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Abstract. Let s(n) denote the sum of the positive divisors of n except for n iteself.
Discussed since Pythagoras, s may be the first function of mathematics. Pythagoras also
suggested iterating s, so perhaps considering the first dynamical system. The historical
legacy has left us with some colorful and attractive problems, mostly still unsolved.
Yet the efforts have been productive in the development of elementary, computational,
and probabilistic number theory. In the context of the Catalan–Dickson conjecture and
the Guy–Selfridge counter conjecture, we discuss the geometric mean of the numbers
s(s(2n))/s(2n), thus extending recent work of Bosma and Kane. We also discuss the
number of integers m with s(m) = n.

1. Introduction

Let σ(n) denote the sum of the natural divisors of the positive integer n. Let s(n)
be the sum of only the proper divisors of n, so that s(n) = σ(n) − n. “Perfect” and
“amicable” numbers are attributed to Pythagoras. A perfect number is one, like 6, where
s(n) = n, and an amicable number, like 220, is not perfect, but satisfies s(s(n)) = n.
(The name “amicable” stems from the pair of numbers n and s(n) = m, where s of one
is the other.) Euclid found the formula 2p−1(2p − 1) that gives perfect numbers whenever
the second factor is prime, and Euler proved that all even perfect numbers are given by
this formula. No odd perfect numbers are known. The search for even perfect numbers
spurred theoretical developments, such as the Lucas–Lehmer primality test, a forerunner
of all of modern primality testing (see [24]).

The ancient Greeks also distinguished two types of non-perfect numbers, the “deficient”
ones, where s(n) < n, and the “abundant” ones, where s(n) > n. This concept spurred
the development of probabilistic number theory, when Davenport showed that the sets
of deficient and abundant numbers each have an asymptotic density, and more generally
showed that s(n)/n has a distribution function.

Prominent among the many unsolved problems about s is the century-old Catalan–
Dickson conjecture ([4], [5]). This asserts that starting from any positive integer n and
iterating s, one arrives eventually at 1, then stopping at 0, or one enters a cycle, such as
a 1-cycle (perfect numbers), a 2-cycle (amicable pairs), or a higher order cycle. That is,
the conjecture asserts that every orbit is bounded. This conjecture has helped to spur on
modern factorization algorithms (since one needs the prime factorization of n to compute
s(n)). The first number in doubt is 276, where thousands of iterates have been computed,
reaching beyond 175 decimal digits. Although we know of no unbounded sequences of this
type, Guy and Selfridge [11] came up with a “counter” conjecture, namely that for almost
all1 even seeds, the sequence is unbounded, while for almost all odd seeds it is bounded.

We extend the definition of s to include s(0) = 0, and for n ≥ 0, we let sk(n) denote the
k-th iterate of s at n. The sequence n, s(n), s2(n), . . . is known as the “aliquot” sequence
with seed n. Numbers in a cycle under the s-iteration are called “sociable”. It’s known
(see [14]) that the set of even sociable numbers has asymptotic density 0 and the set
of odd sociable numbers has upper asymptotic density at most the density of the set of
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odd abundant numbers (which is ≈ 0.002). It is conjectured that the set of odd sociable
numbers has density 0. It is not known if there are infinitely many sociable numbers,
though it is conjectured that this is the case.

The evidence either for the Catalan–Dickson conjecture or the Guy–Selfridge counter
conjecture is mixed. Perhaps pointing towards Guy–Selfridge is the theorem of Lenstra [15]
that there exist arbitrarily long strictly increasing aliquot sequences, and the strengthening
of Erdős [8] that for each k and almost all abundant numbers n, the aliquot sequence with
seed n strictly increases for k steps. (The asymptotic density of the abundant numbers is
known to be ≈ 0.2476 [13].) These theoretical results are borne out in practice, where it is
found not uncommonly that certain divisors (such as 24), known as “drivers”, persist for
long stretches in the sequence, and when these divisors are abundant, the sequence grows
geometrically at least as long as this persistence.

However, the persistence of an abundant driver is not abolute, and its dominance can
be broken, sometimes by a “down driver”, such as 2 (where the number is not divisible by
4 nor 3), which can also persist and tends to drive the sequence lower geometrically. It is
rare for a sequence to switch parity, this occurs if and only if one hits a square or its double.
Since the even numbers are where the principal disagreement in the two conjectures lie,
Bosma and Kane [3] considered the geometric mean, on average, for s(2n)/2n. Namely,
they showed that there is a real number β such that

1

x

∑
n≤x

log(s(2n)/2n)→ β as x→∞,

and that β ≈ −0.03 is negative. This may be interpreted as evidence in favor of Catalan–
Dickson and against Guy–Selfridge.

However, very little is known about the set of numbers s(n), with even less known
about sk(n) when k ≥ 2, so statistical results about seeds n already seem less relevant
when one proceeds a single step into the aliquot sequence. We do know that almost all
odd numbers are of the form s(n), a result whose proof depends on approximations to
Goldbach’s conjecture that even numbers are the sum of two primes. In fact, almost all
odd numbers are in the image of every sk, see [9, Theorem 5.3]. More mysterious are
the even numbers in the range of s. Erdős [7] showed that a positive proportion of even
numbers are not of the form s(n), while it was only very recently shown in [17] that a
positive proportion of even numbers are of the form s(n). In [22] we give a heuristic
argument with some numerical evidence that the asymptotic density of the even numbers
of the form s(n) is about 1/3, also see [26].

Our principal result is an extension of the Bosma–Kane theorem to the next iterate.

Theorem 1.1. The average value of log(s2(2n)/s(2n)) is asymptotically equal to the av-
erage value of log(s(2n)/2n). That is,

1

x

∑
2≤n≤x

log(s2(2n)/s(2n)) ∼ 1

x

∑
1≤n≤x

log(s(2n)/2n) ∼ β, as x→∞.

.

(The reason the first sum excludes n = 1 is that s2(2) = 0.) The proof of Theorem 1.1
uses some ideas from [17] and [18].

We also consider the sets s−1(n), obtaining what is likely to be an asymptotic formula
for its size when n > 1 is odd. The set s−1(1) is the set of primes, but for n > 1, s−1(n)
is finite (in fact every preimage of n under s is smaller than n2).

We mention some other recent work on s. In Bosma [2] the aliquot sequence is computed
for each seed to 106 until it terminates, cycles, or surpasses 1099. He found that about 1/3
of the even seeds are in this last category, perhaps lending some support to Guy–Selfridge.
In Troupe [27] it is shown that the normal number of prime factors of s(n) is log log n,
thus extending the theorem of Hardy and Ramanujan about the normal number of prime
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factors of n. In [25] it is shown that for all large x the number of amicable numbers n ≤ x
is smaller than x/ exp(

√
log x).

By way of notation, we have ω(n) as the number of distinct prime divisors of the natural
number n, Ω(n) as the total number of prime factors of n with multiplicity, and τ(n) as
the number of positive divisors of n. We let P+(n) denote the largest prime factor of
n > 1, with P+(1) = 1. We let rad(n) denote the largest squarefree divisor of n. We
write a ‖ b if a | b and (a, b/a) = 1. We reserve the letters p, q for primes. We let logk x
denote the k-fold iteration of the natural logarithm at x, and when we use this notation
we assume that the argument is large enough for the expression to be defined. We write
f(x)� g(x) if f(x) = O(g(x)), and we write f(x) � g(x) if f(x)� g(x)� f(x).

2. The double iterate

In this section we prove Theorem 1.1.

Proof. It follows from [8] and [9] (also see [21] and [18]) that s2(n)/s(n) ∼ s(n)/n as
n→∞ on a set of asymptotic density 1. Thus,

log(s2(n)/s(n)) = log(s(n)/n) + o(1)

on this same set. However, some terms here are unbounded, both on the positive side
and the negative side, and it is conceivable that a set of asymptotic density 0 could
be of consequence when averaging. This event commonly occurs. For example, when
computing the average of τ(n), the number of divisors of n, one finds the normal size of
τ(n) is considerably smaller than the average size.

By the theorem of Bosma and Kane,∑
n≤x

log(s(2n)/2n) ∼ βx, as x→∞,

where β ≈ −0.03. Thus, we need to show that for each fixed ε > 0, there is some number
B such that the contribution to the two sums in our theorem from terms which have
absolute value > B has absolute value at most εx.

Note that no term in the Bosma–Kane sum is smaller than − log 2. However, the terms
log(s2(2n)/s(2n)) can be smaller than this; for example, when n = 2 we have − log 4.
However, using s(n)� n log2 n, we have

log(s2(2n)/s(2n)) ≥ log(1/s(2n)) ≥ − log n− log3 n+O(1).

Now if s2(2n)/s(2n) < 1/2, we have s(2n) odd, which implies that n or 2n is a square.
Thus,

1

x

∑
1<n≤x

s2(2n)/s(2n)<1/2

log(s2(2n)/s(2n)) ≥ −2
log x+ log3 x+O(1)

x1/2
.

So it remains to show that large positive values are of small consequence. A useful
result is the following.

Theorem E. Uniformly for every positive number x, the number of positive integers n ≤ x
with s(n)/n > y is at most

x/ exp(exp((e−γ + o(1))y)), as y →∞.

This result is essentially due to Erdős, see [14, Theorem B].
We can use Theorem E as follows. Let y0 be so large that the count in Theorem E is

smaller than x/ exp(exp(y/2)) for all y ≥ y0. Let B ≥ y0 be a large fixed number. The

contribution to the Bosma–Kane sum from those n ≤ x with B2j−1
< s(2n)/2n ≤ B2j is

at most
2x log(B2j )

exp(exp(B2j−1/2))
.
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Summing this for j ≥ 1 we get a quantity that is� x logB/ exp(exp(B/2))). Since B may
be fixed as arbitrarily large, the numbers n ≤ x with s(2n)/2n > B give a contribution of
vanishing importance.

We need to show the same result for s2(2n)/s(2n), and this is the heart of the argument.
Let y = y(x) = (log2 x)/(log3 x)2.

Proposition 2.1. But for O(x/y4/3) integers n ≤ x we have∣∣∣∣s2(n)

s(n)
− s(n)

n

∣∣∣∣� log4 x

log3 x
· σ(n)

n
.

Proof. We first show that we may assume that for each integer m ≤ y there are 5 distinct
primes p1, . . . , p5 with each pi ‖n and pi ≡ −1 (mod m). To see this, let Pm denote the

set of primes p ∈ (y2, x1/5] with p ≡ −1 (mod m). Using [23] we have

Sm :=
∑
p∈Pm

1

p
=

log(log(x1/5)/ log y)

ϕ(m)
+O(1),

uniformly for each m ≤ y. Thus, for x sufficiently large, we have each

Sm ≥
log2 x

2m
.

The number of n ≤ x divisible by some p2 with p > y2 is O(x/y2), so we may assume that
the numbers n we are considering are never divisible by p2 for p in some Pm. The number
of n ≤ x not divisible by 5 different members of Pm is, via the sieve,

�
(

1 + Sm +
1

2
S2
m +

1

6
S3
m +

1

24
S4
m

)
x

exp(Sm)
� x(log2 x)4

exp
(
log2 x
2m

) ≤ x(log2 x)4

exp
(
1
2(log3 x)2

) .
Summing for m ≤ y, we get an estimate that is � x(log2 x)5/ exp(12(log3 x)2). Thus, but

for a negligible set of n ≤ x, m5 | σ(n) for every m ≤ y.
For n ≤ x, let m = m(n) be the largest divisor of n supported on the primes ≤ y. If

pa | m(n) with pa > y2, then a ≥ 3. The number of such n is at most∑
p≤y
pa>y2

x

pa
� x

y4/3
,

so we may assume that each pa | m(n) has pa ≤ y2. We claim that if n has not so far
been excluded, then m(n) = m(s(n)). If p ≤ y, then p5 | σ(n), so that p | n if and only if
p | s(n). Suppose pa ‖n with pa ≤ y. Then p5a | σ(n), so pa ‖ s(n). It remains to consider
the case of pa ‖m(n) with y < pa ≤ y2. Let b be the largest integer with pb ≤ y. Then

pb ≥ y1/2, so that 5b > a. But, as we have seen, p5b | σ(n). Thus pa ‖ s(n). We conclude
that m(n) = m(s(n)).

To complete the proof of the proposition, we must show that primes p > y do not
overly influence the values s(n)/n and s2(n)/s(n). The number of integers n ≤ x with
ω(n) > 3 log2 x is � x/ log x by a well-known result of Hardy and Ramanujan. So, we
may assume that ω(n) ≤ 3 log2 x. The sum of reciprocals of the first b3 log2 xc primes
larger than y is � log4 x/ log3 x. Thus,

s(n/m(n))

n/m(n)
� log4 x

log3 x
,

and so∣∣∣∣s(n)

n
− s(m(n))

m(n)

∣∣∣∣ =
s(n/m(n))

n/m(n)
· σ(m(n))

m(n)
� log4 x

log3 x
· σ(m(n))

m(n)
≤ log4 x

log3 x
· σ(n)

n
.

It thus suffices to prove a similar result for s2(n)/s(n). By a result of [6], the number

of n ≤ x with P+(n) ≤ x1/ log3 x is at most x/(log2 x)(1+o(1)) log4 x, as x → ∞. Thus, we
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may assume that P+(n) > x1/ log3 x. Suppose that ω(s(n)) > 7 log2 x log3 x. Write n = pk
where p = P+(n). By a result above we may assume that p - k. Thus,

(1) s(n) = ps(k) + σ(k).

Since ω(s(n)) > 7 log2 x log3 x, there is a divisor u of s(n) with u < x1/ log3 x and ω(u) >
7 log2 x. Let u1 be the largest divisor of u that is coprime to n. From (1) we have u1
coprime to s(k). Since we may assume that ω(n) ≤ 3 log2 x, we have ω(u1) > 4 log2 x.
Reading (1) as a congruence mod u1, we see that for a given choice of k and u1, p is

determined mod u1. Since k < x1−1/ log3 x and u1 < x1/ log3 x, it follows that the number
of choices for p, and thus for n is

≤
∑

k<x1−1/ log3 x

∑
u1<x1/ log3 x

ω(u1)>4 log2 x

x

ku1
� x

log x
,

again using the result of Hardy and Ramanujan mentioned above. Thus, we may assume
that ω(s(n)) ≤ 7 log2 x log3 x. Since the reciprocal sum of the first 7 log2 x log3 x primes
> y is � log4 x/ log3 x and m(s(n)) = m(n), we have∣∣∣∣s2(n)

s(n)
− s(m(n))

m(n)

∣∣∣∣� log4 x

log3 x
· σ(m(n))

m(n)
≤ log4 x

log3 x
· σ(n)

n
.

This completes the proof of the proposition. �

We now complete the proof of the theorem. We have seen that the negative terms
in the sums with large absolute values are negligible, and that large positive values of
log(s(n)/n) are also negligible. Since s(n)/n� log2 n for n ≥ 3, it follows that for n ≤ x
with s2(2n)/s(2n) ≥ 1, we have log(s2(2n)/s(2n))� log3 x. Thus, the contribution to the

sum from those terms not satisfying the inequality in Proposition 2.1 is� x(log3 x)/y4/3 =
o(x). Since

∑
n≤x σ(n)/n � x, it follows that the difference of the two sums for those

n ≤ x which satisfy the inequality of Proposition 2.1 is � x log4 x/ log3 x = o(x). This
completes the proof of the theorem. �

Corollary 2.2. We have ∑
n≤x

s2(n)

s(n)
∼
∑
n≤x

s(n)

n
as x→∞

and ∑
n≤x

s2(n)

n
∼
∑
n≤x

(
s(n)

n

)2

as x→∞.

These results follow from the tools used to prove Theorem 1.1. Note that, where ζ is
the Riemann zeta function,∑

n≤x

s(n)

n
∼ (ζ(2)− 1)x,

∑
n≤x

(
s(n)

n

)2

∼
(
ζ(2)2ζ(3)

ζ(4)
− 2ζ(2) + 1

)
x as x→∞.

In [9] the following conjecture is proposed.

Conjecture 2.3. If A is a set of natural numbers of asymptotic density 0, then s−1(A)
has asymptotic density 0.

Theorem 2.4. Assuming Conjecture 2.3, then for each integer k ≥ 2 there is a set Ak of
asymptotic density 1 such that

1

x

∑
n≤x
n∈Ak

log(sk(n)/sk−1(n))→ β, as x→∞.
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Proof. We first note that a consequence of the conjecture is that if A has density 0, then
s−1k (A) = {n : sk(n) ∈ A} has density 0. This is clear for k = 1. For k ≥ 2, by the case

k = 1 and induction, s−1k (A) = s−1k−1(s
−1(A)) has density 0.

Let A be the set of integers n such that for each m ≤ log2 n/(log3 n)2 there are at least
5 distinct primes p ‖n with p ≡ −1 (mod n). We have seen in the proof of Proposition
2.1 that A has asymptotic density 1. If we also insist that members n of A satisfy ω(n) ≤
3 log2 n, then A still has asymptotic density 1. Letting B denote the complement of A,
the conjecture implies that s−1j (B) has density 0 for each j < k. Let Ak be the part of A

lying outside of each of these sets s−1j (B) so that Ak has density 1. We have seen in the

proof of Proposition 2.1 that if n, s(n) ∈ A, then s2(n)/s(n) ∼ s(n)/n. However, if n ∈ Ak
then all of n, s(n), . . . , sk−1(n) are in A, so all of the ratios sj+1(n)/sj(n) are asymptotic
to each other. This proves the theorem. �

In [3] the authors also study the full sum
∑

1<n≤x log(s(n)/n), showing that it is asymp-

totically −e−γx log2 x. We can prove this for log(s2(n)/s(n)), with the proviso that n runs
over composite numbers to avoid undefined summands. The sum of log(s(n)/n) is ana-
lyzed by singling out those n with the same smallest prime factor q. The terms when
q < exp((log x)ε) account for a vanishingly small portion of the sum when ε is small (and
so this is another case where the asymptotics are dominated by those terms corresponding
to a set of density 0). To prove the result for log(s2(n)/s(n)), one reduces to the case

when p = P+(n) > x1/ log2 x, writes n = pm, and assumes that m has no prime factors up
to (log2 x)2. Fixing a prime q in the range exp((log x)ε) < q < exp((log x)1−ε) and a value
for m, one counts primes p ≤ x/m such that s(pm) has least prime factor q. This can be
done asymptotically correctly using the fundamental lemma of the sieve, see [12].

We do not have an analogue of Theorem 2.4 for log(sk(n)/sk−1(n)) since presumably
the sum of these terms is principally supported on a set of n of density 0.

3. The inverse image

For a positive integer n, let G(n) denote the number of pairs of primes p > q with
n = p+ q.

Lemma 3.1. Suppose that n, v,D are given with n > 1, (v, nD) = 1, and rad(D) | n.
The number of prime powers pa coprime to vD with s(pavD) = n is O(log n), while there
is at most one number u coprime to nvD with u < v and s(uvD) = n.

Proof. For the first assertion, using s(pavD) = n and (pa, vD) = 1, we have

pas(vD) + s(pa)σ(vD) = n.

Consider the polynomial f(x) = s(vD)xa + σ(vD)(xa−1 + xa−2 + · · · + 1), so that f is
increasing for x > 0. This implies that for a, v,D, n fixed, there is at most one prime p
with f(p) = n. Since pa < n2, there are at most O(log n) choices for a, that is, at most
O(log n) polynomials. This proves the first assertion.

Now we consider the case when u < v. We have n = s(uvD) = σ(u)σ(vD) − uvD, so
that

n ≡ −uvD (mod σ(vD)).

Let d = (n, σ(vD)), so that d | uvD. Since n is coprime to uv, we have d | D. Thus,

n

d
≡ −uvD

d

(
mod

σ(vD)

d

)
and this shows that given n,D, d, v, we have u determined modulo σ(vD)/d. But

u < v < σ(vD)/d,

so u is determined. This proves the second assertion. �
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Lemma 3.2. Suppose that m is a number with ω(m) ≥ 2, with pa the greatest prime

power dividing m, and with qb the greatest prime power dividing m/pa. If pa < m1/2, then

m has a factorization as uv where u, v are positive coprime integers and u < v < (mqb)1/2.

Proof. Let 1 ≤ u < v be coprime with uv = m and v minimal. Assuming pa < m1/2, then
v 6= pa. Let rc be the least prime power with rc ‖ v, so that rc ≤ qb, and let u′ = urc,
v′ = v/rc. By the minimality of v, we have u′ > v′ and u′ ≥ v. But u′v = uvrc ≤ mqb, so

that v = min{u′, v} ≤ (mqb)1/2. �

Theorem 3.3. For a fixed integer n > 1, the number of integers m with s(m) = n and

(m,n) > 1 is Oε(n
2/3+ε) for each ε > 0.

Proof. If s(m) = n, we have m < n2. Let 1 < D < n2 run over numbers with rad(D) | n.
Every m with s(m) = n and (m,n) > 1 may be written as m0D for some such D, where
(m0, Dn) = 1. Since m0 is a proper divisor of m, we have m0 < s(m) = n. If m0 = 1,
this is 1 possibility for m0. If m0 = pa, Lemma 3.1 implies there are at most O(log n)

possibilities for m0. If m0 = paqb with pa > qb, then qb < n1/2 and each choice of qb gives
O(log n) possibilities for m0. So, there are O(n1/2) possibilities for m0 in this case.

Now assume that ω(m0) = k ≥ 3. If pa is the largest prime power dividing m0, we

may assume that pa < m
1/3
0 , since otherwise, m0/p

a is an integer smaller than n2/3 which
determines pa in at most O(log n) ways. Then Lemma 3.2 implies that there are coprime

integers u, v with m0 = uv and u < v < n2/3. Thus, the second part of Lemma 3.1 implies
there are at most n2/3 possibilities for m0.

Given n, there are at most no(1) choices for D < n2 with rad(D) | n, as n → ∞ (see

the proof of Theorem 11 in [10] or [20, Lemma 4.2]). Thus, there are at most n2/3+o(1)

choices for m with s(m) = n and (m,n) > 1. �

Theorem 3.4. For n > 1, the number of integers m with (m,n) = 1 and s(m) = n is

G(n− 1) +O(n3/4 log n).

Proof. Using n > 1, if ω(m) ≤ 1 there are O(log n) choices for m. If ω(m) = 2 and m = pq
is squarefree, then a solution to s(pq) = n is equivalent to a solution to p+ q+ 1 = n with
p > q. Thus, the number of choices for m is G(n − 1). Now suppose that ω(m) = 2 and
m is not squarefree, so that Ω(m) ≥ 3. Let m = paqb with p > q and note that

q2 < paqb−1 < s(m) = n,

so that q < n1/2. For q fixed, each of the O(log n) choices of b gives rise to O(log n) choices

for pa, so that with q running over primes, there are O(n1/2 log n) choices for m in this
case.

Now suppose that ω(m) = 3 and m is squarefree. Write m = pqr where p > q > r.

Since pq < s(m) = n, we have q < n1/2. Let l = s(qr) = q+ r+ 1, so that l� n1/2. With
x a polynomial variable, we have

(x− q)(x− r) ≡ x2 + x+ n (mod l).

Indeed −q − r ≡ 1 (mod l), and using σ(qr) = qr + l, we have

n = s(m) = ps(qr) + σ(qr) = pl + qr + l ≡ qr (mod l).

For a given choice of l, the polynomial x2 + x + n has at most O(l1/2) roots modulo l.

Thus, as l � n1/2, there are at most O(n3/4) choices for m in this case. If m is not
squarefree, write m = paqbrc, with a ≥ 2 and qb > rc. We have parc < n and qbrc < n.
The latter implies that rc < n1/2 and the former implies that pa < n/rc. The number of

prime powers pa with a ≥ 2 corresponding to rc is thus at most O((n/rc)1/2/ log n). Now

summing over prime powers rc < n1/2, we get O(n3/4/(log n)2) pairs pa, rc, so by Lemma

3.1, there are at most O(n3/4/ log n) choices for m in this case.
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The rest of the proof will follow from the next Proposition together with Lemma 3.1 in
the case D = 1. �

Proposition 3.5. If n > 1, s(m) = n, and ω(m) ≥ 4, then there are positive integers u, v

with (u, v) = 1, m = uv, v ≤ n3/4, and either u < v or ω(u) = 1.

Proof. We write m = pa11 . . . pakk where pa11 > · · · > pakk . We also write paii = nθi , so that
θ1 > · · · > θk > 0. Since m/pakk < n, we have

(2) θ1 + · · ·+ θk−1 < 1.

Consider the case k = 4. By way of contradiction, we may assume that the lesser of
θ1 + θ3 and θ2 + θ3 + θ4 exceeds 3

4 , say it is 3
4 + ε, where ε > 0. Then θ1 + θ2 >

3
4 + ε,

so by (2), we have θ3 <
1
4 − ε, so that θ4 <

1
4 − ε. This then implies that θ2 >

1
4 + 3ε.

Since θ1 + θ3 ≥ 3
4 + ε, we have θ1 >

1
2 + 2ε. Thus, θ1 + θ2 >

3
4 + 5ε. We continue,

starting with this inequality, getting θ4 < θ3 <
1
4 − 5ε, θ2 >

1
4 + 11ε, θ1 >

1
2 + 6ε, and

θ1 + θ2 >
3
4 + 17ε. Continuing the process j times starting from θ1 + θ2 >

3
4 + ε, we get

θ1 + θ2 >
3
4 + (2 · 3j − 1)ε. If j is large enough, we have θ1 + θ2 > 1, contradicting (2).

Now suppose that k ≥ 5. Let α =
∑k

1 θi. Note that (2) implies that α < 5
4 . Since we

may assume that
∑k

2 θi >
3
4 , it follows that θ1 <

1
2 . By Lemma 3.2 we thus may assume

that θ2 >
3
2 − α, so that θ1 + θ2 > 3 − 2α. By (2), we have

∑k−1
3 θi < 1 − (θ1 + θ2), so

that using k ≥ 5,
k∑
i=3

θi <
3

2
(1− (θ1 + θ2)).

Then, since θ1 + θ2 = α−
∑k

3 θi, we have

θ1 + θ2 > α− 3

2
(1− (θ1 + θ2)),

which implies that θ1 + θ2 < 3− 2α, a contradiction. �

Corollary 3.6. If n > 1 is odd, then

#s−1(n) = G(n− 1) +O(n3/4 log n).

If n > 0 is even, then for every ε > 0,

#s−1(n) = Oε(n
2/3+ε).

Proof. The first assertion follows immediately from Theorems 3.3 and 3.4, in fact, it is not
necessary that n be odd. The second assertion will follow from Theorem 3.3 if we show
that when n is even, there are not too many integers m coprime to n with s(m) = n. Such
an integer m must be an odd square, say it is p2l2, where p = P+(m). Then pl2 < n and
if p - l,

n = s(m) = (p+ 1)σ(l2) + p2s(l2).

Given l, the right side is increasing with p, so there is at most 1 choice for p. So in all,
there are at most 2 choices for p: the 1 determined from the equation above and P+(l).
Hence l is an integer smaller than

√
n and it determines at most 2 choices for p. Hence

there are at most O(
√
n) choices for m. This completes the proof. �

Remark. The formula given for #s−1(n) when n is odd is likely to be an asymptotic
formula in that G(n− 1) is likely to be larger than n1−ε for all sufficiently large odd n. In
fact, a strong form of Goldbach’s conjecture asserts that for k even,

G(k) ∼ k2

2ϕ(k)(log k)2

∏
p-k

(
1− 1

(p− 1)2

)
,

and it is known that this asymptotic holds for almost all even numbers k (see for example
[19, Section 8]). We conjecture that the error term exponent for odd n in Corollary 3.6 is
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1/2 + ε. An averaging argument shows that it cannot be improved to 1/2− ε. In the case
of n even, the exponent may be o(1). It is not hard to show that for each positive integer
k the upper density of the set of even numbers n with #s−1(n) ≥ k is O(1/k). On the
other hand, it seems difficult to show there are infinitely many even n with #s−1(n) ≥ 3.

Addendum and Acknowledgment

A very recent result of Booker [1, Cor. 2.3] improves the second part of Corollary 3.6

above: For n even, #s−1(n) = Oε(n
1/2+ε.

I am grateful to Noah Lebowitz-Lockard and Paul Pollack for some very helpful com-
ments.
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Math. Comp. 83 (2014), no. 288, 1903–1913.
[27] L. Troupe, On the number of prime factors of values of the sum-of-proper-divisors function, J. Number

Theory, to appear.



10 CARL POMERANCE

Mathematics Department, Dartmouth College, Hanover, NH 03755, USA
E-mail address: carl.pomerance@dartmouth.edu


