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What is the ABC conjecture?

Qualitatively it says that if a, b, c are positive integers with
a+ b = c, then the product of the primes in abc cannot be
much smaller than c.

To make this more precise, define

rad(n) =
∏
p|n

p.

So, rad(10) = 10, rad(72) = 6, and rad(2401) = 7, for
example.

The ABC conjecture is saying that when a+ b = c,
rad(abc) cannot be too small in comparison to c.

But wait, there are counterexamples!
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For example, 32 + 32 = 64, and rad(32 · 32 · 64) = 2. Even

more with 2k + 2k = 2k+1.

There are more complicated counterexamples, such as

174 + 344 = 175.

So, to bar these monsters, we insist that a, b, c be pairwise

coprime.

But wait, there are still counterexamples!
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Take 1 + 8 = 9. We have rad(1 · 8 · 9) = 6. And 6 is
considerably smaller than 9.

Or take 2 + 310 · 109 = 235, where 2 · 3 · 109 · 23 = 15042 and
235 = 6436343.

Well, it’s in how you measure, and it’s in how you treat
counterexamples.

Here’s the official statement.

The ABC conjecture: For each ε > 0, there are at most
finitely many coprime triples a, b, c of positive integers with
a+ b = c and rad(abc) < c1−ε.

The conjecture is due to Masser and Oesterlé.

4



Where did the ABC conjecture come from?

In efforts to prove Fermat’s Last Theorem, people wondered if

it could be proved in other contexts, such as for polynomials.

This was done by Liouville (1851) over C, and then Mason

(1983) found the following generalization.

Mason’s theorem: If f, g, h are coprime nonzero polynomials

over a field of characteristic 0 with f + g = h and degh > 0,

then deg rad(fgh) ≥ max{deg f,deg g,degh}+ 1.

(By rad(F ) we mean the product of the monic irreducible

divisors of F .)
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Proof: Assume f + g = h with degh the maximum of the 3
degrees. Note that for a nonzero polynomial F we have
F/(F, F ′) squarefree, so it divides rad(F ). Hence

degF − deg rad(F ) ≤ deg(F, F ′).

From f + g = h we get f ′+ g′ = h′, so with some high school
algebra:

fg′ − f ′g = g′h− gh′.

But (f, f ′), (g, g′), (h, h′) all divide the two sides of this equation,
and they are coprime, so their product divides. Further, the
two sides may be assumed nonzero, else g is a constant
multiple of h, violating coprimeness. Hence

deg f+ deg g+ degh−deg rad(fgh) ≤ deg(f, f ′)+ deg(g, g′)+ deg(h, h′)
≤ deg(fg′−f ′g) ≤ deg f+ deg g − 1

and we’re done.
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Why is the ABC conjecture “true”?

Let’s start with an easier question: Why is Fermat’s last
theorem true?

Here is an argument due to Erdős and Ulam: Let k ≥ 4 be an
integer and consider a random sequence of positive integers
such that the mth term is ≈ mk. So, the chance a number n is
in the sequence is about n−1+1/k. What is the chance that a
random number n is the sum of two terms of the sequence?
This should be at most about∑

a+b=n

a−1+1/k b−1+1/k.

Assuming a ≤ b, we have b−1+1/k ≤ (n/2)−1+1/k, so the sum is

≤ c0n−1+1/k ∑
a≤n/2

a−1+1/k ≤ c1n−1+1/kn1/k = c1n
−1+2/k.
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Good, and the event that n is a sum of two sequence terms

should be independent from n being in the sequence. So, the

probability that a+ b = n has a solution in sequence terms is

≤ c2n−2+3/k.

But,
∞∑
n=1

c2n
−2+3/k <∞

since k ≥ 4. Thus, we expect at most finitely many solutions,

and if there are no small ones, then no solutions.

Now apply this to the decidedly non-random sequence which is

the union of all powers of integers higher than the 3rd power.
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The heuristic suggests that

au + bv = cw, with u, v, w ≥ 4

has at most finitely many solutions.

But recall: 2k + 2k = 2k+1, and

(2k + 1)k + (2(2k + 1))k = (2k + 1)k+1, etc.

So, being a power has some correlations, like the product of

two kth powers is again a kth power. Let’s assume

coprimeness, and maybe we’re happy with the heuristic?

One other caution: The heuristic actually suggests that there

are infinitely many coprime solutions to x3 + y3 = z3.
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By the way, Darmon and Granville proved (using Faltings’

theorem) that for any triple u, v, w with reciprocal sum ≤ 1,

there are at most finitely many coprime solutions to

au + bv = cw.

OK, that was a warm-up. Why is the ABC conjecture

“true”?
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We begin with a lemma: For each fixed δ > 0 and x sufficiently
large, the number of integers n ≤ x with rad(n) ≤ y is ≤ yxδ.

Let i, j, k run over positive integers with i+ j + k ≤ (1− ε) logx.
For each i, j, k consider a, b ≤ x and 1

2x < c ≤ x with

rad(a) ≤ ei, rad(b) ≤ ej, rad(c) ≤ ek.
Then rad(abc) ≤ ei+j+k ≤ x1−ε < 2c1−ε. By the lemma, the
number of choices for a is ≤ eixδ, and similarly for b and c. So,
the number of triples a, b, c is ≤ ei+j+kx3δ ≤ x1−ε+3δ = x1−1

2ε,

assuming that δ = 1
6ε. So the total # of triples: ≤ x1−1

2ε log3 x.

Given a, b, the chance that a random c ∈ (1
2x, x] happens to be

a+ b is proportional to 1/x, so letting a, b run, the chance we

have an a, b, c triple is at most about x−
1
2ε log3 x. Now let x run

over powers of 2, and we get a convergent series.
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Why is the ABC conjecture important?

It has tons of interesting consequences. For example:

1. Fermat’s last theorem has at most finitely many

counterexamples.

2. Pillai’s conjecture holds: the gaps between perfect powers

tend to infinity.

3. There are at most finitely many coprime powers au, bv, cw

with 1/u+ 1/v + 1/w ≤ 1 and au + bv = cw.
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4. (Silverman) There are infinitely many non-Wieferich primes.

5. (Granville) For a squarefree polynomial f ∈ Z[x], and with B

the gcd of the values f(n), then there is a positive density

of n’s with f(n)rad(B)/B squarefree.

6. Szpiro’s conjecture on the conductors of elliptic curves.

7. The Erdős–Woods conjecture: If x is large and

rad(x) = rad(y), then rad(x+ 1) 6= rad(y + 1).

8. (Granville–Stark) There are no Siegel zeros (following from

a uniform ABC conjecture for number fields).



9. Erdős’s conjecture that there are at most finitely many

triples of consecutive squarefull numbers (n is squarefull if

p2 | n whenever p | n).

10. Dressler’s conjecture that if m < n and rad(m) = rad(n),

then there is a prime in [m,n].

11. Lang’s conjecture on the number of integral points on an

elliptic curve.

12. Bounds for the order of the Tate–Shafarevich group of an

elliptic curve.



13. Vojta’s conjecture for curves.

14. The Schinzel–Tijdeman conjecture: If f(x) ∈ Z[x] has at

least 3 simple roots, then f(n) is squarefull at most finitely

many times.

15. (M. R. Murty) There are many quadratic number fields

with class number divisible by a fixed integer.

I like to joke that it has been shown that everything can be

proved starting from a false statement, so perhaps the ABC

conjecture is more and more resembling one!



What has been proved?

One type of result produces triples a, b, c with a+ b = c and
rad(abc) is fairly small. For example,

a = 1, b = 64n − 1, c = 64n.

Then rad(abc) ≤ 2
3(64n − 1) < 2

3c. By this method, there are
infinitely many coprime triples a+ b = c with

rad(abc) = O(c/ log c).

van Frankenhuijsen has shown there are infinitely many coprime
triples a+ b = c with

rad(abc) ≤ c/ exp
(
6.068(log c)1/2/ log log c

)
.

(Robert, Stewart, and Tenenbaum have a heuristic that this is
close to best possible.)
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Another type of result proves a weaker version of the ABC

conjecture.

For example, Stewart and Yu have proved that there is some

κ > 0 such that for coprime a+ b = c,

rad(abc) ≥ κ(log c/ log log c)3.

Baker has a numerically explicit ABC conjecture: If a+ b = c

are coprime, then

c ≤
6

5
R

(logR)k

k!
, where R = rad(abc) has k distinct prime divisors.
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An ABCD conjecture?

The same heuristics suggest that if a+ b+ c+ d = 0 where

a, b, c, d is a coprime 4-tuple of nonzero integers, then

rad(abcd) > |d|1−ε. But consider the polynomial identity

(x− 1)5 + 10(x2 + 1)2 − 8 = (x+ 1)5,

and let x run over numbers of the form 11k − 1. This gives

(11k − 2)5 + 10((11k − 1)2 + 1)2 − 8 = 115k,

and rad(abcd) ≤ 22(11k − 2)((11k − 1)2 + 1) = O(|d|0.6).

Granville has conjectured that infinite-family counterexamples

must come from polynomial identities such as this, and that for

fixed ε > 0, there are only finitely many polynomials.
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Thank you!
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