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H.W. Lenstra jr. and Carl Pomerance

Abstract. We exhibit a deterministic algorithm that, for some effectively computable real number c, decides

whether a given integer n>1 is prime within time (logn)6·(2+log logn)c. The same result, with 21/2 in the place

of 6, was proved by Agrawal, Kayal, and Saxena. Our algorithm follows the same pattern as theirs, performing

computations in an auxiliary ring extension of Z/nZ. We allow our rings to be generated by Gaussian periods

rather than by roots of unity, which leaves us greater freedom in the selection of the auxiliary parameters and

enables us to obtain a better run time estimate. The proof depends on results in analytic number theory and

on the following theorem from additive number theory, which was provided by D. Bleichenbacher: if t is a real

number with 0<t≤1, and S is an open subset of the interval (0,t) with
∫

S
dx/x>t, then each real number greater

than or equal to 1 is in the additive semigroup generated by S. A byproduct of our main result is an improved

algorithm for constructing finite fields of given characteristic and approximately given degree.
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1. Introduction

Our main result reads as follows.

Theorem 1. There exists, for some effectively computable real number c0, a deterministic

algorithm that, given an integer n with n > 1, decides whether or not n is prime, and does

so in time at most (logn)6 · (2 + log logn)c0 .

We shall exhibit an algorithm with the stated properties. Its run time is measured in

bit operations. The constant c0 is effectively computable in the sense that our proof of

the existence of c0, combined with the proofs in the papers to which we refer, implicitly

contains an algorithm for computing c0.

The same result, but with the run time exponent 6 replaced by 21/2, was obtained by

Agrawal, Kayal, and Saxena [2]. They also prove a result with run time exponent 15/2 (in

which “c0” is not effectively computable), and they argue that the true run time exponent

of their algorithm may reasonably be conjectured to equal 6. We achieve the exponent 6

not by proving their conjecture, but by modifying their algorithm.

A fundamentally new idea would be required to obtain a deterministic primality test-

ing algorithm with run time exponent smaller than 6. For probabilistic primality tests

the situation is different. Bernstein [6], also elaborating on [2] and building on an idea

of Berrizbeitia [9], exhibited a probabilistic algorithm that, for some effectively com-

putable constant c1, has the following property. Given any integer n > 1, the algorithm

correctly decides whether or not n is prime, and it does so in expected time at most

(logn)4 · (2 + log logn)c1 log log log(22 logn). See [4] for a similar result.

Like [2], the present paper has an algebraic and an analytic component, addressing

the correctness and the efficiency of the algorithm, respectively. By working harder on the

algebra, we leave the algorithm greater freedom in the selection of auxiliary parameters,

thus simplifying the analytic problem of obtaining a good run time estimate. Specifically,

both the algorithm of [2] and our own algorithm perform computations in a suitable ring

extension of the ring Z/nZ of integers modulo n; if d denotes the “degree” of the extension,

then the run time estimate becomes d3/2 · (logn)3 times a lower order factor, and the

problem of obtaining a small run time exponent boils down to proving a good upper bound

for the smallest d that can be used. Agrawal et al. use the ring (Z/nZ)[X ]/(Xd − 1), and

find that the problem of accurately estimating the least usable value for d leads to an

unsolved problem in analytic number theory. We select our ring extension from a much

wider class, for which estimating d becomes feasible.
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The ring extensions of Z/nZ that we use shall be referred to as pseudofields. If n

is a prime number, then these pseudofields are in fact finite fields, and our construction

of pseudofields is inspired by a construction of finite fields proposed by Adleman and

Lenstra [1]. They describe a deterministic algorithm that, for certain effectively computable

constants c2 and c3, has the following properties: given a prime number p and a positive

integer D, it computes an irreducible polynomial f in (Z/pZ)[X ] satisfying D ≤ deg f ≤
c2D log p, and it does so within time (D+log p)c3 . The ring (Z/pZ)[X ]/(f) is then a finite

field of given characteristic p of degree “close” to a given number D. Our construction

improves upon this result when D is not too small.

Theorem 2. There exist an effectively computable positive integer c4 and a deterministic

algorithm such that the following holds. Given a prime number p and a positive integer D

with D > (log p)46/25, the algorithm computes an irreducible polynomial f in (Z/pZ)[X ]

with D ≤ deg f < 2D and has run time at most (D log p) · (2 + logD + log log p)c4 .

Note that the run time of our algorithm is essentially linear in terms of the length of the

output. Under mild restrictions we may narrow the interval [D, 2D) to [D, (1 + ǫ)D) for

small positive values of ǫ, see Theorem 4.4. There is a deterministic algorithm that produces

an irreducible polynomial in Fp[X ] of exact degree D and that runs in polynomial time

assuming the Generalized Riemann Hypothesis, see [1]. In addition, there is a probabilistic

algorithm to do the same that runs in expected time Õ(D2 log p+D log2 p), see [28], where

the notation Õ is defined below.

Adleman and Lenstra [1] construct the finite field (Z/pZ)[X ]/(f) by adjoining to

Z/pZ a certain set of Gaussian periods parametrized by what we call a period system. For

Theorem 2, we use almost exactly the same construction, but we are much more careful

in selecting the period system, so that we are able to narrow the interval [D, c2D log p] for

the degree down to [D, 2D), and even narrower, in a large range.

The proof that an appropriate period system can be found, is the major technical

hurdle we have to take; our desire that the constants in Theorem 1 and Theorem 2 be

effectively computable has added to the difficulties.

An auxiliary result, which has independent interest, was provided by D. Bleichenba-

cher [10], who kindly allowed us to include his result and its proof. The Frobenius postage

problem asks for the largest number which is not in the additive semigroup generated by

a given set of coprime positive integers. Bleichenbacher’s theorem considers a continuous

version of this problem. A similar result was obtained by Lev [24].
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Theorem 3. Suppose S is an open subset of the set of positive real numbers that is

closed under addition and for which 1 6∈ S. Then for each real number t ∈ (0, 1] one has
∫

S∩(0,t)
dx/x ≤ t.

We give a number-theoretic application of Theorem 3, a simplified version of which is the

following.

Theorem 4. For every real number α with 0 < α ≤ 1/2, there is a positive integer

x0, effectively computable when α is rational, with the following property. If x, u are real

numbers with

x > x0,
1

α
< u < (log x)1/10

and Q is a set of primes contained in (x1/u, x1/2] with

∑

q∈Q

1

q
≥ α,

then there is a squarefree number in [x1/α, 2x1/α) composed solely of primes in Q.

Our proofs of Theorems 1 and 2 depend on the existence of many primes r where r − 1

has certain multiplicative constraints. It has been known since Erdős [18] that there is a

positive constant E such that for a positive proportion of all primes r the number r− 1 is

composed solely of primes in (1, r1−E]; and he conjectured that this holds for each choice

of E less than 1. Since then many people have worked on this problem, with the current

record being any number E < 1− 1/(2
√
e). The proof (in Friedlander [20]) is modeled on

a similar result of Balog [5], who obtained the slightly weaker assertion that the number of

primes in (1, x] with the desired property is at least proportional to x/(log x)2. We follow

Balog’s approach to prove the following theorem.

Theorem 5. If x > 1 is a real number and Q is a set of primes in the interval (1, x1/2],

let R(x,Q) denote the number of primes r ≤ x with r − 1 composed solely of primes

in (1, x1/2] \ Q. There are effectively computable positive numbers X0, δ, with X0, δ
−1

integers, such that if x ≥ X0 and R(x,Q) < δx/(log x)2, then

∑

q∈Q

1

q − 1
> 0.2727.

That the numbers X0, δ in Theorem 5 are effectively computable has us forgo certain

standard tools, such as the prime-number estimates of Bombieri, Friedlander, and Iwaniec.
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In addition we need to modify another tool, namely the Bombieri–Vinogradov theorem.

The major “off-the-shelf” tool that we do employ is a result of Deshouillers and Iwaniec [17]

on the Brun–Titchmarsh theorem on average.

The connection of Theorems 4 and 5 to our problem is as follows. Our pseudofields are

built up to have their degrees as close as possible to a given target degree. We construct a

certain set of primes Q, showing that we can attain degrees equal to subset products of Q.

Our set Q is constructed to satisfy the hypotheses of Theorem 5. Theorem 4 is then used

to show that there are indeed squarefree numbers close to a given target which are built

solely from primes in Q.

In Section 2 we define pseudofields and period systems, and we state all properties of

these concepts that go into our proofs. Taking these results for granted, we prove Theorem 1

in Section 3 and Theorem 2 in Section 4. In Sections 5–8 we prove the properties of

pseudofields stated in Section 2. A proof of Theorem 3 is found in Section 9. In Section 10

we apply Theorem 3 to prove a somewhat stronger version of Theorem 4. In Sections 11–

12 we use analytic number theory to prove Theorem 5. In Section 13, we use the result

of Section 10 plus Theorem 5 to show the existence result for period systems stated in

Section 2.

In this paper, we write simply ring for commutative ring. As in [3, 23], a ring is required

to have a unit element, a ring homomorphism is required to preserve the unit element, and

a subring is required to contain the unit element. The ring of integers is denoted by Z,

and, for a prime number p, we write Fp for Z/pZ. For a ring R, we write R∗ for the group

of units of R, the characteristic charR is the non-negative integer n for which nZ is the

kernel of the unique ring homomorphism Z → R, and we write R[X ] for the polynomial

ring in one variable X over R. An element of R[X ] is monic if it has leading coefficient 1,

the unit element of R.

Let S be a set, and let f , g:S → R be two functions from S to the field R of real

numbers such that for all x ∈ S one has g(x) ≥ 0. By the statement f = O(g) we mean that

there exists c ∈ R such that for all x ∈ S one has |f(x)| ≤ c·g(x), and by f = Õ(g) we mean

that there exists c ∈ R such that for all x ∈ S one has |f(x)| ≤ g(x) ·
(

logmax{3, g(x)}
)c
.

We shall often apply this with S equal to a set of inputs to an algorithm, and f(x) equal to

the run time of the algorithm when given x. For example, with the notation just introduced

one expresses the run time estimates in Theorems 1 and 2 as Õ
(

(logn)6
)

and Õ(D log p),

respectively.

5



Whenever we assert that a constant with certain properties exists, it will be effectively

computable in the sense explained above; this is also valid for the constants implicit in our

use of the O- and Õ-symbols. The same comment, mutatis mutandis, applies to the exis-

tence of algorithms. All of the algorithms that we present in this paper are deterministic.

2. Pseudofields and period systems

Pseudofields. By a pseudofield we mean a pair (A, α) consisting of a ring A and an element

α ∈ A, such that for some integer n > 1, some integer d > 0, and some ring automorphism

σ of A, the following conditions are satisfied:

(2.1) charA = n,

(2.2) #A ≤ nd,

(2.3) σα = αn,

(2.4) σdα = α,

(2.5) σd/lα − α ∈ A∗ for each prime number l dividing d.

In Section 5 we shall prove the following result about pseudofields.

Proposition 2.6. Let (A, α) be a pseudofield, and let n, d be as above. Then there

is a unique monic polynomial f ∈ (Z/nZ)[X ] with the property that there is a ring

isomorphism (Z/nZ)[X ]/(f) ∼= A that maps the coset (X mod f) to α. In addition, the

degree of this polynomial equals d.

The polynomial f from 2.6 and its degree d are called the characteristic polynomial and

the degree of the pseudofield, respectively. The proposition implies that each element of A

can in a unique way be written as g(α), where g ∈ (Z/nZ)[X ] satisfies deg g < d. This

implies that equality holds in (2.2). It also implies that, as a ring, A is generated by α,

so that the automorphism σ of A is uniquely determined by (2.3); we refer to it as the

Frobenius automorphism of the pseudofield.

Example. If n ∈ Z, n > 1, and a ∈ Z, then the pair (Z/nZ, a mod n) is a pseudofield

if and only if one has an ≡ a mod n; for composite n, one often expresses this property

by saying that n is a pseudoprime to the base a. In this example, the degree equals 1, the

Frobenius automorphism is the identity, and the characteristic polynomial isX−(a mod n).

Example. Let n ∈ Z, n > 1, let r be a positive integer with gcd(r, n) = 1, and denote

by Φr the rth cyclotomic polynomial. Then the pair
(

(Z/nZ)[X ]/(Φr), X mod Φr

)

is a
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pseudofield if and only if n mod r generates the group (Z/rZ)∗. This pseudofield is closely

related to the rings used in [2]. In this example, the degree equals ϕ(r), where ϕ denotes

Euler’s function, the Frobenius automorphism maps each (g mod Φr) to (g(Xn) mod Φr),

and Φr is the characteristic polynomial.

Finite fields yield pseudofields, as explained in the following result.

Proposition 2.7. Let p be a prime number, let A be a ring of characteristic p, and let

α ∈ A. Then (A, α) is a pseudofield if and only if A is a finite field satisfying A = Fp(α).

In addition, if (A, α) is a pseudofield, and σ denotes its Frobenius automorphism, then for

all β ∈ A one has σβ = βp.

This proposition is proved in Section 5.

Primality testing with pseudofields. The following result shows that, for the purposes of

primality testing, pseudofields can play the role that the rings (Z/nZ)[X ]/(Xd − 1) play

in [2].

Proposition 2.8. Let (A, α) be a pseudofield of degree d with Frobenius automorphism

σ, and let n = charA. Suppose that for each a = 1, 2, . . . , ⌊(d/3)1/2(log n)/ log 2⌋ one has

αn + a = (α+ a)n. Suppose also that one has d > (logn)2/
(

3 · (log 2)2
)

, and that n has a

prime factor greater than (d/3)1/2(logn)/ log 2. Then n is a power of a prime number.

The proof of Proposition 2.8 in given in Section 6.

Algorithmic aspects of pseudofields. Proposition 2.6 shows that a pseudofield is, up to

isomorphism, determined by its characteristic n and its characteristic polynomial f . We

shall for algorithmic purposes always assume a pseudofield to be specified by the pair (n, f),

the polynomial f being represented by its vector of coefficients; this applies in particular

when a pseudofield forms part of the input or output of an algorithm. The pseudofield

represented by (n, f) equals
(

(Z/nZ)[X ]/(f), X mod f
)

, and its elements are represented

as polynomials in (Z/nZ)[X ] of degree smaller than the degree d of the pseudofield. It is

well-known that there are algorithms that, given n, f , and two elements of (Z/nZ)[X ]/(f),

compute the sum and the product of these two elements within time Õ(d logn) (see [7]).

As a consequence, testing the equality αn + a = (α + a)n from 2.8 for a single value of a

in Z/nZ can be done in time Õ
(

d(logn)2
)

, and for about (d/3)1/2(logn)/ log 2 values of

a in time Õ
(

(d1/2 logn)3
)

. This time bound will equal the time bound Õ
(

(logn)6
)

from

Theorem 1 if we use a pseudofield for which the degree d is, as a function of n, not too

much larger than the lower bound (logn)2/
(

3 · (log 2)2
)

from 2.8. Thus, we are faced with
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the problem of constructing a pseudofield of given characteristic and approximately given

degree.

The techniques that we develop for constructing pseudofields culminate in the follow-

ing result. Let n ∈ Z, n > 1. By a period pair for n we mean a pair (r, q) of integers with

the properties

(2.9) r is a prime number not dividing n,

(2.10) q divides r − 1 and q > 1,

(2.11) the multiplicative order of n(r−1)/q modulo r equals q.

Further, a period system for n is a finite set P of period pairs for n such that

(2.12) gcd(q, q′) = 1 whenever (r, q), (r′, q′) ∈ P, (r, q) 6= (r′, q′),

and the degree of P is
∏

(r,q)∈P q, denoted deg P.

Proposition 2.13. There is an algorithm that, given an integer n with n > 1 and a period

system P for n satisfying n > deg P, either correctly declares n composite or constructs a

pseudofield of characteristic n and degree deg P, and that runs in time

Õ
((

deg P +
∑

(r,q)∈P

q(r + logn)
)

logn
)

.

The proof of Proposition 2.13 is given in Section 8.

If n is known to be prime, then the algorithm of Proposition 2.13 simplifies somewhat,

and the term involving (logn)2 in the run time estimate may be omitted; in view of

Proposition 2.7, this leads to the following result.

Proposition 2.14. There is an algorithm that, given a prime number p and a period

system P for p satisfying p > deg P, constructs a monic irreducible polynomial f ∈ Fp[X ]

with deg f = deg P, and that runs in time

Õ
((

deg P +
∑

(r,q)∈P

qr
)

log p
)

.

The proof of Proposition 2.14 is also given in Section 8.

The existence of period systems. Our final auxiliary result reads as follows.
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Proposition 2.15. There are effectively computable positive integers c4, c5 such that, for

each integer n > c4 and each integer D > (logn)46/25, there exists a period system P for

n consisting of pairs (r, q) with

(2.16) r < D6/11, q < D3/11, q prime,

and with D ≤ deg P < D+D1−1/(c5(log logD)2). In addition, the number of period systems

P for n with deg P ∈ [D, 2D) exceeds D/ exp(5(log logD)3).

We use Proposition 2.15 to show that the algorithms of Theorems 1 and 2 perform as

stated. In particular the number c4 of Theorem 2 is the same as in 2.15. Proposition 2.15

is proved in Section 13 using a stronger version of Theorem 4 (namely, Proposition 10.1)

and using Theorem 5. In particular, we will show in Propositions 13.1 and 13.4 that it

is common for primes r of a certain size to have r − 1 divisible by a fairly large prime

divisor q with (r, q) being a period pair for n. We then use Theorem 5 to show that the

primes q appearing in this way are plentiful enough for the hypothesis of Proposition 10.1

to hold, and so construct period systems for n, as in 2.15, with degrees close to a given

target degree.

3. The primality test

In this section we deduce Theorem 1 from the results stated in Section 2. We begin with a

straightforward transformation of 2.15 into an algorithm for constructing period systems.

Algorithm 3.1. We describe an algorithm that takes as input an integer n > 1 and an

integer D > 0, and that searches for a period system P for n consisting of pairs (r, q)

satisfying (2.16) and with deg P not much larger than D.

Step 1. Using a modified version of the sieve of Eratosthenes, sieving with prime

powers rather than just with primes, compute the prime factorizations of all integers in

[1, 2D).

Step 2. For each prime number r < D6/11 not dividing n, in increasing order, determine

the set Q(r) of prime factors q of r − 1 that satisfy

q < D3/11, n(r−1)/q 6≡ 1 mod r, q /∈
⋃

r′<r

Q(r′).

Put Q =
⋃

r Q(r) and, for each q ∈ Q, put rq = r if q ∈ Q(r).
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Step 3. If there is some integer in [D, 2D) that is squarefree and composed solely of

primes from Q, let d be the least such integer, let P be the set of all pairs (rq, q), with q

ranging over the prime factors of d, return P and halt. If no such integer exists, pronounce

failure and halt.

This completes the description of Algorithm 3.1.

The constant c4 in the following result is as in 2.15.

Proposition 3.2. Algorithm 3.1, when given integers n > 1 and D > 0, successfully

computes a period system P for n with the properties listed in (2.16) and with deg P ∈
[D, 2D) if and only if such a period system exists, which is the case if n > c4 and D >

(logn)46/25; the run time of the algorithm is Õ(D +D6/11 logn).

Proof. The “if and only if” statement is clear from the algorithm, the second assertion is

immediate from 2.15, and proof of the run time estimate is entirely straightforward. This

proves 3.2.

Primality testing. We describe an algorithm that has the properties stated in Theorem 1.

We let c4 again be as in 2.15.

Algorithm 3.3. Given an integer n > 1, this algorithm decides whether or not n is prime.

Step 1. If n ≤ c4, find by trial division the least prime p dividing n, declare n prime

or composite according as n = p or n 6= p, and halt.

Step 2. Using the algorithm of [8], determine the largest k ∈ Z for which there exists

m ∈ Z with n = mk. If k > 1, declare n composite and halt.

Step 3. Using standard algorithms for computing elementary functions (cf. [7, 12]),

compute an integer D satisfying

D − 2 < max{(logn)2/
(

3 · (log 2)2
)

, (logn)46/25} < D.

Next, using Algorithm 3.1, construct a period system P for n with the properties listed in

(2.16) and with deg P ∈ [D, 2D). Put d = deg P.

Step 4. Using standard algorithms for computing elementary functions (cf. [7, 12]),

compute an integer b satisfying

b− 1 < (d/3)1/2(logn)/ log 2 < b+ 1,

and test by trial division whether n has a divisor among 2, 3, . . . , max{d, b}. If it does, let
p be the least such divisor, declare n prime or composite according as n = p or n 6= p, and

halt.
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Step 5. Using the algorithm of 2.13, either declare n composite and halt, or construct

a pseudofield (A, α) of characteristic n and degree d.

Step 6. For a = 1, 2, . . . , b, test the equality αn+a = (α+a)n in A. If all of these are

valid, declare n prime and halt. If at least one fails to be valid, declare n composite and

halt.

This completes the description of Algorithm 3.3.

Proof of Theorem 1.We prove that Algorithm 3.3 has the properties claimed in Theorem 1;

that is, it terminates within time Õ
(

(logn)6
)

, correctly declaring n prime or composite.

Step 1 runs in time O(1), and by [8], Step 2 runs in time Õ(logn). If the algorithm halts

during one of these two steps, it is clearly correct. Assume otherwise, so that one has

n > c4 and n is not a proper power. The first part of Step 3 runs in time O(logn), and

from D > (logn)46/25 and D = O
(

(logn)2
)

it follows, by 3.2, that the second part of Step 3

successfully computes a period system in time Õ
(

(logn)23/11
)

. We have d = O
(

(logn)2
)

,

and from d ≥ 2#P one obtains #P = O
(

log(2 logn)
)

. Step 4 runs in time Õ
(

(logn)3
)

because b = O
(

(logn)2
)

. If the algorithm halts in Step 4, it is clearly correct. Suppose

otherwise. Then we have n > d, so by 2.13 and the inequalities in (2.16), Step 5 runs

in time Õ
(

(logn)3
)

. As we argued in Section 2, the test in Step 6 can be done in time

Õ
(

(d1/2 logn)3
)

, which is Õ
(

(logn)6
)

. Since n passed Step 4, it has a prime divisor greater

than (d/3)1/2(logn)/ log 2, so 2.8 implies that, if n passes the test in Step 6, it is a prime

power; not being a proper power, it must be prime. If n does not pass the test in Step 6,

then by 2.7 (with n in the role of p and α+a in the role of β) it cannot be a prime number.

This concludes the proof of Theorem 1.

4. Constructing finite fields

In this section we prove Theorem 2. We begin with two lemmas that are used to deal with

certain exceptional cases.

Lemma 4.1. Let k be a finite field, r a prime number, h a non-negative integer, and

b ∈ k∗ an element that is not an rth power in k∗. Assume that one has #k ≡ 1 mod 4 if

rh ≡ 0 mod 4. Then Xrh − b is irreducible in k[X ].

Proof. See [25, Theorem 3.75].

Lemma 4.2. For any non-negative integer h, the polynomialsX2·3h

+X3h

+1 and X4·3h

+

X3h

+ 1 are irreducible in F2[X ]. For any prime number p with p ≡ 1 mod 4, any non-

negative integer h, and any a ∈ Fp satisfying
(

a
p

)

= −1, the polynomial X2h − a is
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irreducible in Fp[X ]. For any prime number p with p ≡ −1 mod 4 there exists a ∈ Fp

with
(

a2+4
p

)

= −1, and for any such a and any non-negative integer h the polynomial

X2h+1 − aX2h − 1 is irreducible in Fp[X ].

Proof. In this proof, we denote algebraic closures by an overhead bar.

First let p = 2. Let a, α ∈ F̄2 satisfy a2+a+1 = 0 and α3h

= a. Then F2(α) contains

F2(a), and the latter field has degree 2 over F2. Since the only non-zero cube in F2(a)
∗

is 1, one has by 4.1 that [F2(α) : F2(a)] = 3h, and therefore [F2(α) : F2] = 2 · 3h. Since
α is a zero of X2·3h

+X3h

+ 1, this polynomial is irreducible in F2[X ]. Now let b, β ∈ F̄2

satisfy b4 + b+ 1 = 0 and β3h

= b. Then F2(β) contains F2(b), a field of degree 4 over F2.

The nonzero cubes in F2(b) are roots of X5 − 1, so b is not a cube. Thus, by 4.1 one has

[F2(β) : F2(b)] = 3h and so [F2(β) : F2] = 4 · 3h. Since β is a root of X4·3h

+X3h

+1, this

polynomial is irreducible in F2[X ].

Next let p ≡ 1 mod 4. In this case the Lemma is immediate from 4.1.

Finally suppose p ≡ −1 mod 4. If c is the least positive integer with
(

c
p

)

= −1, then one

can write (c−1 mod p) = e2 with e ∈ Fp, and a = 2e then satisfies
(

a2+4
p

)

=
(

4
p

)

·
(

c
p

)

= −1.

Next let b, α ∈ F̄p satisfy b2 − ab − 1 = 0 and α2h

= b. From
(

a2+4
p

)

= −1 it follows that

X2 − aX − 1 is irreducible in Fp[X ], so the field Fp(b), which is a subfield of Fp(α), has

degree 2 over Fp. The product of b and its conjugate equals −1, which is not a square

in Fp, so b is not a square in Fp(b). Since one also has #Fp(b) = p2 ≡ 1 mod 4, Lemma

4.1 implies [Fp(α) : Fp(b)] = 2h and therefore [Fp(α) : Fp] = 2h+1. Since α is a zero of

X2h+1 − aX2h − 1, the latter polynomial is irreducible in Fp[X ].

This proves 4.2.

We describe an algorithm that has the properties stated in Theorem 2.

Algorithm 4.3. Given a prime number p and a positive integer D, this algorithm attempts

to construct an irreducible polynomial f ∈ Fp[X ] with D ≤ deg f < 2D. We let c4 be as

in 2.15.

Step 1. [This step takes care of the case in which p is too small for 2.14 or for 3.2

to apply.] If D = 1, return f = X and halt. If p = 2, determine the least non-negative

integer h with 2 · 3h ≥ D; if 2 · 3h < 2D, return f = X2·3h

+X3h

+1 and halt. Else, return

f = X4·3h−1

+ X3h−1

+ 1 and halt. If p ≡ 1 mod 4 and p ≤ max{c4, 2D}, determine the

least positive integer a with
(

a
p

)

= −1 and the least non-negative integer h with 2h ≥ D,

return f = X2h − a and halt. If p ≡ −1 mod 4 and p ≤ max{c4, 2D}, determine the least

12



positive integer a with
(

a2+4
p

)

= −1 and the least non-negative integer h with 2h+1 ≥ D,

return f = X2h+1 − aX2h − 1 and halt.

Step 2. [In this case we have p > c4 and p > 2D.] Apply Algorithm 3.1 to n = p

and D; if that algorithm pronounces failure, pronounce failure and halt. Otherwise, let P
be the period system for p produced by Algorithm 3.1, apply the algorithm of 2.14 to P,

return the polynomial produced by the latter algorithm and halt.

This completes the description of Algorithm 4.3.

Theorem 2 is now an immediate consequence of the following somewhat stronger result.

Theorem 4.4. Let c4, c5 be as in 2.15. Algorithm 4.3, when given a prime number p

and a positive integer D, runs in time Õ(D log p), and if it does not pronounce failure

then it computes a monic irreducible polynomial f ∈ Fp[X ] satisfying D ≤ deg f <

2D; in addition, it does not pronounce failure if p ≤ max{c4, 2D} or D > (log p)46/25.

Further, in the case p > max{c4, 2D} and D > (log p)46/25, one has D ≤ deg f < D +

D1−1/(c5(log logD)2).

Proof. First suppose p ≤ max{c4, 2D}. Then by 4.2 the algorithm halts in Step 1 and

returns a polynomial f that is irreducible over Fp and that satisfies D ≤ deg f < 2D.

From p = O(D) one readily deduces that the computation of h in Step 1 and, if p is odd,

a in Step 1 can be done in time Õ(D). Next assume p > max{c4, 2D}. If D > (log p)46/25,

then by 3.2 the algorithm successfully computes a period system for p, and if it successfully

computes a period system, then by 2.14 it computes a polynomial f with the stated

properties. The run time estimate for Step 2 is obtained in a routine manner from 3.2 and

2.14; note that the sum
∑

(r,q)∈P qr occurring in 2.14 is Õ(D9/11), by the inequalities in

(2.16). This proves 4.4.

5. Algebraic properties of pseudofields

In Section 2 we defined pseudofields, and the present section is devoted to their basic

algebraic properties.

For a ring A, an element α ∈ A, and a ring automorphism σ of A, we will have occasion

to refer to the condition

(5.1) σα belongs to the subring of A generated by α.

This condition is implied by condition (2.3), if n is a positive integer.
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Proposition 5.2. Let A be a ring, let α ∈ A, let d ∈ Z>0, and let σ be a ring auto-

morphism of A such that (2.4), (2.5), and (5.1) are satisfied. Then for any i, j ∈ Z with

i 6≡ j mod d one has σiα− σjα ∈ A∗.

Proof. Let h ∈ Z, h /∈ dZ, and let I = (σhα − α) be the A-ideal generated by σhα − α.

The set {β ∈ A : σhβ ≡ β mod I} is a subring of A that contains α, so by (5.1) it contains

σα; that is, one has σh+1α ≡ σα mod I, so σ(σhα − α) belongs to I, and therefore one

has σI ⊂ I. Since σd maps σhα − α to itself, we actually have σI = I, so for all m ∈ Z

one has σmI = I. It follows that the set H = {m ∈ Z : σmα ≡ α mod I} is a subgroup

of Z. It contains d and h, where h /∈ dZ, so one has H = d′Z where d′ is a divisor of d

with 1 ≤ d′ < d. Choose a prime number l that divides d/d′. Then d/l ∈ d′Z = H, so

σd/lα−α ∈ I. Thus, by (2.5) the ideal I contains a unit, and therefore I = A. This implies

σhα−α ∈ A∗. Now let i, j ∈ Z, i 6≡ j mod d. Then the integer i− j does not belong to dZ,

so by the result just proved we have σi−jα−α ∈ A∗. Applying σj we find σiα−σjα ∈ A∗,

as required. This proves 5.2.

Lemma 5.3. Let A be a ring, let k ∈ Z≥0, and let α1, α2, . . . , αk ∈ A be such that

αi − αj ∈ A∗ whenever 1 ≤ i < j ≤ k. Then for each g ∈ A[X ] which vanishes at

α1, α2, . . . , αk, one has g ∈ A[X ] ·∏k
i=1(X − αk).

Proof. Let Ii = A[X ] · (X−αi), for 1 ≤ i ≤ k. For i 6= j, the unit αi−αj can be written as

−(X−αi)+(X−αj), so Ii+Ij = A[X ]. This implies
∏k

i=1 Ii =
⋂k

i=1 Ii, by [3, Proposition

1.10(i)]. From X ≡ αi mod Ii one obtains g ≡ g(αi) mod Ii for each g ∈ A[X ], so if each

g(αi) vanishes then one has g ∈ ⋂k
i=1 Ii =

∏k
i=1 Ii = A[X ] ·∏k

i=1(X − αk), as required.

This proves 5.3.

The following result summarizes the technical information on pseudofields that we

shall need.

Proposition 5.4. Let A be a ring, let α ∈ A, and let the integers n ∈ Z>0, d ∈ Z>0 and

the ring automorphism σ of A satisfy (2.1), (2.2), (2.4), (2.5), and (5.1). Then one has:

(a) for each β ∈ A there are unique a0, a1, . . . , ad−1 ∈ Z/nZ with β =
∑d−1

i=0 aiα
i;

(b) one has #A = nd, and σd equals the identity;

(c) the polynomial f =
∏d−1

i=0 (X − σiα) belongs to the subring (Z/nZ)[X ] of A[X ];

(d) the ring homomorphism (Z/nZ)[X ] → A sending X to α is surjective, and its kernel

is generated by the polynomial f from (c);
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(e) if I ⊂ A is an ideal, then one has σI ⊂ I if and only if there exists a divisor m of n

such that I = mA;

(f) for each prime factor p of n there exists a unique residue class (i mod d) such that for

all β ∈ A one has βp ≡ σiβ mod pA.

Proof. It is clear that there is a unique ring homomorphism ψ: (Z/nZ)[X ] → A as in (d),

and that it maps each g ∈ (Z/nZ)[X ] to g(α). If g ∈ kerψ, then for each i ∈ Z one has

g(σiα) = σi(g(α)) = σi(ψ(g)) = 0, so by 5.2 and 5.3 one has g ∈ A[X ]f , where f is as

in (c). Since each non-zero g ∈ A[X ]f has degree at least d, this implies

kerψ ∩
(

(Z/nZ) + (Z/nZ)X + . . .+ (Z/nZ)Xd−1
)

= {0},

so that the restriction of ψ to (Z/nZ)+(Z/nZ)X+. . .+(Z/nZ)Xd−1 is injective. From (2.2)

one now sees that it is surjective as well, which proves (a), the first statement of (b), and the

surjectivity in (d). Since each element of A can be expressed in α, the second statement

of (b) follows from (2.4). Applying (a) to β = αd, one finds a0, a1, . . . , ad−1 ∈ Z/nZ

for which the polynomial g = Xd −∑d−1
i=0 aiX

i belongs to kerψ; hence g ∈ A[X ]f , and

comparing degrees and leading coefficients one finds g = f . This implies (c). We have

kerψ = A[X ]f ∩ (Z/nZ)[X ] = (Z/nZ)[X ]f , the latter equality because f is a monic

polynomial in (Z/nZ)[X ]. This proves the remaining assertion of (d).

The “if”-part of (e) is clear. For the “only if”-part, let I be an ideal of A with σI ⊂ I,

and let Ā be the ring A/I. From σI ⊂ I it follows that σ induces a ring homomorphism

σ̄: Ā → Ā. From (b) one sees that σ̄d is the identity on Ā, so σ̄ is an automorphism

of Ā. Put m = char Ā. Then m divides n, and we have mA ⊂ I, so from (a) we see

#Ā ≤ #A/mA = md, with equality if and only if mA = I. We claim that (2.1), (2.2),

(2.4), (2.5), and (5.1), with Ā, m, d, σ̄, and ᾱ = (α mod I) in the roles of A, n, d, σ, and

α, are satisfied. For (2.2) we just proved this, (2.1) is true by definition, and (2.4), (2.5),

and (5.1) follow from the corresponding properties of A, n, d, σ, and α. Hence, applying

(b) to this new situation, we find #Ā = md, so that mA = I. This proves (e).

To prove (f), we replace, for notational convenience, n and A by p and A/pA, so that

we may assume n = p. Let φ:A→ A be the ring homomorphism that maps each β ∈ A to

βp, and let g ∈ (Z/nZ)[X ] be such that σα = g(α). If ρ:A→ A is any ring homomorphism

with σρ = ρσ, then one has σ(ρα) = ρ(σα) = ρ(g(α)) = g(ρα). Applying this to ρ = φ

and to ρ = σi, where i ∈ Z, we obtain σ(φα) = g(φα) and σ(σiα) = g(σiα) and therefore

σ(φα) ≡ σ(σiα) mod (φα−σiα)A. Hence, for any i ∈ Z, the ideal I = (φα−σiα)A satisfies
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σI ⊂ I, so by (e) and the fact that n is prime one has I = A or I = nA = 0, so that

φα− σiα is either a unit or 0. From
∏d−1

i=0 (φα− σiα) = f(φα) = φ(f(α)) = 0p = 0 we see

that not all φα − σiα can be units, so at least one of them is 0. Then one has φα = σiα,

so φ = σi by (a). The uniqueness of i mod d follows from 5.2. This proves 5.4.

We can now prove two propositions stated in Section 2.

Proof of Proposition 2.6. Let the notation and hypotheses be as in 2.6. Since (2.3) implies

(5.1), Proposition 5.4 applies. The existence of f as in 2.6 follows from 5.4(d). No two

distinct monic polynomials in (Z/nZ)[X ] generate the same ideal, so f is unique. From

5.4(c) one sees deg f = d. This proves 2.6.

Proof of Proposition 2.7. Let p, A, and α be as in 2.7. For the “if”-part, assume that A is

a finite field with A = Fp(α). Write d = [A : Fp] and define σ:A→ A by putting σβ = βp

for every β ∈ A. It is a standard property of finite fields that σ is a field automorphism of

A of order d. Now (2.1)–(2.4) are obvious. If l is a prime number dividing d, then σd/l is

not the identity, so by A = Fp(α) we have σd/lα 6= α; since A is a field, this implies (2.5).

To prove the “only if”-part and the last statement of 2.7, assume that (A, α) is a

pseudofield. Write d for the degree and σ for the Frobenius automorphism. Since p is

prime, the map A→ A sending each β to βp is a ring homomorphism. It agrees with σ on

α, so by 5.4(a) on all of A, which is the last statement of 2.7. To prove that A is a field,

we let β ∈ A, and we prove that β equals 0 or is a unit. Put I = Aβ. From σβ = βp one

sees σI ⊂ I, so by 5.4(e) and the fact that p is prime we have I = A or I = pA = 0. In

the first case, β is a unit, in the second case it equals 0. Thus, A is a field. By 5.4(a), it is

finite, and one has A = Fp(α). This completes the proof of 2.7.

6. Primality testing with pseudofields

In this section we prove 2.8. We begin with an elegant lemma.

Lemma 6.1. Let R be a ring, and let G be a finite subgroup of R∗ such that for each

β ∈ G, β 6= 1, one has β − 1 ∈ R∗. Then G is cyclic.

Proof. We may clearly assume R 6= {0}, so that we can choose a maximal ideal M of R.

For each β ∈ G, β 6= 1, the unit β − 1 does not belong to M , so that β is not in the

kernel of the natural group homomorphism R∗ → (R/M)∗. Hence the restriction of the

latter map to G is injective, and G is isomorphic to its image in (R/M)∗. Since any finite

subgroup of the multiplicative group of a field is cyclic, this implies 6.1.
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The reader may enjoy proving 6.1 without using maximal ideals, for example by applying

5.3.

Let (A, α) be a pseudofield, and denote by n, d, and σ its characteristic, its degree,

and its Frobenius automorphism, respectively. We let p be a prime divisor of n, and put

R = A/pA. We shall simply write α for the image of α in R, and σ for the automorphism

of R induced by σ. Note that the conditions of Proposition 5.4, with R, α, p, d, σ in the

roles of A, α, n, d, σ, are satisfied. As in the proof of 2.7, we have

(6.2) if β ∈ R satisfies σβ ∈ Rβ, then β = 0 or β ∈ R∗,

by 5.4(e) applied to I = Rβ. We put

G = {β ∈ R : β 6= 0, σβ = βn}.

For any β ∈ G, one has σβ = βn ∈ Rβ, so β ∈ R∗ by (6.2). Since G is finite and closed

under multiplication, and contains 1, it is a subgroup of R∗. Also, for any β ∈ G, β 6= 1,

one has σβ = βn ≡ 1 mod R · (β − 1), so σ(β − 1) ∈ R · (β − 1) and β − 1 ∈ R∗, again by

(6.2). Thus, Lemma 6.1 implies

(6.3) G is a cyclic subgroup of R∗.

Lemma 6.4. If #G > n
√

d/3 − 1, then n is a power of p.

Proof. If n = p the lemma is true, so assume n > p. We let φ be the ring homomorphism

R → R that sends each β ∈ R to βp. By 5.4(f), this map is a power of σ; in particular, it

is an automorphism of R. The definitions of φ and G then imply that for all β ∈ G one

has (σφ−1)β = βn/p.

Let L be the kernel of the group homomorphism Z2 → 〈σ〉 that maps (i, j) to

(σφ−1)iφj . Since the image 〈σ〉 of the group homomorphism has order d, the group L

is a lattice of determinant d (see [14, Chapter I]). Consider the closed convex symmetric

subset

K = {(x, y) ∈ R2 : max{|x log(n/p)|, |y log p|, |x log(n/p) + y log p|} ≤ t}

of R2, where t ∈ R>0 is chosen such that the area 3 · t2/
(

log(n/p) · log p
)

of K equals 4d.

(Note that K is the hexagonal region with vertices at ±(t/ log(n/p), 0), ±(0, t/ log p), and

±(t/ log(n/p),−t/ log p).) By the inequality of the means we have

t = 2
√

d/3 ·
(

log(n/p) · log p
)1/2 ≤

√

d/3 · log n.
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According to Minkowski’s lattice point theorem (see [14, Chapter III, Theorem II]), the

set K contains a non-zero element (i, j) of L. Multiplying (i, j) by ±1, we may assume

that i ≥ 0. Note that (i, j) ∈ K implies that (n/p)ipj ≤ n
√

d/3 in the case that j ≥ 0 and

∣

∣(n/p)i − p−j
∣

∣ ≤ max{(n/p)i, p−j} − 1 ≤ n
√

d/3 − 1

in the case that j < 0. From (σφ−1)iφj = idR we see that for all β ∈ G one has β(n/p)ipj

=

β. By (6.3), we can choose β to be a generator of G. Thus (n/p)ipj ≡ 1 mod #G in the

case that j ≥ 0 and (n/p)i ≡ p−j mod #G in the case that j < 0. But, by hypothesis,

#G > n
√

d/3 − 1, so in either case we have (n/p)ipj = 1. By unique factorization in Z and

(i, j) 6= (0, 0), this equation forces n to be a power of p. This concludes the proof of 6.4.

Proof of Proposition 2.8. We let the notation and the assumptions be as in Proposition 2.8,

and in addition we write B = ⌊(d/3)1/2(logn)/ log 2⌋. Note that d > (logn)2/
(

3 · (log 2)2
)

implies d > B.

We apply the theory just developed to a prime factor p of n that satisfies p > B. From

σα = αn we see that the element α of R = A/pA belongs to the subgroup G of R∗. From

σ(α+ a) = σα+ a = αn + a = (α+ a)n for a = 1, 2, . . . , B and from 5.4(a), which implies

each α + a 6= 0, we see that α + 1, α + 2, . . . , α + B also belong to G. For each proper

subset S of {0, 1, . . . , B}, the element
∏

a∈S(α+ a) also belongs to G. There are 2B+1 − 1

such sets S, and we claim that they give rise to 2B+1 − 1 different elements of G. To see

this, note that by p > B the polynomials X + a, a = 0, 1, . . . , B, are distinct in Fp[X ],

and that by unique factorization in Fp[X ] the polynomials
∏

a∈S(X+a), with S as above,

are pairwise distinct. By d > B, all these polynomials have degrees smaller than d, so by

5.4(a) (applied to R) they give rise to 2B+1 − 1 different elements
∏

a∈S(α + a) of G, as

asserted.

It follows that we have

#G ≥ 2B+1 − 1 > 2(d/3)
1/2(logn)/ log 2 − 1 = n

√
d/3 − 1.

Applying 6.4 we conclude that n is a power of p. This proves 2.8.
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7. Tensor products

Tensor products (see [3, Chapter 2; 23, Chapter XVI]) can be used to construct “large”

pseudofields out of “small” ones, in the following manner.

Proposition 7.1. Let (A1, α1) and (A2, α2) be pseudofields with charA1 = charA2 = n,

and suppose that the degrees d1, d2 of these pseudofields satisfy d1 > 1, d2 > 1, and

gcd(d1, d2) = 1. Then the tensor product (A1 ⊗Z/nZ A2, α1 ⊗ α2) is a pseudofield of

characteristic n and degree d1d2.

Proof. We check that A = A1 ⊗Z/nZ A2, α = α1 ⊗ α2, n, d = d1d2, and σ = σ1 ⊗ σ2

satisfy (2.1)–(2.5). By 5.4(a), each Ai is a free Z/nZ-module with basis 1, αi, . . . , α
di−1
i ,

so from [23, Chapter XVI, Corollary 2.4] one sees that A is a free Z/nZ-module with basis

(αi
1⊗αj

2)0≤i<d1,0≤j<d2
. This implies both (2.1) and (2.2). One has σ(α) = σ1(α1)⊗σ2(α2) =

αn
1 ⊗ αn

2 = αn, which is (2.3). Each σdi
i is the identity on Ai, so σ

d is the identity on A,

which implies (2.4). Finally, to prove (2.5), let l be a prime number dividing d. Then l

divides exactly one of d1 and d2; by symmetry we may assume it divides d2. Let k be a

prime number dividing d1. By σ1α1 = αn
1 , the A1-ideal A1α1 is mapped to itself by σ1

and therefore contains σ
d1/k
1 α1 − α1; the latter element is a unit of A1, so α1 is a unit

of A1 as well. Since d/l is divisible by d1, we have σ
d/l
1 α1 = α1 ∈ A∗

1. Since d/l is not

divisible by d2, Proposition 5.1 implies σ
d/l
2 α2 − α2 ∈ A∗

2. It follows that the element

σd/lα−α = (σ
d/l
1 α1)⊗ (σ

d/l
2 α2)−α1 ⊗α2 = α1 ⊗ (σ

d/l
2 α2 − α2) is a product of two units,

and therefore belongs to A∗. This proves 7.1.

We next address the problem of designing an algorithm that, given two pseudofields (Ai, αi)

as in 7.1, computes their tensor product. Here it is assumed, as in Section 2, that a pseu-

dofield is specified by its characteristic and its characteristic polynomial. For the general

context of our algorithm one may consult [11].

Let R be a commutative ring, let m ∈ Z, m ≥ 0, and write S for the ring R[t]/(tm+1),

where t denotes a polynomial variable. The elements 1, t, . . . , tm form a basis for S over

R, in the sense that every element of S has a unique representation of the form
∑m

i=0 ait
i,

with each ai ∈ R. The elements
∑m

i=0 ait
i with a0 = 0 form the ideal tS of S, and the

elements with a0 = 1 form a subgroup of the group S∗ of units of S; we write 1 + tS for

this subgroup. We define the maps D:S → tS and L: 1 + tS → tS by

D
(

m
∑

i=0

ait
i
)

=

m
∑

i=0

iait
i (ai ∈ R),

L(u) = D(u) · u−1 (u ∈ 1 + tS).
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(The notation reflects that, up to a factor t, the maps D and L are differentiation and

logarithmic differentiation, respectively.) One readily verifies that for u, v ∈ S one has

D(uv) = uD(v) + vD(u) and that, consequently, L is a group homomorphism from the

multiplicative group 1 + tS to the additive group tS. For a monic polynomial g = Xk +
∑k

i=1 biX
k−i ∈ R[X ], we write g♭ for the image of 1 +

∑k
i=1 bit

i in S, which belongs to

1+ tS. Evidently, we have (gh)♭ = g♭ · h♭ for any two monic polynomials g, h ∈ R[X ]. The

Hadamard product ∗ is the operation defined on S by

(

m
∑

i=0

ait
i
)

∗
(

m
∑

i=0

bit
i
)

=
m
∑

i=0

aibit
i,

for ai, bi ∈ R.

For any ring homomorphism ψ:R1 → R2, the composition of the induced ring ho-

momorphism S1 = R1[t]/(t
m+1) → S2 = R2[t]/(t

m+1) with D:S2 → tS2 equals the

composition of D:S1 → tS1 with the induced map tS1 → tS2. Similar remarks apply to L,

♭, and ∗.
In the following result we use the definitions just given for the ring R = Z/nZ.

Proposition 7.2. Let the hypotheses and notation be as in 7.1. Moreover, write f1, f2,

f for the characteristic polynomials of the pseudofields (A1, α1), (A2, α2), and (A1 ⊗Z/nZ

A2, α1 ⊗ α2), respectively. Then for any non-negative integer m we have the identity

L(f ♭) = −L(f ♭
1) ∗ L(f ♭

2)

in t(Z/nZ)[t]/(tm+1).

Proof. Let the notation A, α, d, σ1, σ2, σ be as in the proof of 7.1. We view A1 and

A2 as subrings of A, identifying α1 with α1 ⊗ 1 and α2 with 1 ⊗ α2, so that α = α1α2.

It suffices to prove the identity in tA[t]/(tm+1). From f =
∏d−1

i=0 (X − σiα) we obtain

f ♭ =
∏d−1

i=0

(

1 − (σiα)t
)

. From L
(

1 − (σiα)t
)

= −(σiα)t/
(

1 − (σiα)t
)

= −∑m
j=1(σ

iα)jtj

we thus obtain

L(f ♭) =

d−1
∑

i=0

L
(

1− (σiα)t
)

= −
m
∑

j=1

(

d−1
∑

i=0

(σiα)j
)

tj .

Likewise, we have

L(f ♭
1) = −

m
∑

j=1

(

d1−1
∑

i=0

(σi
1α1)

j
)

tj , L(f ♭
2) = −

m
∑

j=1

(

d2−1
∑

i=0

(σi
2α2)

j
)

tj .
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Since σiα = (σi
1α1) · (σi

2α2) and the orders d1 and d2 of σ1 and σ2 are coprime, we have

d−1
∑

i=0

(σiα)j =
(

d1−1
∑

i=0

(σi
1α1)

j
)

·
(

d2−1
∑

i=0

(σi
2α2)

j
)

for all j ≥ 1. The identity to be proved now follows from the definition of the Hadamard

product. This proves 7.2.

Proposition 7.3. For positive integers n,m, let Sn,m denote the ring (Z/nZ)[t]/(tm+1).

(a) Let n and m be positive integers such that each prime factor of n exceeds m. Then

the map L: 1 + tSn,m → tSn,m is a group isomorphism.

(b) There is an algorithm that, given positive integers n and m, and an element u ∈
1 + tSn,m, computes the element L(u) of tSn,m in time Õ(m logn).

(c) There is an algorithm that, given integers n > 1, m > 0, and an element s ∈ tSn,m,

either computes a prime factor of n that is at most m or correctly decides that no such

prime factor exists, and in the latter case computes the element L−1(s) of 1 + tSn,m,

all in time Õ(m logn).

Proof. (a) Since each prime factor of n exceeds m, we have i ∈ (Z/nZ)∗ for i = 1, . . . , m, so

D restricts to a group automorphism of tSn,m. For the same reason, there are well-defined

maps log: 1 + tSn,m → tSn,m and exp: tSn,m → 1 + tSn,m with

log(1− x) = −
m
∑

i=1

xi/i, exp(x) =

m
∑

i=0

xi/i!

for x ∈ tSn,m. It is well known that log and exp are inverse group isomorphisms. An easy

computation shows L = D◦log. It follows that L is an isomorphism, with inverse exp ◦D−1.

(b) In [7, Section 8] one finds an algorithm that computes L(u) by means of Õ(m)

ring operations in Z/nZ; this particular algorithm does not depend on the condition, in

[7, Section 8], that the field Q of rational numbers be contained in the coefficient ring. By

[30, Sections 8.3 and 9.1], each ring operation in Z/nZ can be done in time Õ(logn).

(c) We describe an algorithm with the stated properties. Using the extended Euclidean

algorithm, see [30, Corollary 11.10], one attempts to compute i−1 ∈ Z/nZ for i = 1, 2,

. . . , m; this can only fail if among those i a prime factor of n is found, in which case the

algorithm halts. Suppose it does not fail. Then one computes D−1(s) directly from the

definition of D by means of m multiplications in Z/nZ, and next one uses the algorithm

from [7, Section 9] to compute L−1(s) = exp
(

D−1(s)
)

using Õ(m) ring operations in
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Z/nZ; inspection of this algorithm shows that the condition from [7, Section 9] that Q be

contained in the coefficient ring may be replaced by the weaker condition that multiplicative

inverses of each of i = 1, 2, . . . , m be available; this condition is satisfied in the present

case.

This proves 7.3.

Proposition 7.4. There is an algorithm with the following property. Given an integer n

and two pseudofields of characteristic n and of coprime degrees d1, d2 greater than 1, it

either finds a prime factor of n that is at most d1d2 or it constructs the tensor product of

the two given pseudofields, and it does so in time Õ(d1d2 logn).

Proof. The following algorithm has the stated properties. Let f1, f2 be the characteristic

polynomials of the two given pseudofields. Put m = d1d2 and S = (Z/nZ)[t]/(tm+1),

and compute f ♭
1 , f

♭
2 ∈ 1 + tS from the definition of ♭. Next compute L(f ♭

1) and L(f ♭
2) by

means of the algorithm of 7.3(b), and compute L(f ♭
1) ∗ L(f ♭

2) by d1d2 multiplications in

Z/nZ. Finally, apply the algorithm of 7.3(c) to s = −L(f ♭
1) ∗ L(f ♭

2); this either yields a

prime factor of n that is at most m = d1d2, or it finds L−1(s) ∈ 1 + tS; in the latter

case, the characteristic polynomial of the tensor product is the unique monic polynomial

f ∈ (Z/nZ)[X ] of degree d1d2 that satisfies f ♭ = L−1(s). This completes the description of

the algorithm. It is correct by 7.2, and 7.3 readily implies that it runs in time Õ(d1d2 log n).

This proves 7.4.

8. Gaussian periods

In this section we let n be an integer with n > 1, we let r be a prime number not

dividing n, and we define Φr =
∑r−1

i=0 X
i ∈ (Z/nZ)[X ]. The element (X mod Φr) of

the ring (Z/nZ)[X ]/(Φr) is denoted by ζr, and that ring itself by (Z/nZ)[ζr]. We have

ζrr = 1 6= ζr, so ζr is an element of (Z/nZ)[ζr]
∗ of order r. From deg Φr = r − 1 and

1 + ζr + . . . + ζr−1
r = 0 one sees that the elements ζir, 1 ≤ i ≤ r − 1, form a basis for

(Z/nZ)[ζr] over Z/nZ.

For each a ∈ Z, a /∈ rZ, the ring (Z/nZ)[ζr] has a unique automorphism mapping

ζr to ζar ; we write σa for this automorphism. The set ∆ of all automorphisms of the form

σa is a group under composition, and the map σa 7→ (a mod r) is a group isomorphism

∆ ∼= F∗
r . One concludes that ∆ is cyclic of order r − 1, and that the elements τζr, τ ∈ ∆,

form a basis for (Z/nZ)[ζr] over Z/nZ.

Next let q be a positive integer dividing r− 1. Then ∆q = {τ q : τ ∈ ∆} is a subgroup
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of index q of ∆. The subset (Z/nZ)[ζr]
∆q

= {β ∈ (Z/nZ)[ζr] : ρβ = β for all ρ ∈ ∆q} is

a subring of (Z/nZ)[ζr]. An element
∑

τ∈∆ aτ · τζr, with each aτ ∈ Z/nZ, belongs to this

subring if and only if aτ = aτρ for all τ ∈ ∆, ρ ∈ ∆q. Hence, if we put ηr,q =
∑

ρ∈∆q ρζr,

then the elements τηr,q, with τ ranging over a set of coset representatives for ∆ modulo

∆q, form a basis for (Z/nZ)[ζr]
∆q

over Z/nZ; in particular, one has #(Z/nZ)[ζr]
∆q

= nq.

The elements τηr,q are called Gaussian periods of degree q and conductor r. For example,

we have ηr,r−1 = ζr and ηr,1 = −1. We write

fr,q =
∏

τ∆q∈∆/∆q

(Y − τηr,q).

This is a monic polynomial in Y of degree q with fr,q(ηr,q) = 0. Its coefficients, which

belong to (Z/nZ)[ζr], are readily checked to be invariant under all ρ ∈ ∆, so they belong

to (Z/nZ)[ζr]
∆1

= (Z/nZ) · ηr,1 = Z/nZ. Thus, one has fr,q ∈ (Z/nZ)[Y ].

Proposition 8.1. Let n ∈ Z, n > 1, let r be a prime number not dividing n, and let q be

a divisor of r − 1 with the property that the element (n(r−1)/q mod r) of F∗
r has order q.

Let the notation ζr, σa, ∆, ηr,q, fr,q be as just defined. Then we have:

(a) if n is prime, then in the ring (Z/nZ)[ζr] one has ηnr,q = σnηr,q;

(b) if in the ring (Z/nZ)[ζr] one has ηnr,q = σnηr,q, then
(

(Z/nZ)[ζr]
∆q

, ηr,q
)

is a pseudo-

field of characteristic n and degree q, with characteristic polynomial fr,q.

Proof.To prove (a), suppose that n is prime. Then the map from (Z/nZ)[ζr] to itself sending

each β to βn is a ring homomorphism, and since it agrees with σn on ζr it coincides with

σn on all of (Z/nZ)[ζr]. This implies (a).

To prove (b), we first observe that the kernel of the group homomorphism F∗
r → F∗

r

sending each x to x(r−1)/q equals the subgroup F∗q
r of index q of F∗

r . Hence the condition

that (n(r−1)/q mod r) have order q implies that the coset (n mod r)F∗q
r generates the group

F∗
r/F

∗q
r and, consequently, that the coset σn∆

q generates ∆/∆q.

For brevity, write A = (Z/nZ)[ζr]
∆q

. Define the ring homomorphism φ: (Z/nZ)[Y ] →
A by φ(g) = g(ηr,q). Its image is the subring of A generated by ηr,q. From σnηr,q = ηnr,q

it follows that that subring is mapped to itself by σn. Since all elements of ∆q act as the

identity on A, and σn∆
q generates ∆/∆q, the subring is mapped to itself by all τ ∈ ∆.

Hence, in addition to ηr,q it contains all τηr,q, so that it is equal to all of A; in other words,

φ is surjective. The kernel of φ contains the (Z/nZ)[Y ]-ideal generated by fr,q, and since

both of these ideals have index nq in (Z/nZ)[Y ], we must have equality. Thus, φ induces

a ring isomorphism (Z/nZ)[Y ]/(fr,q) ∼= A.
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We prove that A, α = ηr,q, n, d = q, and σ equal to the restriction of σn to A, satisfy

(2.1)–(2.5). Conditions (2.1)–(2.3) are clearly satisfied, and (2.4) follows from σq
n ∈ ∆q.

We prove (2.5). Since σn∆
q generates the group ∆/∆q of order q, we may rewrite the

definition of fr,q as

fr,q =

q−1
∏

i=0

(Y − σiηr,q).

It follows that the derivative f ′
r,q = dfr,q/dY satisfies f ′

r,q(ηr,q) =
∏q−1

i=1 (ηr,q − σiηr,q), so

that to prove (2.5) it will suffice to prove f ′
r,q(ηr,q) ∈ A∗.

Let p be a prime number dividing n. Taking the isomorphism (Z/nZ)[Y ]/(fr,q) ∼= A

modulo p, we see that the ring Fp[Y ]/(f), where f = (fr,q mod p) ∈ Fp[Y ], is isomorphic

to a subring of Fp[X ]/(g), where g =
∑r−1

i=0 X
i. Since g divides Xr − 1, where r is a prime

number different from p, one has gcd(g, dg/dX) = 1 in the ring Fp[X ]. From Lemma

8.2, stated and proved below, it follows that one has gcd(f, df/dY ) = 1 in the ring Fp[Y ].

Thus, there are u, v ∈ Fp[Y ] with uf+vdf/dY = 1. Lifting u, v to (Z/nZ)[Y ], one obtains

up, vp, wp ∈ (Z/nZ)[Y ] such that upfr,q + vpf
′
r,q = 1+ pwp. Applying φ one gets, for each

prime number p dividing n, an identity in A of the form vp(ηr,q) ·f ′
r,q(ηr,q)−p ·wp(ηr,q) = 1.

Take the product over p, repeating the pth identity just as many times as p occurs in n.

On the right, we get 1. On the left, the only term that does not have a factor f ′
r,q(ηr,q) is

divisible by n and is therefore 0. Hence, 1 is divisible by f ′
r,q(ηr,q) in A, so that the latter

element is a unit, as required. The formula we gave for fr,q shows that it is indeed the

characteristic polynomial for the pseudofield.

Lemma 8.2. Let p be a prime number, and let f , g ∈ Fp[X ] be non-zero polynomi-

als for which the ring Fp[X ]/(f) is isomorphic to a subring of Fp[X ]/(g). Suppose also

gcd(g, dg/dX) = 1. Then one has gcd(f, df/dX) = 1.

Proof. A non-zero polynomial h ∈ Fp[X ] satisfies gcd(h, dh/dX) = 1 if and only if h is

squarefree in the ring Fp[X ], and if and only if there is no non-zero nilpotent element in

the ring Fp[X ]/(h). Thus, the lemma follows from the trivial observation that if a ring has

no non-zero nilpotent element, then the same is true for a subring. This proves 8.2 and

completes the proof of 8.1.

We next describe an algorithm that will prove Propositions 2.13 and 2.14.

Algorithm 8.3. Given an integer n > 1, which may or may not be known to be prime,

and a period system P for n satisfying n > deg P, this algorithm attempts to construct a
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pseudofield of characteristic n and degree deg P.

Step 1. For all (r, q) ∈ P in succession, do the following. Compute ηr,q ∈ (Z/nZ)[ζr]

as well as all of its conjugates τηr,q, and form the product of the q polynomials Y −τηr,q in

the polynomial ring (Z/nZ)[ζr][Y ]; the result is fr,q, which has coefficients in the subring

Z/nZ of (Z/nZ)[ζr]. If n is not known to be prime, compute by an nth powering in the ring

(Z/nZ)[Y ]/(fr,q) the unique polynomial gr,q ∈ (Z/nZ)[Y ] satisfying Y n ≡ gr,q mod fr,q

and deg gr,q < q, and test whether in the ring (Z/nZ)[ζr] one has gr,q(ηr,q) = σnηr,q; if

this test fails, declare n composite and halt.

Step 2. [If the algorithm arrives at this point then, as we shall prove below, for each

(r, q) ∈ P the pair (n, fr,q) specifies a pseudofield.] Applying the algorithm of 7.4 at most

#P−1 times, either find a prime factor of n that is at most deg P, or construct the repeated

tensor product of the #P pseudofields specified by the pairs (n, fr,q) for (r, q) ∈ P. In the

former case, declare n composite and halt, and in the latter case return the tensor product

computed by the algorithm and halt.

This completes the description of Algorithm 8.3.

Proposition 8.4. Algorithm 8.3, when given n, P satisfying n > deg P, runs in time

Õ
((

deg P +
∑

(r,q)∈P

qr
)

logn
)

or Õ
((

deg P +
∑

(r,q)∈P

q(r + logn)
)

log n
)

according as n is or is not known to be prime, and either correctly declares n composite

or constructs a pseudofield of characteristic n and degree deg P.

Proof. We first prove the correctness of the algorithm. By fr,q(ηr,q) = 0, the congruence

Y n ≡ gr,q mod fr,q in Step 1 implies gr,q(ηr,q) = ηnr,q. Thus, by 8.1(a), the condition

gr,q(ηr,q) = σnηr,q is necessary for n to be prime, and the algorithm is correct if it halts

in Step 1. If it passes Step 1, then by 8.1(b) there is for each (r, q) ∈ P a pseudofield

of characteristic n with characteristic polynomial fr,q. Hence by 7.4 the algorithm either

constructs the desired tensor product, or it finds a prime factor of n that is at most deg P;

in the latter case, n is composite because n > deg P. This proves the correctness of the

algorithm.

The run time of Step 1 is dominated by the computation of the polynomials fr,q

and, if n is not known to be prime, the polynomials gr,q and their values at ηr,q. The

computation of fr,q, if done by means of Algorithm 10.3 from [30], runs in time Õ(qr log n).

The computation of gr,q involves O(logn) multiplications in the ring (Z/nZ)[Y ]/(fr,q) and
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can therefore be performed in time Õ
(

q · (logn)2
)

. The computation of gr,q(ηr,q) runs in

time Õ(qr logn). By 7.4, Step 2 runs in time Õ(logn · deg P).

This proves 8.4.

Proposition 2.13 is an immediate corollary of 8.4. In addition, if n is prime, then it is

not declared composite, so that the algorithm returns a pseudofield; whence by 2.7, this

pseudofield is a finite field. Thus, by 2.6, its characteristic polynomial is irreducible in

Fn[X ]. So Proposition 2.14 follows from 8.4 as well.

9. The continuous Frobenius problem

In this section we prove Theorem 3 from the Introduction. As mentioned there, our proof

is adapted from Bleichenbacher [10].

For any open subset S of the positive reals, let

M(S) =

∫

S

dx

x
,

and let S∗ denote the additive semigroup generated by S. We first prove the theorem in

the case that S is a finite union of n open intervals, after which the general case will be

seen to follow easily.

To prove the theorem for the union of n open intervals, we proceed by induction. In

particular, the theorem is true vacuously for the case n = 0. Henceforth we shall assume

that

(9.1) n ≥ 1 and the theorem holds for the union of n′ open intervals for all 0 ≤ n′ < n.

Definition 9.2. Let n be a positive integer, let t ∈ (0, 1], and let a,b ∈ Rn with

(9.3) t ≥ b1 ≥ a1 ≥ · · · ≥ bn ≥ an ≥ 0, b1 > · · · > bn > 0.

Let

(9.4) S(a,b) =

n
⋃

i=1

(ai, bi).

As a union of open intervals, S(a,b) is an open subset of R>0. Let St,n denote the set of

such sets S(a,b) ⊂ (0, t) such that for each h ∈ (Z≥0)
n with hi = 0 whenever ai = bi,

(9.5) either h · b ≤ 1 or 1 ≤ h · a.
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Lemma 9.6. If S ∈ St,n, then 1 6∈ S∗. Conversely, if S is the union of at most n open

intervals in (0, t) with 1 6∈ S∗, then S ∈ St,n.

Proof. Suppose S = S(a,b) ∈ St,n. If 1 ∈ S∗ there are elements s1, . . . , sN ∈ S with

sum 1. For 1 ≤ i ≤ n, let hi be the number of these elements sj with sj ∈ (ai, bi). With

h = (h1, . . . , hn) we thus have h ∈ (Z≥0)
n, hi = 0 whenever ai = bi, and

h · a < s1 + · · ·+ sN = 1 < h · b,

in violation of (9.5). Thus, 1 6∈ S∗. Conversely, suppose that S is the union of at most n

open intervals in (0, t). We may write any such S as in (9.3) and (9.4). Assume that there is

some h ∈ (Z≥0)
n for which hi = 0 whenever ai = bi and (9.5) fails; that is, h ·a < 1 < h ·b.

Let A = h ·a, B = h ·b, α = (B−1)/(B−A), β = (1−A)/(B−A). Then α, β are positive

with α+ β = 1. For 1 ≤ i ≤ n, let ci = αai + βbi. Then, if hi 6= 0, we have ci ∈ (ai, bi), so

that h · c ∈ S∗. But, by construction, we have

h · c = αh · a+ βh · b = αA+ βB = 1,

so that 1 ∈ S∗. This completes the proof of the lemma.

Lemma 9.7. Fix an arbitrary vector b = (b1, b2, . . . , bn) ∈ Rn for which t ≥ b1 > · · · >
bn > 0. Then M(S(a,b)) achieves a maximum value Mb over all a ∈ Rn for which

S(a,b) ∈ St,n. Furthermore, Mb > 0.

Proof. Note that by (9.3) and (9.5), the set of vectors a with S(a,b) ∈ St,n is a compact

subset of Rn. Moreover, if a is in this set, we have an 6= 0 since otherwise 1 ∈ S(a,b)∗,

so that Lemma 9.6 implies that S(a,b) 6∈ St,n. Thus, M(S(a,b)) is continuously defined

over this set. There are vectors a with S(a,b) ∈ St,n, indeed a = b is permitted. It follows

that M(S(a,b)) attains a maximum Mb as claimed. To see that Mb > 0, let m be the

least integer with m > 1/b1, and then choose a1 = 1/m and ai = bi for 2 ≤ i ≤ n. The

vector a satisfies (9.3) and since 1 6∈ S(a,b)∗, Lemma 9.6 implies that S(a,b) ∈ St,n. But

M(S(a,b)) = log(mb1) and this expression is positive since mb1 > 1. This completes the

proof of the lemma.

Definition 9.8. Let a,b ∈ Rn as in (9.3). We say S(a,b) is degenerate if either ai = bi

for some i with 1 ≤ i ≤ n or ai−1 = bi for some i with 2 ≤ i ≤ n.
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Lemma 9.9. Suppose b satisfies the hypothesis of Lemma 9.7. If S(a,b) ∈ St,n is such

that M(S(a,b)) =Mb, then either Mb < t or S(a,b) is non-degenerate.

Proof. Suppose S = S(a,b) ∈ St,n has M(S(a,b)) = Mb. First, we delete each empty

interval, that is, each interval with ai = bi. This preserves the property 1 6∈ S∗ and does

not change M(S). However, it does allow us to reduce to some n′ < n, and by (9.1),

M(S) < t. Next, suppose that ai−1 = bi for some i with 2 ≤ i ≤ n. We may then

consolidate the two intervals (ai, bi), (ai−1, bi−1) into one interval (ai, bi−1) keeping the

property that 1 6∈ S∗ and not changing the value of M(S). Indeed the latter claim is clear,

and if 1 is now representable by a sum of members of S ∪ {bi}, then bi must be involved

in the sum, say with positive integral coefficient d. If d = 1, then replace bi in the sum

with bi + ǫ, for a suitably small ǫ > 0, and then replace another member x ∈ S of the

sum with x − ǫ. (There must be another number in the sum since bi < 1.) If ǫ is small

enough, both bi + ǫ and x− ǫ are in S, and we have represented 1 as a sum of members of

S, contradicting S ∈ St,n (see Lemma 9.6). If d ≥ 2, then since bi + ǫ/(d − 1) and bi − ǫ

are both in S for ǫ small enough, we can replace the d copies of bi in the sum with d− 1

copies of bi + ǫ/(d − 1) and one copy of bi − ǫ, and so represent 1 as a sum of members

of S. Either way, we reach a contradiction, and so the consolidation of the two abutting

intervals continues to enjoy the property that 1 is not in the additive semigroup generated

by the intervals. Again, by (9.1), we have M(S) < t. We conclude that either M(S) < t or

S is non-degenerate, proving the lemma.

We now assume that the vectors a,b satisfy

(9.10) S(a,b) ∈ St,n, M(S(a,b)) =Mb,

and

(9.11) t ≥ b1 > a1 > · · · > bn > an > 0.

We partition the vectors h ∈ (Z≥0)
n into 3 disjoint sets. Let

H0 = {h ∈ (Z≥0)
n : h · a < 1},

H1 = {h ∈ (Z≥0)
n : h · a = 1},

H2 = {h ∈ (Z≥0)
n : h · a > 1}.

Since each ai > 0, it follows that H0, H1 are finite sets.
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Lemma 9.12. Let a,b be as in (9.10), (9.11) and for notational convenience, let an+1 =

bn+1 = 0. If h ∈ H1, then

hkh · (b− a) ≤ hk(bk − bk+1) for 1 ≤ k ≤ n.

Proof. Let ek be the k-th standard basis vector in Rn. For k = 1, . . . , n, since h · a = 1

and ak > ak+1, we have

h · a− ak + ak+1 < 1.

Suppose that hk > 0. Let h′ = h−ek+ek+1 in the case that k < n, and let h′ = h−ek in

the case that k = n. Then h′ ∈ H0. Hence, since (9.5) holds for h′, we have that h′ ·b ≤ 1.

That is,

h · b− bk + bk+1 ≤ 1.

Using that h ∈ H1 we get that

h · (b− a) = h · b− 1 ≤ bk − bk+1.

Thus, we have

hkh · (b− a) ≤ hk(bk − bk+1),

an inequality that continues to hold if hk = 0. This completes the proof.

Let v be an arbitrary vector in Rn and for real numbers x, let

fv(x) = M

(

n
⋃

i=1

(ai + xvi, bi)

)

.

Note that

(9.13) f ′
v(0) = −v ·m(a),

where m(a) := (1/a1, . . . , 1/an).

Lemma 9.14. Let v ∈ Rn be such that h · v ≥ 0 for all h ∈ H1. Let ǫv > 0 be a real

number such that ai + ǫv < bi for i = 1, . . . , n. Then for each real number x in [0, ǫv], the

vector a + xv satisfies (9.11) in place of a. Further, by possibly reducing ǫv > 0, one has

S(a+ xv,b) ∈ St,n for every real number x ∈ [0, ǫv]. In addition, v ·m(a) ≥ 0.

Proof. Assume that v ∈ Rn has h · v > 0 for all h ∈ H1 and that ǫv has been chosen

as described. It is clear that a + xv satisfies (9.11) for each x ∈ [0, ǫv]. Suppose that
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h ∈ (Z≥0)
n, so that h ∈ H0, H1, or H2. If h ∈ H0, since (9.5) holds for a, we have

h · b ≤ 1. Thus, (9.5) holds for all of the vectors a + xv and all h ∈ H0. Now suppose

h ∈ H1. By hypothesis, h · (a + xv) = 1 + xh · v ≥ 1 for all x ∈ R≥0, so that (9.5) holds

for each a + xv and all h ∈ H1. Finally we consider H2. Since a ∈ Rn
>0, there is a finite

“minimal” set H∗
2 ⊂ H2 such that h ∈ H2 if and only if there is some h∗ ∈ H∗

2 with

h− h∗ ∈ Zn
≥0. Let

W = {w ∈ Rn
>0 : w · h∗ > 1 for all h∗ ∈ H∗

2}.

Then W is an open set that contains a. Thus, given v, by possibly reducing ǫv > 0, for all

0 ≤ x ≤ ǫv we have a + xv ∈ W . It follows that h · (a + xv) > 1 for 0 ≤ x ≤ ǫv and all

h ∈ H2. That is, (9.5) holds for the vectors a+xv and all h ∈ H2. Thus, S(a+xv,b) ∈ St,n

as asserted. By the maximality of a, we have f ′
v(0) ≤ 0, which implies the last assertion

by (9.13). This completes the proof.

It is now clear that H1 is nonempty, since if H1 = ∅, we would have v ·m(a) ≥ 0 for

all vectors v ∈ Rn, which is patently false. Let r = #H1.

We cite a result of Farkas [20].

Lemma 9.15. (J. Farkas) Suppose A is an r × n real matrix and m ∈ Rn. Suppose that

for all v ∈ Rn with Av ∈ (R≥0)
r we have that m·v ≥ 0. Then there is a vector p ∈ (R≥0)

r

with pTA = m.

(Note that the converse trivially holds: If Av,p ∈ (R≥0)
r and pTA = m, then m · v =

pTA · v = pT ·Av ≥ 0.)

Proof of Theorem 3. We apply Lemma 9.15 to the matrix A whose rows are the r vectors in

H1 and to the vector m = m(a). We have shown in Lemma 9.14 that Av ∈ (R≥0)
r implies

that m · v ≥ 0. Thus, Lemma 9.15 implies there is a vector p ∈ (R≥0)
r with pTA = m.

Say p = (p1, . . . , pr), H1 = {h1, . . . ,hr}, and let each hj = (hj1, . . . , hjn). We have

r
∑

j=1

pjhjk = 1/ak for 1 ≤ k ≤ n.

Take the inequality in Lemma 9.12 applied to hj, multiply it by pj , and sum over j. For

k = 1, . . . , n, we have,

r
∑

j=1

pjhjk

n
∑

i=1

hji(bi − ai) ≤
r
∑

j=1

pjhjk(bk − bk+1) = (1/ak)(bk − bk+1).
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Multiplying corresponding inequalities by ak and summing over k, we get

(9.16)

n
∑

k=1

ak

r
∑

j=1

pjhjk

n
∑

i=1

hji(bi − ai) ≤
n
∑

k=1

(bk − bk+1) = b1.

The left side of (9.16) is

r
∑

j=1

pj

n
∑

k=1

akhjk

n
∑

i=1

hji(bi − ai) =

r
∑

j=1

pj(hj · a)(hj · (b− a)) =

r
∑

j=1

pjhj · (b− a)

= m(a) · (b− a) =
n
∑

i=1

(bi − ai)/ai.

Thus, (9.16) implies that

(9.17)

n
∑

i=1

(bi/ai − 1) =

n
∑

i=1

(bi − ai)/ai ≤ b1.

However, M((ai, bi)) = log(bi/ai) < bi/ai − 1. Hence, by (9.17),

Mb =
n
∑

i=1

log(bi/ai) < b1 ≤ t.

We have Mb < t for each choice of b satisfying (9.11), and so Theorem 3 holds

for any S which is the union of finitely many intervals. If S ⊂ (0, t) is the union of

infinitely many disjoint open intervals and has 1 6∈ S∗, let S(n) be the union of n of these

intervals with S(n) ⊂ S(n+ 1) and
⋃

S(n) = S. We have M(S(n)) < t for each n, and so

M(S) = limn→∞M(S(n)) ≤ t. This concludes the proof of the theorem.

Remarks. We have seen that the inequalityM(S) < t holds when S ⊂ (0, t) is a finite union

of open intervals with 1 not in the additive semigroup generated by S. This inequality for a

finite union of intervals is best possible. Indeed, suppose Sn is the intersection of (0, t) and

the additive semigroup generated by (1/(n+ 1), 1/n), where n is a fixed positive integer.

Note that 1 is not in this semigroup. Further, we have

M(Sn) ≥
⌊tn⌋
∑

j=1

M

((

j

n+ 1
,
j

n

))

=

⌊tn⌋
∑

j=1

log(1 + 1/n) > ⌊tn⌋
(

1

n
− 1

n2

)

> t− 1 + t

n
.

Thus, as n grows, we have M(Sn) as close as we please to t.

It is possibly true that M(S) < t continues to hold when S is an infinite union of

disjoint intervals; that is, the theorem holds with a strict inequality. We leave this as an

open question.
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10. A number-theoretic application

In this section we give a number-theoretic application to the continuous Frobenius problem,

proving a result which contains Theorem 4. The recent paper [21] contains a similar result.

Proposition 10.1. Let α, ǫ be real numbers with

0 < ǫ ≤ α/2 ≤ 1/4.

There is a positive integer x0 = x0(α, ǫ), effectively computable if α, ǫ are rational, with

the following property. If x, u,D are real numbers with

x > x0, 2 < u < (log x)1/10, and x1/(2(α−ǫ)) ≤ D ≤ x1/α,

then for any set Q of primes contained in (x1/u, x1/2] with

∑

q∈Q

1

q
≥ α,

there is a squarefree integer d composed of primes from Q with D ≤ d < D +D1−α/(4u).

Moreover, the number of squarefree integers d ∈ [D, 2D) composed of primes from Q
exceeds D/(logD)5u.

Before commencing on the proof we identify some auxiliary variables and prove some

lemmas. Let D be as in 10.1 and write

D = x1/(2(α−δ)), α/2 ≥ δ ≥ ǫ.

Let N be an integer for which

(10.2) 6u log x ≤ N ≤ x1/(3u).

For N satisfying (10.2) and for i = 1, 2, . . . , N , let

Ii = [x(i−1)/N , xi/N ), Mi = xi/N/i2.

Further, for Q as in 10.1, let

(10.3) Qi =

{

Ii ∩Q, if #(Ii ∩ Q) > Mi

∅, otherwise.

We remark that Qi = ∅ for i ≤ N/u.

32



Lemma 10.4. If x is sufficiently large we have for Q as in 10.1, N satisfying (10.2), and

sets Qi defined in (10.3),
N
∑

i=1

∑

q∈Qi

1

q
> α− δ/2.

Proof. The double sum here is smaller than the sum
∑

q∈Q
1
q in 10.1, the difference between

them coming from intervals Ii with #(Ii ∩ Q) ≤ Mi. Since Ii ∩ Q = ∅ for i ≤ N/u, the

sum of 1/q for primes q in intervals Ii with #(Ii ∩ Q) ≤Mi is at most

∑

N≥i>N/u

Mi

x(i−1)/N
=

∑

N≥i>N/u

x1/N

i2
<

2u

N
x1/N ≤ 1

3 log x
e1/(6u) <

1

log x
,

by the first inequality in (10.2). Thus, these primes give a negligible contribution as x→ ∞,

and we have 10.4.

For N as in (10.2) and for i = 1, 2, . . . , N , write xi/N = x(i−1)/N + Li. Then by the upper

bound in (10.2), for all i > N/u,

(10.5) Li = x(i−1)/N
(

x1/N − 1
)

> x(i−1)/N log x

N
>
(

x(i−1)/N
)3/5

for all sufficiently large x.

Lemma 10.6. We suppose that N satisfies (10.2) and sets Qi are as in (10.3). For each i

with Qi 6= ∅, let S(i) be the image of Ii under the natural logarithm map, and if Qi = ∅,
let S(i) = ∅. If x is sufficiently large, then

N
∑

i=1

∫

S(i)

dt

t
> α− δ.

Proof. If Qi 6= ∅, we have i > N/u, and so we may assume that (10.5) holds. The interval

Ii is thus of the shape [z, z + L) where L > z3/5. So, by a theorem of Huxley [22], the

number of primes in Ii is (1 + o(1))Li/ log(x
(i−1)/N ) = (1 + o(1))x(i−1)/N/i as x → ∞,

uniformly in i for N/u < i ≤ N . Let η = (δ/2)/(α− δ). It follows that for all x larger than

some effectively computable bound depending on η and for each i with Qi 6= ∅, we have

that the number of primes in Ii is smaller than (1 + η)x(i−1)/N/i and so

(10.7)
∑

q∈Qi

1

q
<

1 + η

i
< (1 + η) log

i

i− 1
= (1 + η)

∫

S(i)

dt

t
.
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Hence, for sufficiently large x, 10.4 and (10.7) imply that

N
∑

i=1

∫

S(i)

dt

t
> (1 + η)−1

N
∑

i=1

∑

q∈Qi

1

q
>
α− δ/2

1 + η
= α− δ.

This proves 10.6.

Proof of Proposition 10.1. We choose as a target for our squarefree number d a number

D′ slightly above D, since we may miss the target on the low side, and we wish to have

d ≥ D. To be specific, let D′ = D exp(2u(log x)/(αN)) and let S be the additive semigroup

generated by
N
⋃

i=1

1

logD′
S(i),

where S(i) is as in 10.6. Note that if S(i) 6= ∅ we have x(i−1)/N ≤ x1/2, so that using

D = x1/(2(α−δ)),

log(xi/N )

logD′
≤
(

1

2
+

1

N

)

log x

logD′
=

(

1

2
+

1

N

)

α− δ
1
2 + 2u

αN (α− δ)
< α− δ,

where we used for the last step that α−δ > α/2 and u > 2. Thus, S(i)/ logD′ ⊂ (0, α−δ).
It now follows from 10.6 and the fact that the intervals S(i) are disjoint, that

∫

S∩(0,α−δ)

dt

t
≥

N
∑

i=1

∫

S(i)/ logD′

dt

t
=
∑

i

∫

S(i)

dt

t
> α− δ.

From Theorem 3 we have that 1 ∈ S. Hence, there are a finite subset F of
⋃

i S(i)

and positive integers κ(f) for each f ∈ F such that

∑

f∈F

κ(f)f = logD′.

Let Fi = F ∩ S(i) for i = 1, 2, . . . , N , and let

κi =
∑

f∈Fi

κ(f).

Then, using S(i) = ∅ for i ≤ N/u from 10.3,

(10.8)

N
∑

i=1

κi =
∑

i

∑

f∈Fi

κ(f) ≤
∑

i

1

log(x(i−1)/N )

∑

f∈Fi

κ(f)f

<
1

log
(

x1/u−1/N
)

∑

f∈F

κ(f)f =
logD′

(1/u− 1/N) log x
< 2u/α,
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the last inequality holding when x is sufficiently large. If S(i) 6= ∅, then (10.2), (10.3) imply

that #Qi > Mi > x1/u/N2 > 2u/α > κi, again using that x is large. Thus, for each i with

κi > 0 there are at least κi distinct primes in the set Qi. Label a choice for such primes

q1,i, q2,i, . . . , qκi,i and let

d =
N
∏

i=1

κi
∏

j=1

qj,i.

We have

(10.9)

| logD′ − log d| =

∣

∣

∣

∣

∣

∑

f∈F

κ(f)f −
N
∑

i=1

κi
∑

j=1

log(qj,i)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

N
∑

i=1

(

∑

f∈Fi

κ(f)f −
κi
∑

j=1

log(qj,i)

)∣

∣

∣

∣

∣

<
∑

i

κi

(

log(xi/N )− log(x(i−1)/N )
)

=
log x

N

∑

i

κi <
2u log x

αN
,

using (10.8). Thus,

D = D′ exp(−2u(log x)/(αN)) < d < D′ exp(2u(logx)/(αN)) < D(1 + 6u(log x)/(αN)).

By choosing N near the upper end of the interval in (10.2), we have the first assertion in

10.1.

Now we show that there are many squarefree integers in [D, 2D) that are composed

of primes from Q. We choose N = ⌈6u log x⌉ in (10.2) and we let D′ =
√
2D. For each i

with κi > 0 choose κi primes from Qi and let d denote the product of all of these primes

over all choices for i. Then, as in (10.9) and by our choice of N ,

| logD′ − log d| < 2u log x

N
<

1

2
log 2

for x large, so that D < d < 2D. It remains to count the number of choices for d in the

argument. Since #Qi > Mi when κi > 0, the number of choices for d is at least

∏

i:κi>0

(⌈Mi⌉
κi

)

≥
∏

i:κi>0

(

Mi

κi

)κi

=
∏

i

(

xi/N

i2κi

)κi

>
D

∏

i(i
2κi)κi

.

Now, by (10.8),
∏

i:κi>0

i2κi < N2
∑

i
κi < N4u
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and

∏

i:κi>0

κκi
i <

(

∑

i

κi

)

∑

i
κi

< (2u)2u.

Thus, the number of choices for d exceeds D/(2uN2)2u and it remains to note that

(2uN2)2u < (log x)5u ≤ (logD)5u

for x large. This completes the proof of 10.1.

11. The distribution of primes in residue classes

For a positive integer q, an integer a coprime to q, and a real number x, let π(x, q, a) denote

the number of primes p ≤ x with p ≡ a mod q. Also, let

ψ(x, q, a) =
∑

n≤x
n≡a mod q

Λ(n), θ(x, q, a) =
∑

p≤x, p prime
p≡a mod q

log p,

where Λ is von Mangoldt’s function.

For fixed q and a coprime to q, we have the asymptotic relations

π(x, q, a) ∼ li(x)

ϕ(q)
, ψ(x, q, a) ∼ x

ϕ(q)

as x → ∞, where error estimates may be explicitly calculated. In fact the same remains

true if q is allowed to tend to infinity slowly with x, say q < (log x)2−ǫ for fixed ǫ > 0. For

q > (log x)2 we have either inequalities or ineffective asymptotic estimates. In this section

we record some effective inequalities for π(x, q, a) that are valid in large ranges for q.

Lemma 11.1. [Brun–Titchmarsh inequality] If x > q we have

π(x, q, a) ≤ 2x

ϕ(q) log(x/q)
.

The lemma in this form is due to Montgomery and Vaughan [26]. Note that the inequality

gives an upper bound for π(x, q, a) that is of the expected order of magnitude, namely

x/(ϕ(q) logx), if q < x1−ǫ. When q is of order of magnitude xα, the upper bound provided

by the lemma is presumably too large by a factor 2/(1− α).

A result similar to the following lemma, but with a somewhat weaker error estimate,

can be found in Timofeev [29, Theorem 2].
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Lemma 11.2. [effective Bombieri–Vinogradov inequality] There are absolute, effectively

computable positive numbers c6, c7 such that for all real x ≥ 3, there is an integer s(x) ∈
[(log x)1/2, exp

(

(log x)1/2
)

], such that for each real Q ∈ [x1/3 log x, x1/2],

∑

q≤Q
s(x)6 | q

max
2≤y≤x

max
gcd(a,q)=1

∣

∣

∣

∣

ψ(y, q, a)− y

ϕ(q)

∣

∣

∣

∣

≤ c6x
1/2Q(log x)5+ c6x exp

(

−c7(log x)1/2
)

.

Proof. We follow Vaughan’s proof of Bombieri’s theorem, see Davenport [15, Chapter 28].

There is an effectively computable positive number c8 such that for any number X > 2,

there is at most one integer s1 ≤ X for which there is a primitive (real) character χ1

with modulus s1, and for which the L-function L(z, χ1) has a real zero β1 > 1− c8/ logX .

Further, if s1 exists, it is at least logX . If s1 exists forX = exp
(

(log x)1/2
)

, we let s(x) = s1

and if s1 does not exist, we let s(x) =
⌊

exp
(

(log x)1/2
)⌋

. Thus, s(x) is an integer in the

interval ((log x)1/2, exp((log x)1/2)].

For a Dirichlet character χ to the modulus q, let

ψ(y, χ) =
∑

n≤y

Λ(n)χ(n).

Also, let δ(χ) = 1 if χ is the principal character, and otherwise let δ(χ) = 0. We consider

|ψ(y, χ)− δ(χ)y| for q ≤ exp
(

(log x)1/2
)

, q not divisible by s(x), and 2 ≤ y ≤ x. Any real

zero of the L-function L(z, χ) must be at most 1− c8/(log x)
1/2. We have

|ψ(y, χ)− δ(χ)y| = O
(

y1−c8/(log x)1/2 + y1−c9/(log y)1/2
)

,

where c9 is positive and effectively computable. Indeed, this follows from the prime number

theorem if χ is principal, and otherwise it is [15, Chapter 20, (8)]. Thus, uniformly for

q ≤ exp
(

(log x)1/2
)

with q not divisible by s(x), if χ has modulus q, then

(11.3) max
2≤y≤x

|ψ(y, χ)− δ(χ)y| = O
(

x exp
(

−c10(log x)1/2
))

,

where c10 = min{c8, c9}.
Consider the elementary identity

ψ(y, q, a)− y

ϕ(q)
=

1

ϕ(q)

∑

χ mod q

χ̄(a)(ψ(y, χ)− δ(χ)y),
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so that

E(x, q) := max
2≤y≤x

max
gcd(a,q)=1

∣

∣

∣

∣

ψ(y, q, a)− y

ϕ(q)

∣

∣

∣

∣

≤ 1

ϕ(q)

∑

χ mod q

max
2≤y≤x

|ψ(y, χ)− δ(χ)y|.

Let χ1 be the primitive character that induces χ mod q. Then for q ≤ x,

|ψ(y, χ)− ψ(y, χ1)| ≤
∑

m≤y
gcd(m,q)>1

Λ(m) ≤ (log y)
∑

p|q
p prime

1 = O
(

(log x)2
)

.

Thus,

E(x, q) = O



(log x)2 +
1

ϕ(q)

∑

χ mod q

max
2≤y≤x

|ψ(y, χ1)− δ(χ1)y|



 .

With ∗ indicating a sum over primitive characters, we have for any real number Q with

2 ≤ Q ≤ x,

∑

q≤Q

1

ϕ(q)

∑

χ mod q

max
2≤y≤x

|ψ(y, χ1)− δ(χ1)y|

=
∑

q1≤Q

∑

χ1 mod q1

∗
max
2≤y≤x

|ψ(y, χ1)− δ(χ1)y|
∑

k≤Q/q1

1

ϕ(kq1)

= O



(logQ)
∑

q1≤Q

1

ϕ(q1)

∑

χ1 mod q1

∗
max
2≤y≤x

|ψ(y, χ1)− δ(χ1)y|



 .

For the last step, we used ϕ(kq1) ≥ ϕ(k)ϕ(q1) and the estimate

(11.4)

∑

k≤Q

1

ϕ(k)
=
∑

k≤Q

1

k

∑

u|k
u squarefree

1

ϕ(u)
=

∑

u≤Q
u squarefree

1

ϕ(u)

∑

ul≤Q

1

ul
= O





∑

l≤Q

1

l



 = O(logQ).

Dropping the subscripts on χ and q, we thus have uniformly and effectively for real numbers

Q with 2 ≤ Q ≤ x,

(11.5)
∑

q≤Q

E(x, q) = O



Q(logx)2 + (log x)
∑

q≤Q

1

ϕ(q)

∑

χ mod q

∗
max
2≤y≤x

|ψ(y, χ)− δ(χ)y|



 .
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Let c11 = min{1, c10/2} and let Q1 = exp
(

c11(log x)
1/2
)

. We use (11.3) to estimate

the double sum in (11.5) where we restrict to those q not divisible by s(x), getting

(11.6)
∑

q≤Q1

s(x)6 | q

1

ϕ(q)

∑

χ mod q

∗
max
2≤y≤x

|ψ(y, χ)− δ(χ)y| = O
(

xQ1 exp
(

−c10(log x)1/2
))

= O(x/Q1).

We now state a consequence of Vaughan’s inequality, see [15, Chapter 28, (2)]: For

1 ≤ Q ≤ x,

∑

q≤Q

q

ϕ(q)

∑

χ mod q

∗
max
2≤y≤x

|ψ(y, χ)| = O
(

(x+ x5/6Q+ x1/2Q2)(logx)4
)

.

We apply this for real numbers U with 1 ≤ U ≤ x/2, getting

∑

U<q≤2U

1

ϕ(q)

∑

χ mod q

∗
max
2≤y≤x

|ψ(y, χ)| = O
((

x/U + x5/6 + x1/2U
)

(log x)4
)

.

By breaking (Q1, Q] into dyadic intervals (U, 2U ] and using the inequality for each one, we

obtain

∑

Q1<q≤Q

1

ϕ(q)

∑

χ mod q

∗
max
2≤y≤x

|ψ(y, χ)| = O

((

x

Q1
+ x5/6 log x+ x1/2Q

)

(log x)4
)

,

where there is no restriction on the divisibility of q by s(x). Note that since q > 1 in

the sum, any primitive χ mod q is nonprincipal, so that δ(χ) = 0. Putting this estimate

together with (11.5) and (11.6), we have

∑

q≤Q
s(x)6 | q

E(x, q) = O
(

x1/2Q(log x)5 + x exp
(

−c7(log x)1/2
))

for any choice of c7 with c7 < c11. This completes the proof of 11.2.

Lemma 11.7. With the same notation and hypotheses as in 11.2, we have

∑

q≤Q
s(x)6 | q

max
gcd(a,q)=1

∣

∣

∣

∣

π(x, q, a)− li(x)

ϕ(q)

∣

∣

∣

∣

≤ c12x
1/2Q(log x)5 + c12x exp

(

−c7(log x)1/2
)

,
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where c7 is as in 11.2, and c12 is an absolute, effectively computable number.

Proof. First note that one may replace the expressions ψ(y, q, a) in 11.2 with θ(y, q, a),

since

|ψ(y, q, a)− θ(y, q, a)| ≤
∑

n≤y
n is a power

log y = O
(

y1/2 log y
)

.

Thus, the result follows directly from 11.2 and the identity

π(x, q, a) =
θ(x, q, a)

log x
+

∫ x

2

θ(y, q, a)

y(log y)2
dy.

In fact, one can save a factor of log x using this identity, but this is unimportant.

Lemma 11.8. [Deshouillers–Iwaniec] There are effectively computable positive numbers

c13, c14 such that for each integer m with m ≥ 3 there is an effectively computable integer

xm with the following property. For arbitrary real numbers x,Q with x ≥ xm and x1/2 ≤
Q ≤ x1−1/m, and for an arbitrary integer a with 0 < |a| < x1/m, we have

π(x, q, a) ≤ (4/3 + c13/m)x

ϕ(q) log(x/q)

for almost all integers q ∈ [Q, 2Q] with gcd(q, a) = 1, the number of exceptions being less

than Qx−c14/m.

This result was announced in [16], and a sketch of the proof was presented in [17]. No claim

of effectivity for c13, c14, xm was made by the authors, but their methods are effective.

12. Sieved primes

The goal of this section is to prove Theorem 5 from the Introduction. We begin with an

elementary lemma, which puts more precision into (11.4).

Lemma 12.1. Let ξ = ζ(2)ζ(3)/ζ(6), where ζ is the Riemann zeta-function, and let

ν =
∑

u(γ − log u)/(uϕ(u)), where γ is the Euler–Mascheroni constant and u runs over

squarefree numbers. We have for any real number t > 1 that

∑

d<t

1

ϕ(d)
= ξ log t+ ν +O

(

log(2t)

t

)

.
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Proof. As in (11.4) and with u running over squarefree numbers,

∑

d<t

1

ϕ(d)
=
∑

u<t

1

uϕ(u)

∑

d<t/u

1

d
=
∑

u<t

1

uϕ(u)

(

log

(

t

u

)

+ γ +O
(u

t

)

)

= (log t)
∑

u<t

1

uϕ(u)
+
∑

u<t

γ − log u

uϕ(u)
+O

(

1

t

∑

u<t

1

ϕ(u)

)

= (log t)
∏

p prime

(

1 +
1

p(p− 1)

)

+
∞
∑

u=1

γ − log u

uϕ(u)
+O

(

log(2t)

t

)

= ξ log t+ ν +O

(

log(2t)

t

)

.

Proof of Theorem 5. We shall prove the contrapositive of Theorem 5. Let x be a positive

real number, and suppose we have a set of primes Q ⊂ (1, x1/2] such that
∑

q∈Q 1/(q−1) ≤
0.2727. Let m > 104 be an integer and let β = 1/m. Let

L = (x1/2−2β, x1/2−β) ∩ Z, H = (x1/2+β, x1/2+2β) ∩ Z.

For a prime r ≤ x, let g(r) denote the number of factorizations of r − 1 as lh, where

l ∈ L, h ∈ H,
lh is not divisible by any member of Q,
l is not divisible by s(x),

h is not divisible by any prime larger than x1/2,

where s(x) is as in 11.2. It is possible that g(r) = 0; let N denote the number of primes

r ≤ x with g(r) > 0. Then, in the notation of Theorem 5, we have R(x,Q) ≥ N . Our goal

is to get a good lower bound for R(x,Q) and so it suffices to do so for N .

From Cauchy’s inequality, we obtain

N ≥





∑

r≤x

g(r)





2



∑

r≤x

g(r)2





−1

.

Our first task is to get an upper bound for
∑

r≤x g(r)
2, and to do this we shall ignore the

non-divisibility requirements in the definition of g(r) and use only the relatively simple

11.1. We have, with [a, b] denoting the least common multiple of a, b,

∑

prime r≤x

g(r)2 ≤
∑

prime r≤x

∑

l1,l2|r−1
l1,l2∈L

1 =
∑

l1,l2∈L

π(x, [l1, l2], 1).
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By 11.1, we thus have

∑

prime r≤x

g(r)2 ≤ 2x
∑

l1,l2∈L

1

ϕ([l1, l2]) log(x/[l1, l2])

≤ x

β log x

∑

l1,l2∈L

1

ϕ([l1, l2])
.

We have

∑

l1,l2∈L

1

ϕ([l1, l2])
=

∑

d<x1/2−β

∑

gcd(l1,l2)=d
l1,l2∈L

1

ϕ(l1l2/d)
≤

∑

d<x1/2−β

∑

a,b<x1/2−β/d

1

ϕ(abd)

≤





∑

d<x1/2

1

ϕ(d)





3

≤ (log x)3,

the last inequality following from 12.1 for all x beyond an absolute bound. We conclude

that
∑

prime r≤x

g(r)2 ≤ β−1x(log x)2.

We now turn our attention to the heart of the proof, which is to obtain a reasonable

lower bound for
∑

r≤x g(r), and for this we shall use 11.7 and 11.8. Let L1 denote the set

of integers l ∈ L with l not divisible by s(x). To begin, we have

∑

prime r≤x

g(r) ≥
∑

l∈L1

π(x, l, 1)−
∑

l∈L1

π(x1/2+βl + 1, l, 1)−
∑

l∈L1

q|l for some q∈Q

π(x, l, 1)

−
∑

h∈H
q|h for some q∈Q

π(x, h, 1)−
∑

h∈H
q|h for some prime q>x1/2

π(x, h, 1)

= S1 − S2 − S3 − S4 − S5, say.

Indeed, S1 counts the number of pairs l, h where lh+1 is a prime r ≤ x and l ∈ L1, while

S2 removes from this count those pairs where h 6∈ H, S3 removes those pairs where l is

divisible by some prime in Q, etc.

For S1 we use 11.7 and get for x exceeding some bound depending on m,

S1 = li(x)
∑

l∈L1

1

ϕ(l)
+O

(

x

(log x)2

)

.
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By 12.1 and using s(x) ≥ (log x)1/2, we have for x above some bound depending on m,

S1 = ξβx+O(x/(logx)1/4).

By 11.1, we have

S2 = O

(

x1/2+β

log x

∑

l∈L1

l

ϕ(l)

)

.

From an argument like (11.4), one has
∑

l∈L1
l/ϕ(l) = O(x1/2−β), so S2 = O(x/ logx).

For S3 we use 11.7 and get for x exceeding a bound depending on m,

S3 ≤ li(x)
∑

q∈Q

∑

l∈L1, q|l

1

ϕ(l)
+O

(

x

(log x)2

)

≤ li(x)
∑

q∈Q

1

q − 1

∑

qk∈L

1

ϕ(k)
+O

(

x

(log x)2

)

.

By 12.1 we have for q ∈ Q that

∑

qk∈L

1

ϕ(k)











= ξβ log x+O(q log(2x)x2β−1/2) for q < x1/2−2β;

≤ ξβ log x+ ν +O(q log(2x)xβ−1/2) for x1/2−2β ≤ q ≤ x1/2−β;

= 0 for q > x1/2−β.

Thus,

S3 ≤ ξβx
∑

q∈Q

1

q − 1
+O

(

x

log x

)

.

We estimate S4 by using 11.8 with “m” chosen as our current m and with “Q” being

various powers of 2 so that the intervals [Q, 2Q] cover the interval (x1/2+β, x1/2+2β). If h

is an exceptional modulus in 11.8, we use the trivial estimate π(x, h, 1) ≤ x/h. Thus, for
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x exceeding some bound depending on m,

S4 =
∑

h∈H
q|h for some q∈Q

π(x, h, 1)

≤ (4/3 +O(β))x
∑

h∈H
q|h for some q∈Q

1

ϕ(h) log(x/h)
+O

(

x

log x

)

≤ (8/3 +O(β))
x

log x

∑

h∈H
q|h for some q∈Q

1

ϕ(h)
+O

(

x

log x

)

≤ (8/3 +O(β))
x

log x

∑

q∈Q

1

q − 1

∑

qm∈H

1

ϕ(m)
+O

(

x

log x

)

= (8/3 +O(β))ξβx
∑

q∈Q

1

q − 1
+O

(

x

log x

)

.

For S5 it is sufficient to use 11.1. Note that

∑

h∈H
q|h for some prime q>x1/2

1

ϕ(h)
≤

∑

x1/2<q≤x1/2+2β

q prime

1

q − 1

∑

t≤x2β

1

ϕ(t)
.

By Mertens’ theorem, the first sum on the right is O(β), and by 12.1, the second sum is

O(β log x). Thus, the sum
∑

1/ϕ(h) is O(β2 log x), so that we have

S5 ≤ 2x
∑

h∈H
q|h for some prime q>x1/2

1

ϕ(h) log(x/h)

= O

(

x

log x

∑

h∈H
q|h for some prime q>x1/2

1

ϕ(h)

)

= O(β2x).

Putting together our estimates for S1, S2, S3, S4, S5 we have that for x exceeding some

bound depending on m,
∑

prime r≤x

g(r) ≥ S1 − S2 − S3 − S4 − S5

≥ ξβx

(

1− (11/3 +O(β))
∑

q∈Q

1

q − 1

)

+O(β2x) +O(x/(log x)1/4)

≥ ξβx
(

1− (11/3 +O(β))0.2727
)

+O(x/(logx)1/4)

= ξβx(10−4 +O(β)) +O(x/(log x)1/4).
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Thus, there is some absolute, computable, positive integer c15 such that if m = c15 and

β = 1/m, we have
∑

prime r≤x

g(r) ≥ ξx/m2 = ξx/c215

for x ≥ X0, where X0 is a computable constant. Using this with our upper bound for
∑

r≤x g(r)
2 and choosing δ = ξ2/c515, we get that N ≥ δx/(log x)2. This completes the

proof of Theorem 5.

Remarks. By using results of Bombieri–Friedlander–Iwaniec instead of 11.8 and the method

of Friedlander [20] instead of Balog, one may not only replace “0.2727” with “1/2” in

Theorem 5, but the number of primes r satisfying the condition is of order of magnitude

π(x). However, these tools involve constants that are not effectively computable. If one

is not concerned with effective constants, this stronger form of Theorem 5 would support

the conclusion of 2.15 with “46/25” replaced with any fixed number c > 1 (and with

“c4” depending on c). It is likely that the work of Baker–Harman would lead to a further

(ineffective) improvement. See also [21].

13. The existence of period systems

In this section we prove 2.15. We first show that there are many period pairs for n.

Proposition 13.1. Let n be an integer, n > 1, and let w, y be real numbers. Each prime

number r satisfies at least one of the following conditions:

(i) the element (n mod r) of Fr is either zero or has multiplicative order at most w;

(ii) the number r − 1 has a divisor m > w composed of primes at most y;

(iii) there is an integer q with q > y and q2 | r − 1;

(iv) there is a prime q such that q > y and (r, q) is a period pair for n.

Proof. If (n mod r) does not belong to F∗
r then (i) holds. Suppose (n mod r) ∈ F∗

r, and let

m be the order of (n mod r) in F∗
r . Then m divides r − 1. If m ≤ w, then (i) holds, so

suppose m > w. If m has no prime factor exceeding y, then (ii) holds. Suppose therefore

that q is a prime factor of m with q > y; then q equals the order of (nm/q mod r). If

q divides (r − 1)/m, then (iii) holds. If q does not divide (r − 1)/m, then the element

(n(r−1)/q mod r) = (nm/q mod r)(r−1)/m has order q, and (iv) holds. This proves 13.1.

Let ρ:R≥0 → R>0 denote the Dickman–de Bruijn function. That is, ρ is the continuous

solution to the equation ρ′(u) = −uρ(u− 1) for u > 1, with the initial condition ρ(u) = 1
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on [0, 1]. From [13] we have

(13.2) log ρ(u) = −u · log(u logu) +O(u) for u ≥ 2.

Lemma 13.3. Let x, u, v be real numbers with x ≥ 20, 1 ≤ v ≤ u ≤
√

(log x) log log x,

and put y = x1/u, w = yv. The number of prime numbers r ≤ x satisfying 13.1(ii) is at

most

O

(

uπ(x)
( ρ(v)

log(2v)
+ ρ(u)

)

)

.

Proof. This is Theorem 2 from [27].

Proposition 13.4. For all sufficiently large integers n, if x is a real number such that

x ≥ (logn)1.001, then the number of prime numbers r ≤ x for which there does not exist

a period pair (r, q) for n satisfying

q is prime, q > x1/(log logx)2

is at most x/(log x)3.

Proof. By 13.1, it suffices to show that when n is a sufficiently large integer and x is a real

number with x ≥ (logn)1.001, the number of primes r ≤ x satisfying one of 13.1(i)–(iii),

with w = x1/ log log x and y = x1/(log logx)2 , is at most x/(logx)3. We prove this by showing

that the number of such primes r is o
(

x/(log x)3
)

as n→ ∞.

If the prime r satisfies 13.1(i), then either r | n or r | nm − 1 for some integer m

in [1, w]. Since the number of distinct prime divisors of a positive integer k is at most

(log k)/ log 2, the number of primes r satisfying 13.1(i) is at most

logn

log 2
+
∑

m≤w

m · logn
log 2

≤ w2 · logn
log 2

≤ 2x1000/1001+2/ log log x = o
(

x/(log x)3
)

as n→ ∞.

To estimate the number of primes r ≤ x satisfying 13.1(ii) we apply 13.3 with v =

log log x and u = v2; one finds via (13.2) that as n→ ∞, this number is at most

x/(log x)(1+o(1)) log log log x = o
(

x/(log x)3
)

.

The number of integers r with 1 < r ≤ x satisfying 13.1(iii) is clearly at most
∑

q>y x/q
2 < x/(y − 1) = o

(

x/(log x)3
)

as n→ ∞.
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This proves 13.4.

Let n be an integer at least 20 and choose real numbers x, u with

(13.5) x ≥ (logn)1.001, u = (log log x)2.

For a prime r, let Q(r) = Q(r, n, x, u) denote the set of prime divisors q of r − 1 with

x1/u < q ≤ x1/2 and (r, q) is a period pair for n.

Further, let Q = Q(n, x, u) denote the union of the sets Q(r) over all primes r ≤ x. Note

that each subset S of Q corresponds to at least one period system for n with degree
∏

q∈S q

and where each pair (r, q) used satisfies r ≤ x, q ≤ x1/2, and q prime.

Proposition 13.6. For all sufficiently large integers n and with x, u as in (13.5), we have

∑

q∈Q

1

q − 1
> 0.2727.

Proof. Let

A = {prime r ≤ x : prime q | r − 1 implies q ≤ x1/2 and q 6∈ Q},
B = {prime r ≤ x : prime q | r − 1 implies q ≤ x1/u or (r, q) is not a period pair for n}.

Clearly A ⊂ B. We use Theorem 5. Suppose n is so large that Theorem 5 and 13.4 hold

for all x ≥ (logn)1.001. Since 13.4 implies that #B ≤ x/(log x)3, we have #A ≤ x/(log x)3.

Using Theorem 5, the conclusion of 13.6 now follows for sufficiently large x, completing

the proof.

Proof of Proposition 2.15. Let n,D be integers with n ≥ 20 and D > (logn)46/25. Further,

let α = 0.2726, let x = D(25/46)1.001 (so that (logn)1.001 < x < D6/11), and let u =

(log log x)2. Then (13.5) holds. Let ǫ = 10−4 and let c4 ≥ 20 be so large that n ≥ c4

implies that 13.6 holds,

x−1/u < ǫ, 2 < u < (log x)1/10,
α

4u
>

1

15(log logD)2
,

and x ≥ x0(α, ǫ) in 10.1. With Q as above, we have
∑

q∈Q 1/q >
∑

q∈Q 1/(q − 1) −
x−1/u > 0.2727 − ǫ = α. We apply 10.1 with the current choices for α, ǫ, x, u,Q, noting

that 1/(2(α − ǫ)) < 46/25. Since (logD)5u < exp(5(log logD)3), we thus have 2.15 with

c5 = 15.
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