α−1b

n−s
∑

k=1

vkϑk

))

,

(10)

where Σ∗ means that u1 = · · · = un−r = v1 = · · · = vn−s = 0 is
excluded from the summation. Using the Weil bound of Kloosterman
sums

∣

∣

∣

∣

∣

∣

∑

α∈F
∗

qn

χ
(

Trq(αλ + α−1µ)
)

∣

∣

∣

∣

∣

∣

< 2qn/2,

which holds if at least one of λ, µ ∈ Fqn is nonzero [13, Theorem 11.11],
we conclude the proof. �

The lower bound

NF,G(b) >
qn − 1

q2n−r−s
− 2qn/2 > qr+s−n − 2qn/2 − 1

implied by Theorem 1 is nontrivial if r + s > 3n/2 and q ≥ 5. We
next show that on average a weaker condition r + s > 4n/3 suffices.
Namely, we now estimate

RF,G =
∑

b∈F
∗

qn

∣

∣

∣

∣

NF,G(b) − qn − 1

q2n−r−s

∣

∣

∣

∣

2

.

Theorem 2. We have

RF,G < 3qn+min(r,s)

where r = deg F and s = deg G.

Proof. Without loss of generality, we assume s ≤ r.
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Using (10), we derive

RF,G ≤ 1

q4n−2r−2s

∑

b∈F
∗

qn









∑

u1,...,un−r∈Fq
v1,...,vn−s∈Fq

∗ ∑

α∈F
∗

qn

χ

(

Trq

(

α

n−r
∑

j=1

ujρj + α−1b

n−s
∑

k=1

vkϑk

))









2

.

Extending the outer summation over all b ∈ Fqn, squaring out and
changing the order of summation, we obtain

RF,G ≤ 1

q4n−2r−2s

∑

u1,...,un−r∈Fq
v1,...,vn−s∈Fq

∗ ∑

x1,...,xn−r∈Fq
y1,...,yn−s∈Fq

∗

∑

α,β∈F∗

qn

χ

(

Trq

(

α

n−r
∑

j=1

ujρj + β

n−r
∑

j=1

xjρj

))

∑

b∈Fqn

χ

(

Trq

(

b

(

α−1

n−s
∑

k=1

vkϑk + β−1

n−s
∑

k=1

ykϑk

)))

.

The sum over b vanishes unless

α−1

n−s
∑

k=1

vkϑk + β−1

n−s
∑

k=1

ykϑk = 0,

or, equivalently

(11) α

n−s
∑

k=1

ykϑk + β

n−s
∑

k=1

vkϑk = 0,

in which case it equals qn.
If v1 = · · · = vn−s = 0 then (11) implies that y1 = · · · = yn−s = 0 (in

which case (11) obviously holds for any α and β). Therefore at least
one of u1, . . . , un−r and at least one of x1, . . . , xn−r is nonzero, whence

n−r
∑

j=1

ujρj 6= 0 and

n−r
∑

j=1

xjρj 6= 0.
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This implies that

∑

α,β∈F
∗

qn

χ

(

Trq

(

α
n−r
∑

j=1

ujρj + β
n−r
∑

j=1

xjρj

))

=
∑

α∈F
∗

qn

χ

(

Trq

(

α
n−r
∑

j=1

ujρj

))

∑

β∈F
∗

qn

χ

(

Trq

(

β
n−r
∑

j=1

xjρj

))

= 1.

Hence the total contribution from such terms with v1 = · · · = vn−s =
y1 = · · · = yn−s = 0 equals

(12)
1

q4n−2r−2s
qn
(

qn−r − 1
)2 ≤ 1

q4n−2r−2s
qnq2(n−r) = q2s−n.

Now we note that if λ, µ ∈ Fqn and σ, τ ∈ F
∗
qn are such that λτ 6= µσ

then
∑

α,β∈F
∗

qn

ασ+βτ=0

χ (Trq(αλ + βµ)) =
∑

α∈F
∗

qn

χ
(

Trq(α(λ − µστ−1))
)

=
∑

α∈Fqn

χ
(

Trq(α(λ − µστ−1))
)

− 1

= −1.

Furthermore, for λτ = µσ, we can use the trivial bound
∣

∣

∣

∣

∣

∣

∣

∣

∑

α,β∈F
∗

qn

ασ+βτ=0

χ (Trq(αλ + βµ))

∣

∣

∣

∣

∣

∣

∣

∣

≤ qn.

If at least one of v1, . . . , vn−s is nonzero, then (11) implies that at
least one of y1, . . . , yn−s is nonzero as well. Thus we conclude that the
total contribution from such terms does not exceed

1

q4n−2r−2s

(

q2nT + qnq2n−2rq2n−2s
)

=
1

q2n−2r−2s
T + qn,

where T is the number of solutions to the equation

n−r
∑

j=1

ujρj

n−s
∑

k=1

vkϑk =

n−r
∑

j=1

xjρj

n−s
∑

k=1

ykϑk.

Clearly

T ≤ q2(n−r)qn−s = q3n−2r−s
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(and also T ≤ q3n−r−2s). Hence the total contribution from the terms
such that at least one of u1, . . . , un−r and at least one of x1, . . . , xn−r

is nonzero is at most

(13)
1

q2n−2r−2s
q3n−2r−s + qn = qn+s + qn.

Combining (12) and (13), we obtain

RF,G < q2s−n + qn+s + qn

which concludes the proof. �

Clearly, we can always assume that s ≤ r. In the case we see that
the bound of Theorem 2 is nontrivial if 2r + s > 2n. In particular, this
holds if r + s > 4n/3.

5. Bounds on the Genus of the Weil Descent Curve

The results of Section 4 combined with (4) allow us to achieve a small
genus curve for the Weil descent when F = G and of appropriate degree
r. Namely, if q → ∞ we need r > 3n/4 and r > 2n/3 for Theorems 1
and 2, respectively. If q is fixed then we need r − 3n/4 → ∞ and
r − 2n/3 → ∞ for Theorems 1 and 2, respectively.

More precisely, for an integer t with 0 < t < n and an integer n we
denote by r(t; n) the smallest r ≥ t for which Xn + 1 has a divisor
f(X) ∈ F2[X] of degree r. For example, the choices t = ⌊3n/4⌋ + 1
and t = ⌊2n/3⌋ + 1 are our principal interest (if q → ∞), and so are
t = ⌈(3/4 + ε)n⌉ and t = ⌈(2/3 + ε)n⌉ for some fixed small ε > 0 (if q
is fixed).

First we need to study the possible factorization of cyclotomic poly-
nomials

Φd(X) =

d
∏

j=1
gcd(j,d)=1

(

X − e2πιj/d
)

∈ Z[X]

where ι =
√
−1. Clearly Φd is of degree ϕ(d), where ϕ(d) denotes

Euler’s function, and is monic. In Z[X], Φd is irreducible, so it does
not factor. But it may be considered as a polynomial in F2[X] of degree
ϕ(d), and it may factor there.

Let λ(d) denote Carmichael’s function (so λ(d) is the group exponent
of (Z/dZ)∗). Thus, for a prime power pk we have

λ
(

pk
)

=

{

pk−1(p − 1), if p ≥ 3 or k ≤ 2;
2k−2, if p = 2 and k ≥ 3;

and finally,
λ(d) = lcm

(

λ
(

pk1

1

)

, . . . , λ
(

pkν
ν

))

,
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where d = pk1

1 . . . pkν
ν is the canonical prime number factorization of d.

Furthermore, for each odd number d, let l(d) be the order of 2 in
(Z/dZ)∗, so that

l(d) | λ(d) | ϕ(d).

We now state a consequence of the normal order of Carmichael’s
function, see [6, Theorem 2].

Lemma 3. Let N0 denote the set of natural numbers n for which

λ(n) ≤ n

(log n)log log log n
.

Then N0 has asymptotic density 1.

We now prove the following elementary result.

Lemma 4. For a natural number d, write d = 2kd0 where d0 is odd.

Then in F2[X] we have

Φd = (fd0,1fd0,2 . . . fd0,h)
ϕ(2k) ,

where each fd0,i is irreducible of degree l(d0), they are distinct, and

h = ϕ(d0)/l(d0).

Proof. If k > 0, then the cyclotomic polynomial Φd(X) in Z[X] satisfies

Φ2kd0
(X) = Φ2d0

(

X2k−1
)

=
Φd0

(

X2k
)

Φd0

(

X2k−1
) ,

so that in F2[X], we have Φd(X) = Φd0
(X)2k−1

= Φd0
(X)ϕ(2k), an

identity that continues to hold when k = 0. Thus, in the sequel we
may assume that d = d0 is odd.

Since Xd + 1 is coprime to dXd−1 in F2[X] when d is odd, it follows
that Xd +1 is squarefree. But Φd(X) | Xd +1, so Φd is squarefree too.
Thus, the irreducible factors fd,i of Φd are distinct. Let ζd ∈ F2 have
multiplicative order d. Thus, ζd is a primitive dth root of 1. Note that
Φd(ζd) = 1, so that the minimal polynomial of ζd divides Φd. Hence,
this mimimal polynomial must be one of the factors fd,i. Now the

degree l of this polynomial is the least postive integer with ζ2l−1
d = 1

(actually this is true for any nonzero member of F2). But since the
multiplicative order of ζd is d, it follows that l is the least positive
integer with 2l ≡ 1 (mod d), that is, l = l(d). Since this is true for
each primitive dth root of 1, it follows that each fd,i has degree l(d).
This completes the proof. �
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We now see from Lemma 4 that if n is prime and 2 is a primitive
root modulo n then Xn+1 = (X+1)Φn(X) where Φn(X) is irreducible
over F2. So, in this case r(t; n) = n − 1 for any nontrivial value of t.
However, we now show that r(t; n) = t + o(n) for every t ∈ [1, n] as
n → ∞ through a certain set of numbers of asymptotic density 1.

We start with the following useful result.

Lemma 5. For each natural number n and each integer t ∈ [1, n], we

have r(t; n) < t + λ(n).

Proof. Since Xn + 1 =
∏

d|n Φd(X), it follows from Lemma 4 that each

irreducible factor of Xn + 1 in F2[X] has degree at most λ(n). Let
H(X) be a divisor of Xn + 1 in F2[X] with degree as small as possible
but with deg H ≥ t. If deg H ≥ t+λ(n), then removing any irreducible
factor from H creates a polynomial H0 of smaller degree but still at
least t. This contradicts the choice of H , so deg H < t + λ(n). �

We now immediately derive the following from Lemma 5.

Corollary 6. For the set N0 from Lemma 3, if n ∈ N0 and t ∈ [1, n],
we have

t ≤ r(t; n) < t +
n

(log n)log log log n
.

We are now ready to get our main results. First of all, we note that
Lemma 3 and Corollary 6 yield:

Theorem 7. There is a set of asymptotic density 1 such that as n → ∞
through this set, we have t ≤ r(t; n) ≤ t + o(n) for each t ∈ [1, n].

Now recalling (4) and combining Theorems 1 and 2 with Theorem 7
we derive:

Theorem 8. There is a set of asymptotic density 1 such that as n →
∞ through this set, the Weil descent on the elliptic curve (2) with

Tr2(a) = 0 leads to a curve of genus

• g ≤ 23n/4+o(n) for all coefficients b ∈ Fqn,

• g ≤ 22n/3+o(n) for all but o(qn) coefficients b ∈ Fqn.

The next result establishes a lower bound for the genus that holds
for most curves.

Theorem 9. For all but o(qn) coefficients b ∈ Fqn, the Weil descent on

the elliptic curve (2) leads to a curve of genus g ≥ 2n/2+o(n) as n → ∞.

Proof. Clearly a polynomial h ∈ F2[X] of degree t has at most 2o(t)

distinct polynomial divisors over F2 as t → ∞. Therefore,

lcm (Ordα, Ordβ) = h
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for at most

∑

f |h
g|h

qdeg f+deg g =





∑

f |h
qdeg f





2

≤ q2t+o(t)

pairs (α, β) of elements α, β ∈ F
2
qn. Thus the total number of such

pairs, which correspond to at least one polynomial h | Xn−1 of degree
t ≤ T , and therefore the total number of distinct values of b = (αβ)2,
is q2T+o(T ). Recalling (4) we conclude the proof. �

We remark that in order to keep our argument technically simple, we
assumed the condition Tr2(a) = 0 in Theorem 8 since in this case the
condition (3) does not apply. This however can be accommodated in
our approach at the cost of only minor technical complications. First,
we define N∗

F,G(b) exactly as NF,G(b) with the additional request that
Ordα = F and Ordβ = G (in the definition of NF,G(b) we only have
Ordα | F and Ordβ | G). Then using the inclusion-exclusion principle,
one can derive from Theorems 1 and 2 analogues results for N∗

F,G(b).
Second, the results of Lemma 5 and Corollary 6 can easily be ex-

tended to the function r∗(n, t) which is defined as the smallest r ≥ t
for which (Xn+1)(X+1)2ν

has a divisor f(X) ∈ F2[X] of degree r−2ν ,
where 2ν is the largest power of 2 dividing n. Note that the condition
(X + 1)2ν | Ordα guarantees that Trq(α) 6= 0 and we easily obtain an
analogue of Theorem 8 without any extra condition on Tr2(a).
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