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The sum-of-proper-divisors function

Let s(n) be the sum of the proper divisors of n:

For example:

s(10) = 1 + 2 + 5 = 8,

s(11) = 1,

s(12) = 1 + 2 + 3 + 4 + 6 = 16.

In modern notation: s(n) = σ(n)− n, where σ(n) is the sum of

all of n’s natural divisors.
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Pythagoras noticed that s(6) = 1 + 2 + 3 = 6

If s(n) = n, we say n is perfect.

And amazingly, he noticed that

s(220) = 284, s(284) = 220.

Such pairs are called amicable.

By iterating s, Pythagoras was looking at the first dynamical

system! That is, keep iterating s until one gets to a cycle, to 0,

or . . . ?

A sequence under s-iteration is known as an aliquot sequence:

2



10→ 8→ 7→ 1

12→ 16→ 15→ 9→ 4→ 3→ 1

14→ 10 . . .

18→ 21→ 11→ 1

20→ 22→ 14 . . .

24→ 36→ 55→ 17→ 1

25→ 6→ 6

26→ 16 . . .

28→ 28

30→ 42→ 54→ 66→ 78→ 90→ 144→ 259→ 45→ 33→ 15 . . .
...
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The Catalan–Dickson conjecture: Every aliquot sequence is

bounded.

The Guy–Selfridge counter conjecture: Most aliquot

sequences starting from an even number are unbounded.

No unbounded aliquot sequence is known, the least starter in

doubt is 276, having been pursued for over two thousand

iterations. Computations have bogged down where the

numbers involved have about 210 digits.
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If p, q are different primes and n = p+ q + 1, then n = s(pq) is a

value of s. A slightly stronger form of Goldbach’s conjecture

implies that every even number starting with 8 is the sum of

two different odd primes p, q, so this conjecture implies that

starting from any odd number n ≥ 9 there is an infinite

sequence · · · > n2 > n1 > n0 = n, where s(ni) = ni−1.

In 1990, Erdős, Granville, P, Spiro showed that this

argument works for “almost all” odd numbers n. In particular

there are arbitrarily long decreasing “aliquot” sequences.
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Lenstra (1975):

There are arbitrarily long increasing aliquot sequences

n < s(n) < s(s(n)) < · · · < sk(n).

Erdős (1976): In fact, for each fixed k, if n < s(n), then almost

surely the sequence continues to increase for k − 1 more steps.

(A corollary: The amicable numbers have asymptotic density 0,

since if n is the smaller member of a pair, we have

s(s(n)) = n < s(n).)
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Recently Bosma did a statistical study of aliquot sequences

with starting numbers below 106. About one-third of the even

starters are still open and running beyond 1099. Evidence for

Guy–Selfridge? But: he and Kane (2012) found the

geometric mean of the ratios s(2n)/2n asymptotically, finding it

slightly below 1. Evidence for Catalan–Dickson?

They showed that

2

x

∑
n≤x
n even

log

(
s(n)

n

)
∼ λ < −0.03.
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Bosma & Kane called the number

λ = lim
x→∞

2

x

∑
n≤x
n even

log

(
s(n)

n

)

the aliquot constant. They computed the expression at

x = 3.923× 109 finding it to be −0.03325 97045 . . . .

Mosunov computed the sum at x = 240 and found the value

−0.03325 94805 . . . .

A few months ago I proved the limit converges with a power

savings, i.e., the error from the limit at x is of the shape x−c for

some c > 0. I also rigorously computed λ to 13 decimal places:

λ = −0.03325 94844 693 . . . .
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However, the Catalan–Dickson conjecture involves iterating the

function s(n), while the aliquot constant deals only with the

first iterate.



P (2016):

• The asymptotic geometric mean of the ratios
s(s(2n))/s(2n) is also eλ.

• Assuming a conjecture of Erdős, Granville, P, & Spiro,
for each fixed k, there is a set Ak of asymptotic density 1
such that the asymptotic geometric mean of
sk(2n)/sk−1(2n) on Ak is also eλ.

The conjecture mentioned:
If E has asymptotic density 0, so does s−1(E).

Pollack, P, Thompson (2017): This conjecture holds in the
case that E is very sparse, with counting function O(x1/2+ε).
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There are some recent numerical experiments by Chum, Guy,
Jacobson, & Mosunov with analogs of the aliquot constant
for higher iterates. Computing to 237 they found the j-iterate
analog as

j = 1 : − 0.03326

j = 2 : − 0.03706

j = 3 : − 0.01849

j = 4 : − 0.01205

j = 5 : − 0.00411

j = 6 : + 0.00145

j = 7 : + 0.00779

j = 8 : + 0.01297

j = 9 : + 0.01854

j = 10 : + 0.02339.
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How is the aliquot constant λ = limx→∞ 2
x

∑
n≤x
n even

log
(
s(n)
n

)
calculated?

Note that for n > 1,

log

(
s(n)

n

)
= log

(
σ(n)− n

n

)
= log

(
σ(n)

n

)
+ log

(
1−

n

σ(n)

)

= log

(
σ(n)

n

)
−
∞∑
j=1

1

j

(
n

σ(n)

)j
.

The function log(σ(n)/n) is additive and it is easy to find its
average order: ∑

n≤x
log

(
σ(n)

n

)
= αx+O(log logx),

where α = 0.44570 89138 58165 8± 7× 10−16.
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Though most of the work is in figuring the average order of the

correction terms 1
j (n/σ(n))j, for this talk I’ll mainly concentrate

on α.

Note that

log

(
σ(pa)

pa

)
=

a∑
i=1

(
log

(
σ(pi)

pi

)
− log

(
σ(pi−1)

pi−1

))

=
a∑

i=1

Λσ(pi),

where Λσ(pi) = log(1 + 1/(σ(pi)− 1)). For a non-prime-power,

let Λσ(d) = 0. Thus,

log

(
σ(n)

n

)
=

∑
d |n

Λσ(d).
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And so,

∑
n≤x

log

(
σ(n)

n

)
=

∑
n≤x

∑
d |n

Λσ(d) =
∑
d≤x

Λσ(d)
⌊
x

d

⌋
.

Removing the floor symbol and summing to infinity creates

only small errors, and we are left with computing

α =
∑
d≥1

Λσ(d)

d
.

This sum lives only on the primes and prime powers, and the

most important (largest) terms are when d is prime:

Λσ(p)

p
=

log(1 + 1/p)

p
∼

1

p2
.
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More generally, Λσ(pi)/pi is of magnitude 1/p2i so that if we

sum for p ≤ x, the error in truncating at this point will be of

magnitude 1/(x logx).

We can accelerate the convergence by using that the prime

terms with i = 1 are ∼ 1/p2, so the sum of these terms should

converge similarly as

log(ζ(2)) =
∑
p
− log(1− 1/p2) = log(π2/6).

The upshot is that

α = log(π2/6)+
∑
p

(
log(1 + 1/p)

p
+ log(1− 1/p2)

)
+

∑
pi, i>1

Λσ(pi)

pi
.

And truncating these sums at x creates an error of magnitude

1/(x2 logx).
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Using Mathematica and letting x be the one-millionth prime, I

was able to compute α to 15 decimal places.

Similar tricks were used for the remainder of the calculations,

so in the end, very little computing power was used.

15



Thank You!
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