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Pythagoras
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Sum of proper divisors

Let s(n) be the sum of the proper divisors of n:

Thus, s(n) = σ(n)− n, where σ(n) is the sum of all of n’s

natural divisors.

The function s(n) was considered by Pythagoras, about 2500

years ago.
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Pythagoras:

He noticed that s(6) = 1 + 2 + 3 = 6.

(If s(n) = n, we say n is perfect.)

And he noticed that

s(220) = 284, s(284) = 220.

(If s(n) = m, s(m) = n, and m 6= n, we say n,m are an amicable

pair and that they are amicable numbers.)

We have here perhaps the first ever function and the first ever

dynamical system.
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Al-Majriti, ca. 1050 years ago reports in “Aim of the Wise”

that he had put to the test the erotic effect of

“giving any one the smaller number 220 to eat, and himself

eating the larger number 284.”

This was a very early application of number theory, far

predating public-key cryptography . . .

And here’s another application:
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Available for £9 from mathsgear.co.uk
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Let’s take a look at the dynamical system suggested by

Pythagoras:

Many orbits end at 1, while others cycle:
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10→ 8→ 7→ 1

12→ 16→ 15→ 9→ 4→ 3→ 1

14→ 10 . . .

18→ 21→ 11→ 1

20→ 22→ 14 . . .

24→ 36→ 55→ 17→ 1

25→ 6→ 6

26→ 16 . . .

28→ 28

30→ 42→ 54→ 66→ 78→ 90→ 144→ 259→ 45→ 33→ 15 . . .
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Some orbits are likely to be arbitrarily long. For example,

consider the orbit

25→ 6→ 6.

It can be preceded by 95:

95→ 25→ 6→ 6.

And again preceded by 445:

445→ 95→ 25→ 6→ 6.

What’s happening here: To hit an odd number m, write m− 1

as the sum of two different primes: p+ q = m− 1. Then

s(pq) = m. So, Goldbach’s conjecture implies one can back up

forever.
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Lenstra (1975):

There are arbitrarily long increasing aliquot sequences

n < s(n) < s(s(n)) < · · · < sk(n).

Erdős (1976): In fact, for each fixed k, if n < s(n), then almost

surely the sequence continues to increase for k − 1 more steps.

Nevertheless, we have the Catalan–Dickson conjecture:

Every aliquot sequence is bounded.

Here are some data in graphical form for the sequence starting

with 564. (The least starting number which is in doubt is 276.)

See aliquot.de, maintained by Wolfgang Creyaufmüller.
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564 iteration
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This has been continued for over 3000 iterations, the numbers

that would need to be factored in order to go farther are over

160 decimal digits.

There are 5 numbers below 1000 where it’s not clear what’s

happening:

276, 552, 564, 660, 966,

known as the “Lehmer five”.
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We currently know about 12 million different cycles, and all,

with about 200 exceptions, are amicable pairs. There are 48

known 1-cycles (perfect numbers), and of the cycles of length

greater than 2, all but 10 are length 4. There are no known of

length 3; the longest cycle known is length 28.
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Erdős has a heuristic that there should be infinitely many

amicable pairs, in fact, more than x1−ε of them up to x, for

each fixed ε > 0 and x sufficiently large in terms of ε.

There is already a well-known and widely believed heuristic of

Erdős that there are infinitely many numbers N with σ(n) = N

having more than N1−ε solutions n. (This follows from the

Elliott–Halberstam conjecture, and is proved for ε = 1
3.) So

among these solutions n, it should be not that unusual to have

two of them with n+ n′ = N , in fact there ought to be about

N1−2ε such pairs.

But if n+ n′ = σ(n) = σ(n′) and n 6= n′, one immediately sees

that n, n′ form an amicable pair.
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Nevertheless, we have not proved that there are infinitely many

amicable numbers.

Can we prove that amicable numbers are rare among the

natural numbers?

This quest was begun by Kanold in 1954, who showed that the

number of integers n ≤ x that belong to an amicable pair is at

most .204x for all sufficiently large values of x.

To fix notation, let A(x) denote the number of integers n ≤ x
that belong to some amicable pair. Here’s what’s happened

since Kanold:
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Erdős (1955): A(x) = o(x) as x→∞. Said his method would

give A(x) = O(x/ log log logx).

15



Erdős (1955): A(x) = o(x) as x→∞. Said his method would

give A(x) = O(x/ log log logx).

Rieger (1973): A(x) ≤ x/(log log log logx)1/2, x large.
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Erdős (1955): A(x) = o(x) as x→∞. Said his method would

give A(x) = O(x/ log log logx).

Rieger (1973): A(x) ≤ x/(log log log logx)1/2, x large.

Erdős & Rieger (1975): A(x) = O(x/ log log logx).
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Erdős (1955): A(x) = o(x) as x→∞. Said his method would

give A(x) = O(x/ log log logx).

Rieger (1973): A(x) ≤ x/(log log log logx)1/2, x large.

Erdős & Rieger (1975): A(x) = O(x/ log log logx).

P (1977): A(x) ≤ x/ exp((log log logx)1/2), x large.
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Erdős (1955): A(x) = o(x) as x→∞. Said his method would

give A(x) = O(x/ log log logx).

Rieger (1973): A(x) ≤ x/(log log log logx)1/2, x large.

Erdős & Rieger (1975): A(x) = O(x/ log log logx).

P (1977): A(x) ≤ x/ exp((log log logx)1/2), x large.

P (1981): A(x) ≤ x/ exp((logx)1/3), x large.
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Erdős (1955): A(x) = o(x) as x→∞. Said his method would
give A(x) = O(x/ log log logx).

Rieger (1973): A(x) ≤ x/(log log log logx)1/2, x large.

Erdős & Rieger (1975): A(x) = O(x/ log log logx).

P (1977): A(x) ≤ x/ exp((log log logx)1/2), x large.

P (1981): A(x) ≤ x/ exp((logx)1/3), x large.

P (2014): A(x) ≤ x/ exp((logx)1/2), x large.

Note that the last two results imply by a simple calculus
argument that the reciprocal sum of the amicable numbers is
finite.
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So, what is this sum of reciprocals? Using a complete roster of

all amicables to 1014 we can show this sum P satisfies

P > 0.0119841556 . . . .
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So, what is this sum of reciprocals? Using a complete roster of

all amicables to 1014 we can show this sum P satisfies

P > 0.0119841556 . . . .

Bayless & Klyve (2011): P < 656,000,000.
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So, what is this sum of reciprocals? Using a complete roster of
all amicables to 1014 we can show this sum P satisfies

P > 0.0119841556 . . . .

Bayless & Klyve (2011): P < 656,000,000.

Nguyen (2014): P < 4084
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How do we get a strong upper bound for A(x)?

As typical with an Erdős-style argument, one divides the
problem into a number of cases, some being routine, some not.
But there is an overarching strategy which is sometimes lost in
the details.

Here’s the strategy. We have n, n′ an amicable pair. Write

n = pm, n′ = p′m′,

where p, p′ are the largest primes in n, n′, respectively. Assume
that p > p′, p - m, p′ - m′. (The cases p = p′, p | m, p′ | m′ are
easily handled.)

We may assume that m,m′ are largely squarefree and not too
smooth, and they both have some size. That is, p, p′ don’t
dominate. (For n ≤ x, we have p < x3/4, approximately.)
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Since m is large, we may assume that r, the largest prime

factor of σ(m) is large, say r > L. (Prove directly or use a

recent paper of Banks, Friedlander, P, & Shparlinski.)

We have r | q + 1 for some prime q ‖m. Since

r | σ(m) | σ(n) = σ(n′), we have r | q′+ 1 for some prime q′ ‖n′,
and q′ 6= q. Note that

q′ | n′ = s(n) = s(pm) = (p+ 1)s(m) + σ(m).

Thus, with m, q′ given, p is constrained to a residue class

modulo q′.
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We thus count as follows:

∑
r>L

∑
q<x
r|q+1

∑
m<x
q|m

∑
q′<x
r|q′+1

∑
p≤x/m
p>q′

p≡ am,q′ (mod q′)

1.
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We thus count as follows:

∑
r>L

∑
q<x
r|q+1

∑
m<x
q|m

∑
q′<x
r|q′+1

∑
p≤x/m
p>q′

p≡ am,q′ (mod q′)

1.

And we’re laughing.
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∑
r>L

∑
q<x
r|q+1

∑
m<x
q|m

∑
q′<x
r|q′+1

∑
p≤x/m
p>q′

p≡ am,q′ (mod q′)

1.

The inner sum can be replaced with x
mq′:

x
∑
r>L

∑
q<x
r|q+1

∑
m<x
q|m

∑
q′<x
r|q′+1

1

mq′
.

The new inner sum can be replaced with logx
mr :

28



x logx
∑
r>L

∑
q<x
r|q+1

∑
m<x
q|m

1

mr
.

The new inner sum can be replaced with logx
qr :

x(logx)2 ∑
r>L

∑
q<x
r|q+1

1

qr

The new inner sum can be replaced with logx
r2 :
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x(logx)3 ∑
r>L

1

r2
.

And this sum is smaller than 1/L, so we have the estimate

x(logx)3/L. By choosing L as large as possible so that the

various assumptions may be justified, we have our result. And

in fact we can choose L a tad larger than exp(
√

logx).

My earlier result with x/ exp((logx)1/3) did not get such a

good lower bound on m,m′ so that it was difficult to show that

σ(m), σ(m′) had large prime factors.
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Beyond showing there are few amicable numbers, it should be

true that there are few sociable numbers.

Definition: Say a number n with sk(n) = n for some k is

sociable.

That is, sociable numbers are the numbers involved in a cycle

in the dynamical system introduced by Pythagoras.
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Here is what we know about the distribution of sociable
numbers.

From the 1976 Erdős result (if n < s(n), then almost surely the
sequence continues to increase for k terms), one can show that
the sociable numbers that belong to a cycle of any fixed length
have asymptotic density 0.

In Kobayashi, Pollack, & P (2009), we showed that

• The even sociable numbers have asymptotic density 0.

• The odd sociable numbers n with n > s(n) have asymptotic
density 0.
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This would leave the odd sociables n with n < s(n). The odd

numbers n with n < s(n) have an asymptotic density of about

1/500, so we’re talking about a fairly sparse set to begin with.

But the problem of showing the sociable numbers in this set

have density 0 is still open.
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Here are some other unsolved (?) problems in connection with

the function s(n).

Show that there is a positive proportion of even numbers in the

range of s. We know (Erdős) that there is a positive proportion

of even numbers not in the range of s. We also know that

almost all odd numbers are in the range of s. (Maybe Florian

Luca and I have a proof.)

Show that if n > s(n), then almost surely the sequence

continues to decrease for another k steps (or terminates). This

is known for k = 1 (Erdős, Granville, P, & Spiro).
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This paper of Erdős, Granville, P, & Spiro appeared in the

Bateman Proceedings from the Allerton Park Conference in

1990. A conjecture from that paper:

If A ⊂ N has density 0, then s−1(A) has density 0.

(This conjecture implies the two problems just mentioned.)

Finally, note that there is a set A of density 0 such that s(A)

has density 1
2, namely the set {pq : p, q prime}.
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Thank You
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