
ON AMICABLE NUMBERS
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To Professor Helmut Maier on his sixtieth birthday

Abstract. Let A(x) denote the set of integers n ≤ x that belong to an amicable pair. We

show that #A(x) ≤ x/e
√

log x for all sufficiently large x.

1. Introduction

Let σ denote the sum-of-divisors function and let s(n) = σ(n)−n. Two different positive

integers a, b with s(a) = b and s(b) = a are said to form an amicable pair. This concept is

attributed to Pythagoras and has been studied over the millennia since both by numerologists

and number theorists. The first example of an amicable pair is 220 and 284. About 12 million

pairs are now known, but we don’t have a proof of their infinitude.

Say a positive integer is amicable if it belongs to an amicable pair and let A denote the

set of amicable numbers. Kanold [9] was the first to consider A from a statistical viewpoint,

announcing in 1954 thatA has upper density smaller than 0.204. Soon after, Erdős [5] showed

they have asymptotic density 0. In the period 1973 to 1981 there were several papers getting

successively better upper bounds for #A(x), where A(x) = A∩ [1, x]. Somewhat simplifying

the expressions, these upper bounds have progressed as follows:
x

(log log log log x)1/2
,

x

log log log x
,

x

exp ((log log log x)1/2)
,

x

exp ((log x)1/3)
,

see [16], [7], [14], and [15], respectively. In this paper we are able to replace the exponent

1/3 in the last estimate with 1/2. In particular, we prove the following theorem.

Theorem 1.1. As x → ∞, we have #A(x) ≤ x/ exp
((

1
2
+ o(1)

)√
log x log log log x

)

.

The proof largely follows the plan in [15], but with some new elements. In particular, a

separate argument now handles the case when an amicable number n is divisible by a very

large prime p. Thus, assuming the largest prime factor p of n is not so large, it can be shown

that, usually, a fairly large prime divides σ(n/p). The argument to handle the case of p large

Date: March 31, 2014.

The author thanks Hanh Nguyen, Paul Pollack, and Lola Thompson for their interest in this work.
Mathematics Subject Classification: 11A25, 11N25
Key Words: amicable number

1



2 CARL POMERANCE

is reminiscent of the paper [13] which deals with Lehmer’s problem on Euler’s function ϕ,

also see the newer paper [1]. In addition, we use a result in [2] to streamline the argument

that σ(n/p) has a large prime factor.

The argument in [15] was subsequently used to estimate the distribution of numbers

n with ϕ(n) = ϕ(n + 1), and some similar equations; see [6], [8]. These results were since

improved in [17]. However, it is not clear if the method of [17] can be used for the distribution

of amicable numbers.

We record some of the notation used. Let P (n) denote the largest prime factor of n > 1

and let P (1) = 1. We say an integer n is squarefull if for each prime p | n we have p2 | n.
We use the notation (a, b) for the greatest common divisor of the positive integers a, b. We

write d ‖n if d | n and (d, n/d) = 1.

Note that if n is large we have s(n) < 2n log logn.

2. A lemma

Let Φ(x, y) denote the number of integers n ∈ [1, x] with P (ϕ(n)) ≤ y. In [2, Theorem 3.1]

it is shown that for any fixed ǫ > 0, we have Φ(x, y) ≤ x exp(−(1+o(1))u log log u) as u → ∞,

where u = log x/ log y and (log log x)1+ǫ ≤ y ≤ x. At first glance one might think there is

a typgraphical error here, since the corresponding result of de Bruijn [3] counts n ∈ [1, x]

with P (n) ≤ y, and the upper bound is x exp(−(1 + o(1))u logu), which is supported by a

corresponding lower bound, see [4]. However, a heuristic argument indicates that it is likely

that for Φ(x, y), replacing log u with log log u is correct (see [2, Section 8] and [10]). Until

we have a corresponding lower bound, we will not know for sure.

In this paper we will require an estimate for the number of n ∈ [1, x] with P (σ(n)) ≤ y.

The function σ(n) closely resembles the function ϕ(n); we see “p + 1” in σ(n), where we

would see “p− 1” in ϕ(n). However, it is not as simple as this, since σ treats higher powers

of primes differently than ϕ. It is possible to overcome this difference since most numbers

n are not divisible by a large squarefull number. But to keep things simple, we restrict our

numbers n in the following result to squarefree numbers. Let Σ(x, y) denote the number of

squarefree numbers n ∈ [1, x] with P (σ(n)) ≤ y.

Lemma 2.1. For each fixed ǫ > 0, we have Σ(x, y) ≤ x exp(−(1+o(1))u log log u) as u → ∞,

where u = log x/ log y and (log log x)1+ǫ ≤ y ≤ x.

As indicated above, the proof of this result follows from small cosmetic changes to the

proof of the corresponding result on Φ(x, y) in [2].

3. Proof of Theorem 1.1

Let x be large and let

L = L(x) = exp

(

1

2

√

log x log log log x

)

.
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(i) For n ∈ A(x), we may assume that n > x/L and s(n) > x/L.

The first assertion is obvious and the second follows from the fact that each n ∈ A(x) is

determined by s(n).

(ii) For n ∈ A(x) we may assume that the largest divisor d of n with P (d) ≤ L2 has d ≤ x1/3,

and similarly for s(n). In particular, we may assume that P (n) > L2 and P (s(n)) > L2.

Indeed, by [3], for z ≥ x1/3, the number of integers d ≤ z with P (d) ≤ L2 is O(z/L),

so by partial summation, the number of n ∈ A(x) divisible by such a number d > x1/3 is

O(x(log x)/L). A parallel argument holds for s(n). The assertions about P (n), P (s(n)) now

follow from (i).

(iii) For n ∈ A(x) we may assume the largest squarefull divisor of n is at most L2, and the

same for s(n).

Since the number of squarefull numbers d ≤ z is O(
√
z) for all z ≥ 1, partial summation

implies that the number of integers n ≤ x divisible by a squarefull number d > L2 is O(x/L).

A similar estimate holds for s(n).

Note that if n ∈ A(x), then (ii) and (iii) imply that P (n) ‖n and P (s(n)) ‖ s(n). For the
remainder of the proof, for n ∈ A(x) we write:

n = pm, p = P (n) ∤ m, s(n) = n′ = p′m′, p′ = P (n′) ∤ m′.

Note too that for x large we have n′ < 2x log log x.

(iv) For n ∈ A(x), we may assume that P ((n, s(n))) ≤ L.

Suppose n ∈ A(x), r = P ((n, s(n))), and that r > L. Then r | σ(n), so there is a prime

power qj | n with r | σ(qj). We use an elementary inequality found in the proofs of [11,

Lemma 3.6] and [12, Lemma 6]: for any positive integer d,

(1)
∑

qj≤x
d|σ(qj )

1

qj
≪ (log x)2

d
.

Applying (1) with d = r, the number of n ≤ x with r | n and r | σ(n) is O(x(log x)2/r2),

and so the number of n which violate (iv) is at most a constant times

x(log x)2
∑

r>L

1

r2
≪ x(log x)2

L
.

This estimate shows that we may assume (iv).

(v) For n ∈ A(x), we may assume that mm′ > x/L.

Suppose n ∈ A(x). We have

p′m′ = s(n) = σ(pm)− pm = ps(m) + σ(m),(2)

p′σ(m′) + σ(m′) = σ(p′m′) = σ(n) = pσ(m) + σ(m).(3)
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Multiplying (2) by σ(m), (3) by s(m) and subtracting to eliminate p, we have

p′m′σ(m)− p′σ(m′)s(m)− σ(m′)s(m) = σ(m)2 − σ(m)s(m) = mσ(m).

Thus,

(4) p′(m′σ(m)− σ(m′)s(m)) = σ(m′)s(m) +mσ(m).

Since the right side of (4) is positive, we see that m,m′ determine p′, and by symmetry, they

also determine p. So the number of cases for which (v) fails is at most
∑

mm′≤x/L

1 = O(x(log x)/L).

(vi) For n ∈ A(x), we may assume that p, p′ ≤ x3/4L.

Suppose n ∈ A(x) and p > x3/4L. Then m < x1/4/L, so by (v), m′ > x3/4. Since

n′ < 2x log log x, we have p′ < 2x1/4 log log x. Write the prime factorization of n′ as p1p2 . . . pt,

where p1 = p′ and p1 ≥ p2 ≥ · · · ≥ pt, and for j = 1, 2, . . . , t, let Dj = p1p2 . . . pj. By (i),

some Dj > x1/2, let D be the least such divisor of n′. Since p1 < 2x1/4 log log x, we have

(5) x1/2 < D ≤ 2x3/4 log log x.

Further, by (ii) and (iii), D is squarefree, D ‖n′, and every prime dividing D is larger than

L2. From the identity

s(m)σ(n′) = s(m)σ(n) = σ(m)σ(n)− σ(n)m = σ(m)σ(n)− σ(m)(p + 1)m

= σ(m)σ(n)− σ(m)(n +m) = σ(m)n′ − σ(m)m,

we have

s(m)σ(D)σ(M) = σ(m)DM −mσ(m).

Reading this equation as a congruence modulo σ(D), we have

σ(m)DM ≡ mσ(m) (mod σ(D)).

The number of choices for M < 2x(log log x)/D which satisfy this congruence is at most

1 +
2x log log x

Dσ(D)/(σ(m)D, σ(D))
≤ 1 +

2xσ(m)(D, σ(D)) log log x

D2
.

Since (D, σ(D)) | (n, n′) and every prime dividing D exceeds L2 > L, (iv) implies that

(D, σ(D)) = 1. So, for a given choice of m,D, the number of choices for M is at most

1 +
4xm(log log x)2

D2
.

Summing this expression for D satisfying (5) and m < x1/4/L gives us O(x(log log x)/L)

choices. A similar argument holds if p′ > x3/4L. We conclude that the number of cases where

(vi) fails is negligible.

For n = pm ∈ A(x) we write m = m0m1 where m1 is the largest squarefree number with

m1 ‖m, and we similarly write m′ = m′
0m

′
1.
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(vii) For n ∈ A(x), we may assume that P (σ(m1)) > L and P (σ(m′
1)) > L.

Assume for n ∈ A(x) that the first condition in (vii) fails. (The argument for the second

condition will follow similarly.) By (iii) and (vi), pm0 ≤ x3/4L3. For given choices of p and

m0 we count the number choices of squarefree integers m1 ≤ x/pm0 with P (σ(m1)) ≤ L.

For this, we use Lemma 2.1. Let u = log(x/pm0)/ logL. Since pm0 ≤ x3/4L3, we have

u ≥ log
(

x1/4/L3
)

logL
=

(

1

2
+ o(1)

)

√

log x

log log log x
,

so that

u log log u =

(

1

2
+ o(1)

)

√

log x log log log x = (1 + o(1)) logL

as x → ∞. Hence, we uniformly have that the number of choices for m1 is at most

x

pm0L1+o(1)

as x → ∞. We now sum on p,m0 getting that the number of n ∈ A(x) for which P (σ(m1)) ≤
L is at most x/L1+o(1) as x → ∞.

We now turn to the conclusion of the argument. We suppose that n ∈ A(x) and that

(i)–(vii) hold. At the cost of doubling our count and letting n run up to 2x log log x, we may

assume that p > p′. (That p 6= p′ can be seen from (ii), (iv).) By (vii), there is a prime

r | σ(m1) with r > L. Thus, there is a prime q | m with q ≡ −1 (mod r). This implies that

q > L, so that by (iv), q ∤ n′. But σ(n) = σ(n′), so there is a prime power ℓj | n′ with ℓ 6= q

and r | σ(ℓj). Note that, by (1),
∑

1/ℓj ≪ (log x)2/r. We have

(6) n′ = s(n) = ps(m) + σ(m) ≡ 0 (mod ℓj).

Say ℓi = (ℓj, s(m)), so that p is in a residue class a(m) (mod ℓj−i). Also, (6) implies that

ℓi | σ(m), so ℓi | m. Further, using (ii), (iii), and p > ℓ, we may assume that p > ℓj . The

number of such numbers n ≤ 2x log log x is at most
∑

r>L

∑

q<x
q≡−1 (mod r)

∑

ℓj<x
r|σ(ℓj)

∑

i≤j

∑

m<x
qℓi|m

∑

p≤2x log log x/m
p≡ a(m) (mod ℓj−i)

p>ℓj

1

≤
∑

r

∑

q

∑

ℓj

∑

i

∑

m

2x log log x

ℓj−im
≪

∑

r

∑

q

∑

ℓj

∑

i

x log x log log x

qℓj

≪
∑

r

∑

q

∑

ℓj

x(log x)2 log log x

qℓj
≪

∑

r

∑

q

x(log x)4 log log x

rq

≪
∑

r

x(log x)5 log log x

r2
≪ x(log x)5 log log x

L
,

where we treated r, q, ℓ, p as integer variables. This calculation along with the previous cases

finishes the proof.
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261 (1973), 157–163.
[17] T. Yamada, On equations σ(n) = σ(n+ k) and ϕ(n) = ϕ(n+ k), arXiv:1001.2511.

Department of Mathematics, Dartmouth College, Hanover, NH 03755–3551, USA

E-mail address : carl.pomerance@dartmouth.edu


