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Let s(n) be the sum of the proper divisors of n. That is,

s(n) = σ(n)− n, where σ(n) is the sum of all of n’s natural

divisors.

Two different numbers n, n′ form an amicable pair if s(n) = n′

and s(n′) = n. This concept goes back to Pythagoras who

found the pair 220 and 284.

The condition is easily seen to be equivalent to

n+ n′ = σ(n) = σ(n′).

We currently know about 12 million different amicable pairs.
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Erdős has a heuristic that there should be infinitely many

amicable pairs, in fact, more than x1−ε of them up to x, for

each fixed ε > 0 and x sufficiently large in terms of ε:

There is already a well-known and widely believed heuristic of

Erdős that there are infinitely many numbers N with σ(n) = N

having more than N1−ε solutions n. (This follows from the

Elliott–Halberstam conjecture, and is proved for ε = 0.3.) So

among these solutions n, it should not be that unusual to have

two of them with n+ n′ = N , in fact there ought to be about

N1−2ε such pairs.

But if n+ n′ = σ(n) = σ(n′) and n 6= n′, we have seen that n, n′

form an amicable pair.
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Nevertheless, we have not proved that there are infinitely many

amicable numbers.

Can we prove that amicable numbers are rare among the

natural numbers?

This quest was begun by Kanold in 1954, who showed that the

number of integers n ≤ x that belong to an amicable pair is at

most .204x for all sufficiently large values of x.

To fix notation, let A(x) denote the number of integers n ≤ x
that belong to some amicable pair. Here’s what’s happened

since Kanold:
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Erdős (1955): A(x) = o(x) as x→∞. Said his method would

give A(x) = O(x/ log log logx).
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Erdős (1955): A(x) = o(x) as x→∞. Said his method would

give A(x) = O(x/ log log logx).

Rieger (1973): A(x) ≤ x/(log log log logx)1/2, x large.
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Erdős (1955): A(x) = o(x) as x→∞. Said his method would

give A(x) = O(x/ log log logx).

Rieger (1973): A(x) ≤ x/(log log log logx)1/2, x large.

Erdős & Rieger (1975): A(x) = O(x/ log log logx).
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Erdős (1955): A(x) = o(x) as x→∞. Said his method would

give A(x) = O(x/ log log logx).

Rieger (1973): A(x) ≤ x/(log log log logx)1/2, x large.

Erdős & Rieger (1975): A(x) = O(x/ log log logx).

P (1977): A(x) ≤ x/ exp((log log logx)1/2), x large.
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Erdős (1955): A(x) = o(x) as x→∞. Said his method would

give A(x) = O(x/ log log logx).

Rieger (1973): A(x) ≤ x/(log log log logx)1/2, x large.

Erdős & Rieger (1975): A(x) = O(x/ log log logx).

P (1977): A(x) ≤ x/ exp((log log logx)1/2), x large.

P (1981): A(x) ≤ x/ exp((logx)1/3), x large.
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Erdős (1955): A(x) = o(x) as x→∞. Said his method would

give A(x) = O(x/ log log logx).

Rieger (1973): A(x) ≤ x/(log log log logx)1/2, x large.

Erdős & Rieger (1975): A(x) = O(x/ log log logx).

P (1977): A(x) ≤ x/ exp((log log logx)1/2), x large.

P (1981): A(x) ≤ x/ exp((logx)1/3), x large.

P (2014): A(x) ≤ x/ exp((logx)1/2), x large.
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Here’s a quick proof that A(x) = o(x) as x→∞, using a

seemingly unrelated result of Erdős from the 1930s:

Say a number a is “pnd” (stands for “primitive non-deficient”)

if s(a) ≥ a, yet for each proper divisor b of a, s(b) < b. It is clear

that s(n) ≥ n if and only if n is divisible by some pnd. Now

Erdős showed that ∑
a is pnd

1

a
<∞. (1)

Say n,m form an amicable pair with n < m. Then

s(n) = m > n = s(m), so that n is divisible by some pnd and m

is not. By (1), but for a negligible set of numbers n, we may

assume that some pnd a = O(1) divides n.
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For a fixed number a, the primes p ≡ −1 (mod a) have density
1/ϕ(a) in the primes, so almost all numbers n are divisible by
such a prime p to exactly the first power. Then a | p+ 1 | σ(n),
so that a | σ(n)− n = s(n) = m.

But m is not divisible by any pnd, so we have a contradiction.
This shows that amicable numbers lie in the two negligible sets
discarded along the way.

The proof shows that the set S of integers n with s(n) > n and
s(s(n)) ≤ s(n) has density 0. In fact, using finer information on
pnd’s, one can show that the number of members of S in [1, x]
is at most x/ exp((log log logx)1/2) for large x (my 1977
theorem), and at least x/(log logx)1+ε.

To make further progress on bounding A(x), we need to use
more properties of amicable numbers.
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As typical with an Erdős-style argument, one divides the
problem into a number of cases, some being routine, some not.
But there is an overarching strategy which is sometimes lost in
the details.

Here’s the strategy. We have n, n′ an amicable pair. Write

n = pk, n′ = p′k′,

where p, p′ are the largest primes in n, n′, respectively. Assume
that p > p′, p - k, p′ - k′. (The cases p = p′, p | k, p′ | k′ are easily
handled.)

We may assume that k, k′ are largely squarefree, their smooth
parts are not too large, and they both have some size. That is,
p, p′ don’t overly dominate. (For n ≤ x, we have p, p′ < x3/4,
approximately.)
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Since k is large, we may assume that r, the largest prime factor

of σ(k) is large, say r > L (where L is to be chosen). (Prove

directly or use a recent paper of Banks, Friedlander, P, &

Shparlinski. Lamzouri and Yamada have also considered

smooth values of multiplicative functions.)

We have r | q + 1 for some prime q ‖ k. Since

r | σ(k) | σ(n) = σ(n′), we have r | q′+ 1 for some prime q′ ‖n′,
and q′ 6= q. Note that

q′ | n′ = s(n) = s(pk) = (p+ 1)s(k) + σ(k).

Thus, with k, q′ given, p is constrained to a residue class

modulo q′.
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We thus count as follows:

∑
r>L

∑
q<x
r|q+1

∑
k<x
q|k

∑
q′<x
r|q′+1

∑
p≤x/k
p>q′

p≡ ak,q′ (mod q′)

1.
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We thus count as follows:

∑
r>L

∑
q<x
r|q+1

∑
k<x
q|k

∑
q′<x
r|q′+1

∑
p≤x/k
p>q′

p≡ ak,q′ (mod q′)

1.

And we’re laughing.
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∑
r>L

∑
q<x
r|q+1

∑
k<x
q|m

∑
q′<x
r|q′+1

∑
p≤x/k
p>q′

p≡ ak,q′ (mod q′)

1.

The inner sum can be replaced with x
kq′:

x
∑
r>L

∑
q<x
r|q+1

∑
k<x
q|k

∑
q′<x
r|q′+1

1

kq′
.

The new inner sum can be replaced with logx
kr :
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x logx
∑
r>L

∑
q<x
r|q+1

∑
k<x
q|k

1

kr
.

The new inner sum can be replaced with logx
qr :

x(logx)2 ∑
r>L

∑
q<x
r|q+1

1

qr

The new inner sum can be replaced with logx
r2 :
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x(logx)3 ∑
r>L

1

r2
.

And this sum is smaller than 1/L, so we have the estimate

x(logx)3/L. By choosing L as large as possible so that the

various assumptions may be justified, we have our result. And

in fact we can choose L a tad larger than exp(
√

logx). So, we

have

P (2014): For all large x, A(x) ≤ x/ exp(
√

logx).

My 1981 result with x/ exp((logx)1/3) did not get such a good

lower bound on m,m′ so that it was difficult to show that

σ(m), σ(m′) had large prime factors.
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Beyond showing there are few amicable numbers, it should be

true that there are few sociable numbers.

Definition: Say a number n with sk(n) = n for some k is

sociable.

That is, sociable numbers are the numbers involved in a cycle

in the dynamical system introduced by Pythagoras.
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Here is what we know about the distribution of sociable
numbers.

From a 1976 Erdős result (if n < s(n), then almost surely the
sequence continues to increase for k terms), one can show that
the sociable numbers that belong to a cycle of any fixed length
have asymptotic density 0. (This is how we argued that
A(x) = o(x) earlier in this talk.)

In Kobayashi, Pollack, & P (2009), we showed that

• The even sociable numbers have asymptotic density 0.

• The odd sociable numbers n with n > s(n) have asymptotic
density 0.
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This would leave the odd sociables n with n < s(n). The odd

numbers n with n < s(n) have an asymptotic density of about

1/500, so we’re talking about a fairly sparse set to begin with.

But the problem of showing the sociable numbers in this set

have density 0 is still open.
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Here are some other solved and unsolved problems in

connection with the function s(n).

Erdős showed in 1973 that there is a positive proportion of

even numbers that are not in the form s(n). (It is easy to see

as a consequence of attacks on Goldbach’s conjecture that

almost all odd numbers are in the form s(n).)

Luca, P (2014): Every residue class

a mod b contains a positive proportion of

numbers of the form s(n).
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Conjecture (Erdős, Granville, P, & Spiro – 1990):
If S ⊂ N has density 0, then s−1(S) has density 0.

A consequence: If n > s(n), then almost surely the sequence
n, s(n), s(s(n)), . . . , continues to decrease for another k steps.
Here’s why. Let Sk be the set of n which decrease for k steps
and then do not increase at the next step. Then s(Sk) ⊂ Sk−1,
so that Sk ⊂ s−1(Sk−1). We know (Erdős, Granville, P, &
Spiro) that S1 has density 0, so the conjecture implies that
each Sk has density 0.

Note that there is a set S of density 0 such that s(S) has
density 1

2, namely the set {pq : p, q prime}.

The conjecture is that s cannot map a positive proportion of
the integers to a set of density 0.
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There are a number of other attractive problems here.

It is easy to describe all solutions n to ϕ(n)/n = r, where r is a

given rational number. For example, if r = 1/2, then n is a

power of 2, and if r = 1/3, then n has radical 6.

What about solving σ(n)/n = r?

Remark: No one knows a solution to σ(n)/n = 5/3, but if such

a solution n should exist, then 5n would be an odd perfect

number.
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Idea of the proof that a positive proportion of even numbers

are values of s(n) = σ(n)− n (Luca & P, 2014):

Consider even numbers n with several constraints:

• n is deficient (means that s(n) < n);

• n = pqrk ∈ [1
2x, x] with p > q > r > k and p, q, r primes;

• k ≤ x1/60, r ∈ [x1/15, x1/12], q ∈ [x7/20, x11/30];

• n is “normal”.
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If n satisfies these conditions, then s(n) ≤ x is even.

Let r(s) denote the number of representations of s as s(n)

from such numbers n.

We have
∑
s r(s)� x.

The trick then is to show that
∑
s r(s)

2 � x.

For this, the sieve is useful.
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We know less about the function sϕ(n) = n− ϕ(n).

As with s(n), what’s known about Goldbach’s conjecture

implies that almost all odd numbers can be represented in the

form sϕ(n). And the proof with Luca that every residue class

has a positive proportion of its members in the form s(n)

should go over for sϕ(n).

But the Erdős argument that s misses a positive proportion of

even numbers just doesn’t work for sϕ.

There are probabilistic heuristics that this should hold, but

some new idea would be needed to prove it.
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I would like to close this talk with a heuristic argument for the

distribution of values of s(n) developed recently with Pollack.

For some reason there has been some particularly colorful

nomenclature surrounding numbers missing from the range of

s. In his 1972 Yale Ph.D. thesis, Alanen called such numbers

untouchable.

Ibn Tahir al-Baghdadi (980–1037) referred to n in the equation

s(n) = m as the begetter and m as the begotten. He goes on

to write:
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“As to the begetter and the begotten among the numbers, so

the sum of the aliquot parts is the begotten of this number,

which itself is the begetter of its aliquot parts. Now, 5 among

the odd numbers and 2 among the even numbers have no

begetter, since there is no number such that the sum of its

aliquot parts be 5 or 2. Hence, they stand among the numbers

like a bastard among the people.”

We will simply refer to these numbers unjudgmentally as

nonaliquot.
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The sequence of nonaliquot numbers:

2, 5, 52, 88, 96, 120, 124, 146, 162, 188, . . . .

Odd numbers here are scarce, and if we believe a slightly

stronger form of Goldbach’s conjecture, 5 is the only one.

Provably, the odd nonaliquot numbers have density 0.

We’ve seen that a positive proportion of evens are nonaliquot

and a positive proportion of evens are aliquot, that is, missing

from this list.
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In his 1976 Ph.D. thesis, te Riele gave a heuristic argument for

the density of nonaliquot numbers. He views s(n) as a random

function, and if M(x) is the number of integers n with s(n) ≤ x
and s(n) even, then the chance that a random even m ≤ x is

nonaliquot should be (1− 2/x)M(x).

This heuristic is refined in a recent paper with Pollack: For

each even y-smooth integer a, we consider those n with

y-smooth part a. For a, y fairly small, the y-smooth part of s(n)

is also usually a, so we consider s as random on this subset.

This leads to a conjectured density of nonaliquots of

lim
y→∞

1

log y

∑
a≤y
2|a

1

a
e−a/s(a) ≈ 0.1718.

Reality check: at 1010, the density of nonaliquots is ≈ 0.1682.
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Thank You
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