
THE RECIPROCAL SUM OF THE AMICABLE NUMBERS

HANH MY NGUYEN AND CARL POMERANCE

ABSTRACT. In this paper, we improve on several earlier attempts to show that the reciprocal sum of the
amicable numbers is small, showing this sum is < 222.

1. INTRODUCTION

Let σ(n) denote the sum-of-divisors function; that is, σ(n) =
∑

d|n d. A pair of distinct numbers
n, n′ are said to form an amicable pair if σ(n) = σ(n′) = n + n′, and we call an integer amicable
if it is a member of such a pair. This concept was first noted by Pythagoras who used the function
s(n) = σ(n)− n. Thus, n is amicable if and only if s(s(n)) = n and s(n) 6= n. There are about 12
million amicable pairs known, but we do not know if there are infinitely many of them.

Though studied by many since antiquity, the amicable numbers were not known to comprise a set
of asymptotic density 0 until 1955, when this was shown by Erdős [6]. And it was not known until
1981 that the amicable numbers have a finite reciprocal sum, see [12]. Roughly using the approach of
[12], Bayless and Klyve [2] were able to show the reciprocal sum of the amicable numbers is less than
656 000 000. This is in contrast to the lower bound of 0.011984 computed from the known amicable
numbers, so there is clearly a huge gap between this upper bound and the lower bound!

The paper [12] on the distribution of the amicable numbers was improved in the recent paper [13],
and using some ideas from this paper, the first-named author [7] was able to about halve the gap (on a
logarithmic scale), showing the reciprocal sum of the amicable numbers is less than 4084. Here we
make further progress.

Theorem 1.1. The reciprocal sum of the amicable numbers is smaller than 222.

One of the ideas from [7], namely using an averaging argument to show there are few abundant
numbers (s(n) > n) among the odd numbers, is taken further here, to include numbers that are 2
(mod 4) and not divisible by 5. In addition, we establish some new estimates on the reciprocal sum of
numbers without large prime factors. These estimates may prove to be useful in other problems, such
as in [1]. We carve out various subsets of the amicable numbers, such as the odd amicables and the
even pairs which do not agree (mod 4). In particular, these two subsets have a considerably smaller
reciprocal sum than what we are able to prove for the complementary set.

2. LEMMAS

Lemma 2.1. With γ as Euler’s constant, we have for x > 0 that∣∣∣∑
n6x

1

n
− (log x+ γ)

∣∣∣ < 1

x
.
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Proof. The result holds trivially when 0 < x < 1, so assume x > 1. By partial summation∑
n6x

1

n
=
bxc
x

+

∫ x

1

btc
t2
dt = log x+

bxc
x

+

∫ ∞
1

btc − t
t2

dt+

∫ ∞
x

t− btc
t2

dt.

The next-to-last integral is γ − 1 so that∑
n6x

1

n
= log x+ γ − x− bxc

x
+

∫ ∞
x

t− btc
t2

dt.

Since this last integral is positive and smaller than 1/x, the result follows. �

Let ϕ denote Euler’s function, let µ denote the Möbius function, and let ω denote the function which
counts the number of distinct prime divisors.

Corollary 2.1. For x > 0 and u a positive integer,∣∣∣∣∣ ∑
n6x

gcd(n,u)=1

1

n
− ϕ(u)

u
(log x+ γ) +

∑
d|u

µ(d) log d

d

∣∣∣∣∣ < 2ω(u)

x
.

Proof. This result follows immediately from Lemma 2.1 and the identity∑
n6x

gcd(n,u)=1

1

n
=
∑
d|u

µ(d)
∑
n6x
d|n

1

n
=
∑
d|u

µ(d)

d

∑
n6x/d

1

n
.

�

Lemma 2.2. For any z > 0 we have ∑
z<n6ez

1

n
< 1 +

1

z
.

Let S be a set of positive integers. We have∑
z<n6ez
∃s∈S, s|n

1

n
<

∑
s∈S, s6ez

1

s
+

1

z

∑
s∈S, s6ez

1.

Proof. The first estimate is trivial if z < 1, so assume that z > 1. Then∑
z<n6ex

1

n
6

1

dze
+

∑
dze+16n6ez

1

n
<

1

dze
+

∫ ez

dze

dt

t
6 1 +

1

z
.

For the second estimate, we have that the sum in question is at most

(2.1)
∑

s∈S, s6ez

∑
z<n6ez
s|n

1

n
=

∑
s∈S, s6ez

1

s

∑
z/s<m6ez/s

1

m
<

∑
s∈S, s6ez

1

s

(
1 +

s

z

)
,

using the first estimate, and the result follows. �

Lemma 2.3. Let S be a set of positive integers coprime to the positive integer u. We have∑
z<n6ez
∃s∈S, s|n
gcd(n,u)=1

1

n
<
ϕ(u)

u

∑
s∈S, s6ez

1

s
+

2ω(u)(1 + 1/e)

z

∑
s∈S, s6ez

1.



THE RECIPROCAL SUM OF THE AMICABLE NUMBERS 3

Proof. We use Corollary 2.1 for the sum on m in (2.1). �

Lemma 2.4. For a real number x > e, we have

log log x <
∑
n6x/e

1

n log(x/n)
< log log x+

1

log x
.

Further, for x > 16,∑
n6x/e
n odd

1

n log(x/n)
< log log x− 1

2
log log(x/2) +

1

log x
<

1

2
log log x+

7/5

log x
,

∑
n6x/e
2|n, 3-n

1

n log(x/n)
<

1

2
log log(x/2)− 1

6
log log(x/6) +

1

2 log(x/2)
<

1

3
log log x+

3/4

log x
.

Proof. The function 1/(t log(x/t)) is decreasing in t on the interval [1, x/e]. Since it has antiderivative
− log log(x/t), we have∑

n6x/e

1

n log(x/n)
<

1

log x
+

∫ x/e

1

dt

t log(x/t)
=

1

log x
+ log log x.

For the lower bound, we use ∑
n6x/e

1

n log(x/n)
>

∫ x/e

1

dt

t log(x/t)
.

The last two assertions follow from the first displayed result and some simple calculations. �

Lemma 2.5. For positive integers j, n, let τj(n) denote the number of ordered factorizations of n into
j positive factors. We have for any x > 0 that∑

n6x

τj(n)

n
6

1

j!
(j + log x)j .

This result is [8, (4.9)].
We always use the letters p, q, r to represent prime numbers.

Lemma 2.6. Let
H(x) =

∑
p6x

1

p
.

With B = 0.2614972128 . . . the Mertens constant and x > 286, we have∣∣H(x)− (log log x+B)
∣∣ < 1

2(log x)2
.

Further, ∑
x<p6ex

1

p
<

1

log x
+

1

2(log x)2
.

Proof. The first assertion is [14, Theorem 5], and the second assertion follows from this and also the
inequality

log log(ex)− log log x+
1

2(log x)2
+

1

2(log(ex))2
<

1

log x
+

1

2(log x)2
.

�
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Lemma 2.7. For x > 1, we have ∑
p>x

1

p2
<

1

x log x
.

Proof. We easily verify that the lemma holds when x 6 104 (in fact, the sum is smaller than
0.92/(x log x) in this range), so assume that x > 104. Let θ(t) denote the Chebyshev function∑

p6t log t. It follows from [4] and [5] that

(2.2) t− 2
√
t < θ(t) < t (1423 6 t 6 1019), |θ(t)− t| < t

(log t)3
(t > 89 967 803).

We have ∑
p>x

1

p2
=
∑
p>x

log p

p2 log p
= − θ(x)

x2 log x
+

∫ ∞
x

θ(t)
( 2

t3 log t
+

1

t3(log t)2

)
dt,

via partial summation. Assume that x 6 1019, so that (2.2) implies that∑
p>x

1

p2
< −x− 2

√
x

x2 log x
+

∫ ∞
x

( 2

t2 log t
+

1

t2(log t)2

)
dt = −x− 2

√
x

x2 log x
+

2

x log x
−
∫ ∞
x

dt

t2(log t)2

=
1

x log x
+

2

x3/2 log x
−
∫ ∞
x

dt

t2(log t)2
.

In addition, ∫ ∞
x

dt

t2(log t)2
>

1

(log ex)2

∫ ex

x

dt

t2
=
(
1− 1

e

) 1

x(log ex)2
.

Using this estimate in the prior one, we have the lemma in the range 104 6 x 6 1019. The range
x > 1019 follows in the same way by using the second inequality in (2.2) �

If a,m are coprime integers with m > 0, let

π(x;m, a) =
∑
p6x

p≡a (mod m)

1.

Lemma 2.8. For a,m coprime as above and x > m,

π(x;m, a) <
2x

ϕ(m) log(x/m)
.

Moreover, if A,B are numbers with m < A < B, then∑
A<p6B

p≡a (mod m)

1

p
<

2

ϕ(m) log(B/m)
+

2

ϕ(m)
(log log(B/m)− log log(A/m)).

Proof. The first assertion is the version of the Brun–Titchmarsh inequality in Montgomery–Vaughan
[11]. The second assertion follows directly by partial summation. �

Lemma 2.9. For x > y > 2 and 0 < s < 1, let

S(x, y) =
∑

n>x, P (n)6y

1

n
, ζ(s, y) =

∑
P (n)6y

1

ns
=
∏
p6y

(
1 +

1

ps − 1

)
.
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Then S(x, y) 6 x−sζ(1− s, y). Further, if 2 6 y0 < y, then

S(x, y) 6 x−s exp
( y1−s0

y1−s0 − 1

∑
y0<p6y

1

p1−s

) ∏
p6y0

(
1 +

1

p1−s − 1

)
.

Proof. The first inequality is clear since if n > x we have 1/n < x−s/n1−s. The second inequality
follows from 1+α < eα for α > 0 and the fact that z1−s/(z1−s−1) is decreasing in z for z > 2. �

Lemma 2.10. Let x > y > 2, u = log x/ log y, and assume that u > 3 and log(u log u)/ log y 6 1/3.
With S(x, y) as in Lemma 2.9, we have

S(x, y) < 25e(1+ε)u(u log u)−u(2log(u log u)/ log y − 1)−1.

where ε = 2.3× 10−8.

Proof. Let s = log(u log u)/ log y and apply Lemma 2.9. Then x−s = (u log u)−u and we have

(2.3) S(x, y) 6 (u log u)−u exp
(∑
p6y

log
(
1 + 1/(p1−s − 1)

))
.

We have

(2.4)
∑
p6y

log
(
1+

1

p1−s − 1

)
<
∑
p6y

1

p1−s
+
∑
p

(
log
(
1+

1

p1−s − 1

)
− 1

p1−s

)
<
∑
p6y

1

p1−s
+0.83,

using s 6 1/3. Let f(t) = 1/(t1−s log t). Note that from [4], [3] (also see [10, Proposition 2.1]), we
have

(2.5) θ(t) < (1 + ε)t (t > 0),

where ε = 2.3× 10−8. By partial summation and (2.2), (2.5), we have∑
p6y

1

p1−s
=
∑
p6y

f(p) log p = θ(y)f(y)−
∫ y

2
θ(t)f ′(t) dt < (1 + ε)yf(y)− (1 + ε)

∫ y

2
tf ′(t) dt,

using that f ′(t) < 0 for t > 2. Integrating by parts, we have

(2.6)
∑
p6y

1

p1−s
< (1 + ε)2f(2) + (1 + ε)

∫ y

2
f(t) dt = (1 + ε)(Li(ys)− Li(2s) + 2s/ log 2),

where Li(t) =
∫ t
2 dt/ log t. Note that

−Li(2s) =

∫ 2

2s

dt

log t
<

∫ 2

2s

dt

(t− 1)− 1
2(t− 1)2

= − log(2s − 1) + log(3− 2s).

Using this in (2.6) and noting that ys = u log u, we have∑
p6y

1

p1−s
< (1 + ε)(Li(u log u)− log(2s − 1) + log(3− 2s) + 2s/ log 2).

Finally, using this in (2.4) and (2.3), noting that Li(u log u) < u and log(3− 2s) + 2s/ log 2 + .83 <
log 25, we have the lemma. �

Remark 2.1. We can use some of the techniques in the proof of Lemma 2.10 to help numerically with
the estimate in Lemma 2.9. In particular, we have∑

y0<p6y

1

p1−s
< (1 + ε)

(
Li(ys)− Li(ys0) +

ys0
log y0

)
− θ(y0)

ys−10

log y0
.
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We find that in the ranges we are using Lemma 2.9, it is helpful to take s = log(eγu log u)/ log y. Let

Sodd(x, y) =
∑

n>x, P (n)6y
n odd

1

n
, Seven(x, y) =

∑
n>x, P (n)6y

n even

1

n
, Seven, no 3(x, y) =

∑
n>x, P (n)6y
3-n, n even

1

n
.

In Lemma 2.9, if we know our summand n is odd, as in Sodd(x, y), we may remove the factor
(1 + 1/(2s − 1)) from the product. And if we know our summand is even, as in Seven, we may replace
the factor (1+1/(2s−1)) with 1/(2s−1). In the latter case, if we also know our summand is coprime
to 3, as in Seven,no 3, we may also remove the factor (1 + 1/(3s − 1)).

3. AMICABLE NUMBERS OF MODERATE SIZE

3.1. Parity and number of primes.

Proposition 3.1. Let A0 denote the set of amicable numbers n such that either
(1) n < 1014,
(2) n belongs to a pair of opposite parity, or
(3) 1014 < n < e300 and 4 - σ(n).

The reciprocal sum of the members of A0 is < 2.826.

Proof. The amicable numbers to 1014 have been completely enumerated, and their reciprocal sum is
< 0.012, as reported in [2]. If n belongs to an amicable pair of opposite parity, then σ(n) is odd. This
implies that n is either a square or the double of a square. There are no examples up to 1014. Further,
as is easy to see,

(3.1)
∑

n2>1014

1

n2
+

∑
2n2>1014

1

2n2
<

2

107
.

If n is even and 2‖σ(n), then n = pm, where p ≡ 1 (mod 4) and m is either an even square or the
double of one. So, the reciprocal sum of such n in (1014, e300), when p > 1014, is at most∑

1014<p<e300

1

2

∑
m or 2m=�

1

pm
=

3

4
ζ(2)(H(e300)−H(1014)) < 2.753,

using Lemma 2.6. For the case p < 1014, we use that for x > 0,∑
j2>x

1

j2
<

1

x
+

∫ ∞
√
x

1

t2
dt =

1√
x
+

1

x
.

We have∑
p<1014

1

4

∑
m>1014/(4p)

m=�

1

pm
<

1

4

∑
p<1014

1

p

(√ 4p

1014
+

4p

1014

)
=

1

2 · 107
∑

p<1014

1
√
p
+
π(1014)

1014
.

Similarly, we have ∑
p<1014

1

8

∑
m>1014/(8p)

m=�

1

pm
<

1√
8 · 107

∑
p<1014

1
√
p
+
π(1014)

1014
.

We know that π(t) < Li(t) for t < 1019, see [4]. Using this we compute that∑
p<1014

1
√
p
< 332 460.
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We also know the exact value of π(1014), it is 3 204 941 750 802. Adding these estimates to our prior
one when p > 1014 and to (3.1), we have less than 2.814 for the reciprocal sum of the members of
A0. �

Remark 3.1. In the sequel we will only consider amicable pairs of the same parity. We shall also
assume a simple, but useful result of Lee [9] that no amicable number in an even-even pair is divisible
by 3.

We would like to extend the third property in Proposition 3.1 to all even amicable numbers, but this
will require some tools, which will be of use later as well.

Proposition 3.2. Let A1 denote the set of amicable numbers n not in A0 with ω(n) > 4 log log n.
The sum of reciprocals of those amicable numbers with at least one of the pair > e100 and at least one
of the pair in A1 is less than 0.028.

Proof. Note that τ4(n) > 4ω(n), using the notation in §2. For any integer K > 10, we have∑
n>eK

ω(n)>4 log logn

1

n
6

∑
k>K+1

∑
ek−1<n<ek

ω(n)>4 log(k−1)

1

n
<

∑
k>K+1

4−4 log(k−1)
∑
n<ek

τ4(n)

n

<
1

24

∑
k>K+1

(4 + k)4

(k − 1)4 log 4
,

by Lemma 2.5 We can use this inequality to capture the reciprocal sum of those amicable numbers
n > eK with ω(n) > 4 log log n. We must also sum 1/n′ for such numbers n. If n′ > n,

1

n
+

1

n′
<

2

n
.

Suppose n′ < n and ω(n′) 6 4 log log n′. If n′ is even, then we may assume that n is even as well, so
that n′ > n/2, and

(3.2)
1

n
+

1

n′
<

3

n
.

Now assume that n, n′ are odd. Let µk be the product of p/(p− 1) over the first b4 log kc odd primes.
Since

ω(n′) 6 4 log log n′ < 4 log log n < 4 log k,

We have n+ n′ = σ(n′) < µkn
′, so that

(3.3)
1

n
+

1

n′
<
µk
n
.

Since µk > 3 for k > 10, we have in all cases that (3.3) holds.
It follows from [14, Theorem15] that if s(n) > e100, then n > e97. We compute that

1

24

∑
K+16k620 000

µk(4 + k)4

(k − 1)4 log 4
< 0.0263.

for K = 97. For larger values of k, we use some estimates in [14], in particular, (3.11) and (3.30).
From these we deduce that

(3.4) µk < 1.3 log(1 + 4 log k).

We compute that
1

24

∑
k>20 000

1.3 log(1 + 4 log k)(4 + k)4

(k − 1)4 log 4
< 0.0016.
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This completes the proof. �

3.2. Multipliers. We have seen in the proof of Proposition 3.2 that if n, n′ form an odd amicable pair
with n > n′ and ek−1 < n < ek, then (3.3) holds, while if n > n′ form an even amicable pair, then
(3.2) holds. Here µk is the product of p/(p− 1) as p runs over the first b4 log kc odd primes, and that
3 < µk < 1.3 log(1 + 4 log k). We can do better in certain cases. For example, suppose that n > n′

and h(n′) 6 2.5. Then n/n′ 6 1.5 and 1/n+ 1/n′ 6 2.5/n. We shall see shortly that there are very
few odd amicables where one of the pair is so abundant, so in moderate ranges we can take the odd
multiplier as 2.5.

The multiplier for even amicable numbers can be improved from the “3” in (3.2) when we know that
2j | n, n′. It can be taken as (2j+1−1)/(2j−1). Indeed, if n > n′, then s(n)/n > s(2j)/2j = 1−2−j .
Thus, n′ > (1− 2−j)n, and so 1/n+ 1/n′ < (1 + (1− 2−j)−1)/n.

3.3. Proper prime powers. Let L(x) = exp(
√
dlog xe/5) and let Lk = L(ek) = e

√
k/5. We have

L(x) = Lk for all x ∈ (ek−1, ek].

Proposition 3.3. Let A2 denote the set of amicable numbers n not in A0 nor A1 such that either
(1) n > e750, n is even, and n is divisible by a proper prime power > 15L(n),
(2) n > e1500, n is odd, s(n)/n 6 1.5 when n < e5000, and n is divisible by a proper prime

power > 15L(n),
(3) n > e300 and P (n)2 | n.

The reciprocal sum of those amicable numbers n with n or n′ in A2 is < 4.507.

Proof. Let S be the reciprocal sum of all odd proper prime powers, so that

S =
∑
p>3

∑
a>2

1

pa
=
∑
p>3

1

p(p− 1)
.

We compute that

(3.5) 0.1064900 < S < 0.1064901.

By a fairly trivial argument, for B > 12 we have,

(3.6)
∑

pa>B, a>2

1

pa
=
∑
p>
√
B

1

p(p− 1)
+

∑
p6
√
B, pa>B

1

pa
<

1√
B − 1

+
π(
√
B)

B
<

2√
B
.

We also have that for x > 200,

(3.7)
∑

pa6x, a>2

1 =
∑
j>2

π(x1/j) < x1/2.

Let
S = {pa : p > 5, a > 2}, Sk = S ∩ (15Lk, e

k).

We have, by Lemma 2.2, Lemma 2.3, and (3.7), that for any positive integer k,∑
ek−1<n<ek

∃s∈Sk, 2s|n
gcd(n,3)=1

1

n
<

1

3

∑
s∈Sk

1

s
+ 3e1−k#Sk <

1

3

(
S −

∑
s∈S, s6Lk

1

s

)
+ 3e1−k/2

and ∑
ek−1<n<ek

∃s∈Sk, s|n
n odd

1

n
<

1

2

∑
s∈Sk

1

s
+ 3e1−k#Sk <

1

2

(
S −

∑
s∈S, s6Lk

1

s

)
+ 3e1−k/2
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Using that even amicable numbers are not divisible by 3 (Remark 3.1), if ek−1 < n < ek is an even
amicable number divisible by a proper prime power > 15Lk, then either n coprime to 3 is divisible by
a power of 2 that is > 15Lk or n coprime to 3 is divisible by the double of a member of Sk. We have

10 000∑
k=750

∑
ek−1<n<ek
n amicable
n even
∃s∈Sk, s|n

( 1
n
+

1

n′

)
6 3

10 000∑
k=750

∑
ek−1<n<ek

∃s∈Sk, 2s|n
gcd(n,3)=1

1

n
< 2.4581.

Since S leaves out powers of 2, in the even case we should also be summing 2/(15Lk). (The factor
2 reflects the multiplier 3 and the fact that n is not divisible by 3.) This adds on < 0.1809 summing
to infinity. For the remaining even amicables > e10 000 we use (3.7) and (3.6) with the above method
to find the reciprocal sum is < 0.0516. In total, the contribution to the reciprocal sum in case (1) is
< 2.6906.

For odd amicable numbers, using multiplier 2.5 below e5000, we have

5000∑
k=1500

∑
ek−1<n<ek
n amicable
n odd

∃s∈Sk, s|n

( 1
n
+

1

n′

)
6 2.5

5000∑
k=1500

∑
ek−1<n<ek

∃s∈Sk, s|n
n, odd

1

n
< 0.9949.

Beyond 5000 we use multiplier 1.3 log(1 + 4 log k) from (3.4) for the odd amicables and find their
contribution to e10 000 is < 0.0786. Using (3.6) beyond e10 000 the contribution is < 0.1198. Finally,
since S leaves out powers of 3, we add on the sum from k = 1500 to 5000 of 1.25/(15Lk) and the sum
beyond k = 5000 of (1/2)1.3 log(1 + 4 log k)/(15Lk), which is < 0.0159. In all, the contribution to
the reciprocal sum in case (2) is < 1.1306.

If n is an amicable number > e300 and n, n′ 6∈ A1, then n′ > e298. Since ω(n) 6 4 log log n it
follows that the largest prime power pa (proper or not) that divides n is > n1/(4 log logn). If a = 1 then
p = P (n) and n is not in case (3). If a > 1, then (3.6) and (3.7) imply that the reciprocal sum in
question at most ∑

k>299

1.3 log(1 + 4 log k)
( 2

e(k−1)/(8 log(k−1))
+ e1−k/2

)
< 0.6857.

�

For an integer n > 1, the largest prime power that divides n is at least n1/ω(n). If ω(n) 6 4 log log n

and n is not divisible by a proper prime power> 1
2L(n), then for n > 20, we have P (n) > n1/4 log logn

and P (n)2 - n. We apply this to the numbers n, n′ in an amicable pair with n, n′ not in Aj , j < 3.
It follows that we may write n = pm where p = P (n) - m, and similarly, n′ = p′m′ where
p′ = P (n′) - m′.

We now complete the argument for 4 | σ(n), showing that this may be assumed for even amicable
numbers, since those that do not satisfy this property having a fairly small reciprocal sum.

Proposition 3.4. Let A3 denote the set of amicable numbers n with n, n′ 6∈ Aj for j < 3, with
4 - σ(n). The reciprocal sum of those amicable numbers with at least one of the pair > e300 and with
n, n′ ∈ A3 is < 0.349.

Proof. We have just seen that we have n = pm, n′ = p′m′ where p, p′ are the largest primes in n, n′,
and they are indeed large. Thus σ(n) = σ(n′) are both even. If they are not divisible by 4, then both
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m,m′ are either squares or doubles of squares. It is shown in [13] that m,m′ uniquely determine n, n′.
We have

mm′ =
nn′

pp′
< n1−1/4 log lognn′1−1/4 log logn

′
.

Suppose that ek−1 < n < ek. Then n′ < (µk − 1)n, so that

(3.8) mm′ < (µk − 1)e2k−.5/ log log((µk−1)e
k) = xk, say.

Let S denote the set of numbers that are either squares or the doubles of squares, with counting
function S(x). Then S(x) < 2

√
x for x > 1. The number of pairs m,m′ in S satisfying (3.8) is at

most ∑
m<xk,m∈S

∑
m′<xk/m,m′∈S

1 <
∑

m<xk,m∈S
2

√
xk
m

< (4 + 2 log xk)
√
xk,

where we have used partial summation for the last estimate. Thus, the number of n is upper-bounded
by this last estimate, so the reciprocal sum is at most

(4 + 2 log xk)
√
xk

ek−1
.

Summing this expression for k > 299 we get a contribution of at most 0.349. �

Corollary 3.1. If n > 1014 is an amicable number with n, n′ 6∈ Aj , j 6 3, then 2‖n if and only if
2‖n′.

3.4. Odd amicables of moderate size. For the rest of this section we have K > 50 an integer.

Proposition 3.5. We have∑
n<eK

n odd, amicable

1

n
< 0.023773K + 0.030,

∑
n<eK

n odd, amicable
h(n) orh(n′)>2.5

1

n
< 3.777× 10−5K + 5× 10−5.

Proof. Let h(n) = σ(n)/n. Then n is abundant if and only if h(n) > 2. For any positive integer j we
have ∑

n<eK
n odd, abundant

1

n
< 2−j

∑
n<eK
n odd

h(n)j

n
.

Let fj(n) be the multiplicative function with fj(pa) = h(pa)j − h(pa−1)j for prime powers pa, so
that

(3.9) h(n)j =
∑
d|n

fj(d).

Thus, ∑
n<eK

n odd, abundant

1

n
< 2−j

∑
d<eK
d odd

fj(d)

d

∑
m<eK/d
m odd

1

m
.

By Corollary 2.1 with u = 2, we have∑
m6eK
m odd

1

m
<

1

2
K +

1

2
γ +

1

2
log 2 +

2

eK
<

1

2
K + 0.64



THE RECIPROCAL SUM OF THE AMICABLE NUMBERS 11

using K > 50. Thus, ∑
d<eK
d odd

fj(d)

d

∑
m<eK/d
m odd

1

m
<

1

2
(K + 1.28)

∑
d odd

fj(d)

d

and so ∑
n<eK

n odd, amicable

1

n
< 2

∑
n<eK

n odd, abundant

1

n
< 2−j(K + 1.28)

∑
d odd

fj(d)

d
.

Note the Euler product

(3.10)
∑
d odd

fj(d)

d
=
∏
p>2

(
1 +

fj(p)

p
+
fj(p

2)

p2
+ . . .

)
,

which allows us, for any particular value of j, to compute this sum to high accuracy. We find that the
optimal value of j is 18, and

2−j
∑
d odd

fj(d)

d
< 0.023773.

This completes the proof of the first assertion.
The second assertion follows by exactly the same method, where the factor 2−j is replaced with

2.5−j . The minimum value of 3.776× 10−5, which occurs at j = 44. �

We shall use K = 1500 in the first inequality of Proposition 3.5 and K = 5000 in the second. We
have

(3.11)
∑

n<e1500
n odd, amicable

1

n
+

∑
e1500<n<e5000
n odd, amicable
h(n) orh(n′)>2.5

1

n
< 35.849.

3.5. Even amicables of moderate size. We now turn to even amicable numbers < eK , where as
before, K > 50 is an integer.

Proposition 3.6. We have ∑
n<eK , 2 ‖n

5-nn′
n amicable

1

n
< 0.003559K + 0.0055.

Proof. Using that 6 - n from Remark 3.1, the sum in question is at most

2
∑

n<eK , 2 ‖n
gcd(n,15)=1
n abundant

1

n
.
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If 2 ‖n and gcd(n, 15) = 1, then n = 2l where gcd(l, 30) = 1. Since h(2) = 4/3, we have h(n) > 2
if and only if h(l) > 4/3. Thus, for any positive integer j, we have

∑
n<eK

h(n)>2
2 ‖n, gcd(n,15)=1

1

n
=

1

2

∑
l<eK/2
h(l)>4/3

gcd(l,30)=1

1

l
<

1

2

(
3

4

)j ∑
l<eK/2

gcd(l,30)=1

h(l)j

l

=
1

2

(
3

4

)j ∑
d<eK/2

gcd(d,30)=1

fj(d)

d

∑
m<eK/2d

gcd(m,30)=1

1

m
,

using (3.9). By Corollary 2.1, the inner sum here is at most

4

15
(K − log 2 + γ) + 0.438617 +

8

eK/2
<

4

15
K + 0.41,

using K > 50. Further, using the Euler product in (3.10) starting at p = 7, we find that when j = 35,(
3

4

)j ∑
gcd(d,30)=1

fj(d)

d
< 0.013343.

Thus, ∑
n<eK , 2 ‖n
gcd(n,15)=1
n amicable

1

n
< 2

∑
n<eK , 2 ‖n
gcd(n,15)=1
n abundant

1

n
< 2 · 1

2
· 0.013343

(
4

15
K + 0.41

)
< 0.003559K + 0.0055.

This completes the proof. �

For the remaining amicables with 2‖n we have two remaining (possibly overlapping) cases:

(1) 5 - n, n deficient, 5 | n′,
(2) 5 | n.

Note that in case (1) we have 1/n < 1/n′, so the reciprocal sum in case (1) is less than the reciprocal
sum in case (2). Thus,

(3.12)
∑

1014<n<eK

2‖n, 5|n orn′

n amicable

1

n
< 2

∑
1014<n<eK

2‖n, gcd(n,15)=5

1

n
<

1

15
K − 2.149

for K > 50, using Corollary 2.1 and Remark 3.1.
When 22‖n, we can use that 7 - n. Indeed, if 7 | n, since σ(22) = 7, we would have 7 | n′. But by

Corollary 3.1, this implies that 28 | n, n′, so that both n, n′ are abundant, a contradiction. Using too
that 3 - n from Remark 3.1, we have that∑

1014<n<eK

22‖n
n amicable

1

n
6

∑
1014<n<eK

22‖n
gcd(n,21)=1

1

n
<

1

14
K − 2.302.
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If 23‖n, since 5 | σ(23) and 20 is abundant, we have that not only 3 - n, but 5 - n. Thus,∑
1014<n<eK

23‖n
n amicable

1

n
<

1

30
K − 1.074.

We finally consider 24 | n. We consider two cases: 5 | n and 5 - n. In the first case, if n/80 is
divisible by any of the 59 primes to 277, then h(n) > 7/3, and so n cannot belong to an amicable pair
with both members divisible by 4. Thus,∑

1014<n<eK

80|n
n amicable

1

n
< 0.001232K,

again using K > 50. The remaining even amicables to eK have reciprocal sum at most∑
1014<n<eK

16|n, gcd(n,15)=1

1

n
<

1

30
K − 1.074.

Adding together all of the contributions in this subsection, we have∑
1014<n<eK

n even, amicable

1

n
< 0.209553K − 6.593.

In particular, taking K = 750,

(3.13)
∑

1014<n<e750
n even, amicable

1

n
< 150.572.

4. LARGE AMICABLE NUMBERS

We consider odd amicable numbers in (e1500, e5000) with h(n), h(n′) 6 2.5, odd amicable numbers
> e5000, and even amicable numbers > e750.

Proposition 4.1. Let A4 denote the set of amicable numbers n such that n, n′ 6∈ Aj for j < 4 and
gcd(n, s(n)) is divisible by a prime > 31L(n). The reciprocal sum of those even amicable numbers
with at least one of the pair > e750 and at least one of the pair in A4 plus the reciprocal sum of those
odd amicable numbers with at least one of the pair > e1500 and at least one in the pair in A4 is at
most 0.049.

Proof. Let n be an amicable number in the interval (ek−1, ek). Let n′′ = min{n, n′}. If n is even,
then n′′ > n/2, if n < e5000 is odd, then n′′ > n/1.5, and if n > e5000 is odd, then n′′ > n/(µk − 1).
In all cases, if ek−1 < n < ek, then we have n′′ > n/(µk−1). Let L′k = exp((

√
k − log(µk − 1)/5).

If n or n′ is in A4, since n′ = s(n) and n = s(n′), then gcd(n, n′) is divisible by a prime q > 31L′k.
Thus, it suffices to sum the reciprocals of such numbers n without the need for a multiplier.

Suppose that ek−1 < n < ek, q | gcd(n, n′), and q > 31L′k. Since q | σ(n), there is a prime
power ra‖n with q | σ(ra). We have ra > 1

2σ(r
a) > 1

2q, so that ra > 15.5L′k > 15Lk for k > 750.
Thus, since we are assuming that n 6∈ A2, we have a = 1 and so r ≡ −1 (mod q). In particular,
r > 2q− 1. It simplifies matters a little if we dispose of the case r = 2q− 1. In this case, n is divisible
by q(2q − 1). Using Lemma 2.7, we have that the sum of 1/(q(2q − 1)) for q > 31L′k is less than
1/(31L′k log(31L

′
k)), while the number of integers q(2q − 1) < ek is at most ek/2. It thus follows
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from Lemma 2.2 and a calculation that the reciprocal sum of such n which are even and > e750 plus
the reciprocal sum for such n which are odd and > e1500 is less than 0.0026.

So, we now assume that n is divisible by qr where q > 31L′k, r ≡ −1 (mod q), and r > 4q − 1.
Using Lemma 2.8, the reciprocal sum of such numbers qr < ek is at most∑

q>31L′k

2 log(k − log(31L′k))

q(q − 1)
<

2 log(k − log(31L′k))

(31L′k − 1) log(31L′k − 1)
,

using Lemma 2.7. Summing one-half of this for k > 750 we get < 0.0308, using Lemma 2.7, and
this contributes to the reciprocal sum of even n ∈ A4. The parallel contribution for odd n > e1500

is < 0.0039. We also must count the number of integers qr < ek. We could use Lemma 2.8 again,
but it’s simpler to not use that r is prime. For a given q, the number of integers r with q < r < ek/q
and r ≡ −1 (mod q) is at most ek/q2. Using Lemma 2.2 and summing e1−k times this estimate
for k > 750 (using Lemma 2.7) adds on < 0.0134 to the reciprocal sum for even, and the parallel
contribution for odd n > e1500 is < 0.0008.

Now, totalling the various contributions, we have that the sum in the proposition is at most 0.0489.
�

Proposition 4.2. Let A5 denote the set of amicable numbers n such that n, n′ are not in Aj for j < 5
and mm′ 6 n/(10L(n)). Then the reciprocal sum of those amicable numbers such that at least one
of the pair is > e1500 in the odd case and > e750 in the even case, and at least one of the pair is in A5

is at most 3.829.

Proof. By Proposition 3.4, we may assume that we’re in one of the 3 cases

m,m′ odd, m ≡ m′ ≡ 2 (mod 4), m ≡ m′ ≡ 0 (mod 4).

As in the proof of Proposition 3.4, the pair m,m′ determines the pair n, n′.
Suppose we are in the odd-odd case. We distinguish two ranges for n: e1500 < n < e5000

and n > e5000. In the first range we have multiplier 2.5, since by (3.11) we are assuming that
h(n), h(n′) 6 2.5. In the second range, we have multiplier µk, where k = dlog ne. Say n, n′ are an
amicable pair and n/(10L(n)) > mm′. If n′ > n, then n′/(10L(n′)) > mm′. Suppose that n′ < n.
Then n′ > n/1.5 in the first range, so if 1.5n/(10L(n)) > mm′, then n′/(10L(n′)) > mm′. In
the second range, if n′ < n, we have n′ > n/(µk − 1), so, if (µk − 1)n/(10L(n)) > mm′, then
n′/(10L(n′)) > mm′.

For n or n′ > e1500, p = P (n) > n1/(4 log logn) > 3× 1028. So, if n is abundant, then

h(m) =
p

p+ 1
h(n) >

2p

p+ 1
> 2− 10−28.

Also note that if n > e1500, then n′ > e1999 and if n > e5000, then n′ > e4998. Let ν be the appropriate
multiplier, so that ν = 2.5 in the small odd range and ν = 1.3 log(1+ 4 log k) for large odd cases. Let
N0(t) be the number of odd amicable numbers n 6 t with mm′ < (ν − 1)n/(10L(n)). By partial
summation,

(4.1)
∑

n orn′∈A5
nn′ odd

n orn′>e1500

( 1
n
+

1

n′

)
6

∑
k>1500

(N0(e
k)

ek
− N0(e

k−1)

ek−1
+

∫ ek

ek−1

N0(t)

t2
dt
)
6
∫ ∞
e1499

N0(t)

t2
dt.
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Let t′ = (ν − 1)t/(10L(t)). If {m,m′} = {m1,m2} where h(m1) < h(m2), then

N0(t) 6
∑
m2<t′

m2 odd
h(m2)>2−10−28

∑
1<m16t′/m2

m1 odd

1 6
1

2
t′

∑
m2<t′

m2 odd
h(m2)>2−10−28

1

m2
.

(Note that m1 6= 1, since all amicable numbers are composite.) We now follow the argument in the
proof of Proposition 3.5. We have for any positive integer j that∑

m2<t′,m2 odd
h(m2)>2−10−28

1

m2
< (2− 10−28)−j

∑
m2<t′,m2 odd

h(m2)
j

m2

<
1

2
(log(t′ + 1.28)(2− 10−28)j

∑
d odd

fj(d)

d
.

Taking j = 18, we get ∑
m2<t′,m2 odd
h(m2)>2−10−28

1

m2
<

1

2
(log t′ + 1.28) · 0.023773,

so that
N0(t) < 0.005944(t′ + 1)(log t′ + 1.28).

Let νk = ν = 2.5 when k 6 5000 and νk = µk when k > 5000. We conclude from (4.1) that∑
n orn′∈A5
nn′ odd

n orn′>e1500

( 1
n
+

1

n′

)
< 0.005944

∫ ∞
e1499

1

t2
(t′ + 1)(log t′ + 1.28) dt

< 0.005944
∑

k>1500

∫ ek

ek−1

1

t2
(νk − 1)t

10Lk
(log t+ log(νk − 1)− log(10Lk) + 1.29) dt

= 0.005944
∑

k>1500

(νk − 1)(k − 1/2 + log(νk − 1)− log(10Lk) + 0.79)

10Lk
< 0.3387.

We now turn to the 2 (mod 4) case, which has multiplier ν = 3. First suppose that 5 - nn′. By
Remark 3.1 we have 3 - mm′. Let N1(t) denote the number of amicable numbers n 6 t with n ≡ 2
(mod 4), 3 - mm′, 5 - mm′, and mm′ < 2n/(10L(n)). As in the odd-odd case, we wish to upper
bound

∫∞
e749 N1(t)/t

2 dt. Say {m,m′} = {m1,m2} where h(m1) < h(m2). Similarly as in the
odd-odd case, since n, n′ > e749, we have h(m2) > 2 − 10−14. Let t′ = 2t/(10L(t)) = t/(5L(t))
and let N1,0(t) be the contribution to N1(t) when m2 6 t′/100 and N1,1(t) be the contribution when
m2 > t′/100. Note that

N1,0(t) 6
∑

m26t′/100, 2‖m2

gcd(m2,15)=1
h(m2)>2−10−14

∑
m16t′/m2, 2‖m1

gcd(m1,15)=1

1 6
2

15

∑
m26t′/100, 2‖m2

gcd(m2,15)=1
h(m2)>2−10−14

( t′

m2
+ 4
)

6
2(1.04)

15
t′

∑
m26t′/100, 2‖m2

gcd(m2,15)=1
h(m2)>2−10−14

1

m2
.
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For any positive integer j, the inner sum is

< (2− 10−14)−j
∑

m26t′/100, 2‖m2

gcd(m2,15)=1

h(m2)
j

m2
=

1

2

(3
2

)j(
2− 10−14

)−j ∑
m6t′/200

gcd(m,30)=1

h(m)j

m

<
1

2

(3
4
+ 10−14

)j( 4

15
(log(t′/200) + γ) + .438617

) ∑
gcd(d,30)=1

fj(d)

d
.

Taking j = 35, this last expression is

<
1

2
(0.013343)

4

15
(log t′ − 0.8203) <

2

15
(0.013343)(log t′ − 3.076).

Thus,

N1,0(t) <
4.16

225
(0.013343)t′(log t′ − 3.076) < 0.000247t′ log t′ − 0.000758t′

For N1,1(t) we have

N1,1(t) 6
∑

m16100, 2‖m1

gcd(m1,15)=1

∑
m26t′/m1, 2‖m2

gcd(m2,15)=1
h(m2)>2−10−14

6
∑

m16100, 2‖m1

gcd(m1,15)=1

∑
m6t′/2m1

gcd(m,30)=1
h(m)>(2/3)(2−10−14)

1

The inner sum is

<
(3
4
+ 10−14

)j ∑
m6t′/2m1

gcd(m,30)=1

h(m)j 6
t′

2m1

(3
4
+ 10−14

)j ∑
gcd(d,30)=1

fj(d)

d
.

Taking j = 35 again, we have

N1,1(t) <
t′

2
(0.013343)

∑
m16100, 2‖m1

gcd(m1,15)=1

1

m1
<
t′

2
(0.013343)(0.825) < 0.005504t′.

With the prior estimate for N1,0(t), we have

N1(t) < 0.000247t′ log t′ + 0.004746t′.

As in the odd-odd case, we deduce that the contribution when 2‖m,m′ and 5 - mm′ is

<
∑
k>750

0.000247(k − 1/2− log(5Lk)) + 0.004746

5Lk
< 0.0765.

We now bound the contribution when 2‖m,m′ and 5 | mm′. If N2(t) denotes the number of pairs,
we have

N2(t) 6
∑

m16
√
t′/2

gcd(m1,30)=5

∑
m26t′/4m1

gcd(m2,6)=1

1 +
∑

m16
√
t′/2

gcd(m1,30)=1

∑
m26t′/4m1

gcd(m2,30)=5

1

6
∑

m16
√
t′/2

gcd(m1,30)=5

1

3

( t′

4m1
+ 2
)
+

∑
m16

√
t′/2

gcd(m1,30)=1

1

3

( t′

20m1
+ 2
)

<
1

60
t′
(1
3
(log(

√
t′/10) + γ) + 0.4142

)
+

1

60
t′
( 4

15
(log(

√
t′/2) + γ) + 0.4387

)
+
√
t′.
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Thus, for t > e999,

N2(t) <
1

200
t′ log t′ + 0.000919t′.

As before, we have the contribution to our sum being

<
∑
k>750

0.005(k − 1/2− log(5Lk)) + 0.000919

5Lk
< 1.5222.

We now consider the case when m,m′ are both multiples of 4. We divide this into a few subcases:
(1) v2(m) = 2, v2(m

′) = 2,
(2) {v2(m), v2(m

′)} = {2, 3},
(3) {v2(m), v2(m

′)} = {2, 4},
(4) v2(m) = 2, v2(m

′) > 5 or v2(m) > 5, v2(m
′) = 2,

(5) v2(m) > 3, v2(m
′) > 3,

In all of these cases we have 3 - mm′. In cases (1)-(4), since 7 | σ(n) = σ(n′), we have 7 - mm′.
Similarly, in case (2), we have 5 - mm′ since 5 | σ(n) = σ(n′). We also have 5 - mm′ in cases (4)
and (5) since

s(20)

20
· s(32)

32
> 1,

s(4)

4
· s(160)

160
> 1,

s(40)

40
· s(8)

8
> 1.

In cases (1)-(4), we have multiplier 7/3 and in case (5), we have multiplier 15/7. All cases are
symmetric in m,m′, so we may assume that m 6

√
t′. Using the same method as above, we find that∑

n orn′∈A5
n,n′≡0 (mod 4)
n orn′>e750

( 1
n
+

1

n′

)
< 1.8908.

Totalling the contributions in the various cases completes the proof. �

Proposition 4.3. Let A6 denote the set of amicable numbers n such that n, n′ are not in any Aj for
j < 6 and p > n3/4L(n). The reciprocal sum of those even amicable numbers with at least one of the
pair in A6 and at least one > e750 plus the corresponding reciprocal sum of odd amicable pairs with
at least one of the pair > e1500 is < 2.061.

Proof. Assume that t > e750 and let N(t) denote the number of n ∈ A6 with n 6 t. For n ∈ A6, we
have m < n1/4/L(n), so since n 6∈ A5, we have m′ > 1

10n
3/4. This then implies that p′ < 10n′/n3/4.

Let ν be 1 less than the appropriate multiplier, so that ν = 1.5 in the smaller odd case, ν = 2 in
the even case, and ν = 1.3 log(1 + 4 log k) − 1 in the larger odd case. In particular, n′ < νn, so
we have p′ < 10νn1/4. Write n′ = q1q2 . . . ql, where the qi’s are pairwise coprime prime powers
(possibly first powers of primes) and q1 > q2 > · · · > ql. We have q1 = p′, so all of the qi’s are
< 10νn1/4 6 10νt1/4. Assume that n > t0.84, and choose i minimally so that

D := q1q2 . . . qi >
√
t/L(t).

Then D < 10νt3/4/
√
L(t). If D is divisible by a prime < 31L(t), then in fact D is smaller, it is

< 31L(t)
√
t/L(t) < t0.51. Further, (31L(t))4 log log t < t0.32. Thus, if n > t0.84 and n is counted by

N(t), then the fact that n is not in A1 nor A2 implies that all of the prime factors of D are greater than
31L(n). Since n 6∈ A4, we have gcd(D,σ(D)) = 1.

Write n′ = DM . It is shown in [13] that

σ(m)DM ≡ mσ(m) (mod σ(D)).
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Thus, N(t) is at most t0.84 plus the number of solutions M to these congruences with M < νt/D, as
m runs to t1/4/L(t) and D runs over the interval (

√
t/L(t), 10νt3/4/

√
L(t)). For a given choice of

m,D, the number of solutions is at most

1 +
νt/D

σ(D)/ gcd(σ(m)D,σ(D))
6 1 +

νtσ(m)

D2
,

using gcd(D,σ(D)) = 1. We have ∑
m<t1/4/L(t)

D<10νt3/4/
√
L(t)

1 < 5νt/L(t)3/2 + 1,

both in the case m even and in the case m odd. Further, using the inequality
∑

m<B σ(m) < B2,

νt
∑

m<t1/4/L(t)

D>
√
t/L(t)

σ(m)

D2
< νt3/2L(t)−2

∑
D>
√
t/L(t)

D−2 < νt/L(t)3/2 + νt1/2/L(t),

where we also used that
∑

D>B D
−2 < 1/B + 1/B2.

We have∑
n orn′∈A6

ek−1<n<ek

( 1
n
+

1

n′

)
<

∫ ek

ek−1

(ν + 1)
N(t)

t2
dt <

∫ ek

ek−1

ν + 1

t1.16
+

6(ν + 1)ν

L
3/2
k t

+
ν + 1

t2
dt

< e−0.15k + 6(ν + 1)ν/L
3/2
k + (ν + 1)/(k − 1)2.

For evens starting at k = 750, we have ν = 2, and the contribution is < 2.0020. For odds from
k = 1500 to 5000, we have ν = 1.5 and the contribution is < 0.0581, and the contribution for odds
with k > 5000 is < 3.1× 10−5. In all, the total contribuion is < 2.0602. �

Proposition 4.4. Let A7 denote the set of amicable numbers n such that neither n nor n′ is in Aj for
j < 7, and such that P (σ(m)) 6 100L(n). Then the reciprocal sum of the amicable numbers n with
either n or n′ > e750 in the even case and > e1500 in the odd case, and either n or n′ ∈ A7 is at most
11.399.

Proof. Let Mk = e(k−1)/4/Lk. Since n 6∈ A6, if n ∈ (ek−1, ek), then m > Mk. Let uk = k1/4 and
let q = P (m). We consider three cases:

(1) q 6 107M
1/uk
k and m < ek/2,

(2) q 6 107M
1/uk
k and m > ek/2,

(3) q > 107M
1/uk
k and P (q + 1) 6 100Lk.

If n is not in any of these cases, then q > 107M
1/uk
k > 15Lk, so from n 6∈ A2, we have q‖m. Also

P (σ(m)) > P (q + 1) > 100Lk, so that n 6∈ A7, so it suffices to bound the reciprocal sums for the
three cases above.

For a given value of k and ek−1 < n < ek, the reciprocal sum in case (1) is at most∑
Mk<m<e

k/2

P (m)6107M
1/uk
k

1

m

∑
ek−1/m<p<ek/m

1

p
.
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Since ek−1/m > ek/2−1, Lemma 2.6 implies that the inner sum over p is smaller than 2/(k − 2) +
2/(k − 2)2. Thus, the reciprocal sum in case (1) in the odd and even cases, respectively, is at most( 2

k − 2
+

2

(k − 2)2

)
Sodd(Mk, 10

7M
1/uk
k ),

( 2

k − 2
+

2

(k − 2)2

)
Seven, no 3(Mk, 10

7M
1/uk
k ),

using the notation of Remark 2.1. Summing the first expression using Lemma 2.9 and Remark 2.1 with
y0 = e10 for 1500 6 k 6 5000 and using multiplier 2.5, we get an estimate of< 0.0808. Summing the
second expression for 750 6 k 6 5000 with multiplier 3, we get an estimate of < 3.1947. Summing
for k > 5000 and using a multiplier of 1.3 log(1 + 4 log k), using Lemma 2.10, we get < 0.0052.

The second case is done in almost the same way. Now we must estimate∑
m>ek/2

P (m)6107M
1/uk
k

1

m

∑
ek−1/m<p<ek/m

1

p
.

We know that p > n1/4 log logn > e(k−1)/(4 log(k−1)), so the inner sum here is 0 unless m is such that
ek/m > e(k−1)/4 log(k−1). With a(k) := (k − 1)/(4 log(k − 1)) − 1, Lemma 2.6 then implies the
inner sum above is at most 1/a(k) + 1/(2a(k)2). Thus, the reciprocal sum in case (1) in the odd and
even cases, respectively, is at most( 1

a(k)
+

1

2a(k)2

)
Sodd(e

k/2, 107M
1/uk
k ),

( 1

a(k)
+

1

2a(k)2

)
Seven,no 3(e

k/2, 107M
1/uk
k ).

Summing the first expression using Lemma 2.9 and Remark 2.1 with y0 = e10 for 1500 6 k 6 5000
and using multiplier 2.5, we get an estimate of < 4 × 10−8. Summing the second expression for
750 6 k 6 5000 with multiplier 3, we get an estimate of < 0.0005. Summing for k > 5000 and using
a multiplier of 1.3 log(1 + 4 log k), using Lemma 2.10, we get < 8× 10−15.

We now turn to case (3). Write l = n/q. Here the reciprocal sum for ek−1 < n < ek is at most∑
q>107M

1/uk
k

P (q+1)6100Lk

1

q

∑
ek−1/q<l<ek/q

1

l
,

where l is odd in the odd case, and in the even case, l is even and not divisibly by 3. Using Corollary
2.1 for the inner sum, we have a quantity at most

(1
2
+

4·107M1/uk
k

ek−1

) ∑
q>107M

1/uk
k

P (q+1)6100Lk

1

q
<
(1
2
+

4·107M1/uk
k

ek−1

)107M1/uk
k + 1

107M
1/uk
k

Seven(10
7M

1/uk
k , 100Lk)

in the odd case, with the same estimate but with 1
3 in place of 1

2 in the even case. Here we have relaxed
the condition that q is prime, keeping only that it is odd, so that q + 1 is even. Summing this using
Lemma 2.9 from k = 750 to k = 5000, using x = 107M

1/uk
k , y = 100Lk, s = log(2u log u)/ log y,

and multiplier 3, we get < 7.1773 in the even case. For the odd case we sum from k = 1500 to 5000
using multiplier 2.5, getting an estimate of < 0.9149. We sum for k > 5001 using Lemma 2.10 and
multiplier 1.3 log(1 + 4 log k) getting < 0.0254.

Thus, the total contribution to the reciprocal sum from A7 is < 11.3988. �
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5. CONCLUSION

We are now faced with summing the reciprocals of those amicable numbers n such that both n, n′

are > e750 in the even case, and > e1500 in the odd case, and neither is in any set Aj . As before, we
have n = pm, n′ = p′m′, where p = P (n) - m, p′ = P (n′) - m′, and p 6= p′. We shall assume that
p > p′ and sum 1/n, using an appropriate multiplier to take into account the numbers 1/n′.

Let r = P (σ(m)), so since n 6∈ A7, we have r > 100L(n). Since r | σ(m) | σ(n) = σ(n′), there
are prime powers qα‖m, q′α

′‖n′ with r | σ(qα) and r | σ(q′α′). Then qα, q′α
′
> 1

2r > 50L(n), so
since n, n′ 6∈ A2, we have α = α′ = 1. In particular, q ≡ q′ ≡ −1 (mod r).

Since q′ > r > 100L(n) and since n 6∈ A4, we have q′ - n. Since q′ | n′ = s(n) = ps(m)+σ(m),
we have

ps(m) + σ(m) ≡ 0 (mod q′).

This implies that if q′ | σ(m), then q′ | s(m), which implies that q′ | m, a contradiction. So, we have
q′ - σ(m) and the above congruence places p in a residue class a(m, q′) (mod q′) for a given choice
of m and q′. Also note that p > p′ > q′.

Write m = qm1. For a given value of k > 750, we have

Sk :=
∑

n in this case
ek−1<n<ek

1

n
<

∑
r>100Lk

∑
q<ek/2

q≡−1 (mod r)

1

q

∑
q′<ek+1

q′≡−1 (mod r)

∑
m1<ek/q

1

m1

∑
ek−1/qm1<p<ek/qm1

p≡a(qm1,q′) (mod q′)
p>q′

1

p
.

We begin with the inner sum. Fix q,m1, q
′ and let a be in the residue class a(qm1, q

′) (mod q′) with
0 < a < q′. First suppose that q′ is large. If q′ > ek/qm1, then the sum on p is 0. (In particular, we
may assume that q′ < ek/q.) Suppose that q′ > ek−2/qm1. Using only that q′ is odd, that p is an odd
number in the interval (ek−1/qm1, e

k/qm1), and that p ≡ a (mod q′) with p > q′, we have that the
sum on p is at most 1/q′ < qm1/e

k−2. Let w = ek−1/qq′ and assume that q′ 6 ek−2/qm1; that is,
m1 6 w/e. Let z = ek−1/qm1. By Lemma 2.8, we have that∑

z<p<ez
p≡a (mod q′)

p>q′

1

p
<

2

(q′ − 1) log(z/q′)
+

2

q′ − 1
log
(1 + log(z/q′)

log(z/q′)

)

<
4

(q′ − 1) log(z/q′)
=

4

(q′ − 1) log(w/m1)
.

We now sum on m1. Since q′ < ez = ek/qm1, we have m1 < ek/qq′ = ew, so that we have∑
m1<ew

1

m1
· qm1

ek−2
+

∑
m16w/e

1

m1
· 4

(q′ − 1) log(w/m1)
.

We distinguish the even and odd cases. Using Lemma 2.4 and w = ek−1/qq′, we have the sum on m1

is

<
e2

2q′
+

2

q′ − 1
log k (odd case), <

e2

3q′
+

4/3

q′ − 1
log k (even case).

What we have at this point is

Sk < c
∑

r>100Lk

∑
q<ek/2

q≡−1 (mod r)

1

q

∑
q′<ek/q

q′≡−1 (mod r)

( 4

q′ − 1
log k +

e2

q′

)
,
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where c = 1/2 in the odd case and c = 1/3 in the even case. Let ιk = 1/(100Lk − 1). By
Lemma 2.8, using the fact that the least prime in the residue class −1 (mod r) is at least 2r − 1 and
− log log((2r − 1)/r) < 0.37, the sum on q′ is at most

(1 + ιk)
2 2(4 log k + e2)(log k + 0.37)

r
.

Similarly, the sum on q is at most

(1 + ιk)
2(log(k/2) + 0.37)

r
,

so we are left with

Sk < c(1 + ιk)
34(4 log k + e2)(log k + 0.37)(log(k/2) + 0.37)

∑
r>100Lk

1

r2
.

We use Lemma 2.7 for the sum over r. In the odd case we sum our bound for Sk from k = 1500 to 5000
with multiplier 2.5, getting < 1.5215. The remainder of the odds, using multiplier 1.3 log(1 + 4 log k)
adds on < 0.0082. For the even case, using multiplier 3 and summing for k > 750, we get < 8.3484.
In total, the contribution is < 9.8781.
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