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Suppose that G is a group and g ∈ G has finite order m. Then

for each t ∈ 〈g〉 the integers n with gn = t form a residue class

mod m. Denote it by

logg t.

The discrete logarithm problem is the computational task of

finding a representative of this residue class; that is, finding an

integer n with gn = t.
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Finding a discrete logarithm can be very easy. For example, say

G = Z/mZ and g = 1. More specifically, say m = 100 and

t = 17. We are asking for the number of 1’s to add in order to

get 17. Hmmm.

Lets make it harder: take g as some other generator of Z/mZ.

But then computing logg t is really solving the congruence

ng ≡ t mod m

for n, which we’ve known how to do easily essentially since

Euclid.
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The cyclic group of order m:

What does this title mean, especially the key word “The”?

Take G1 = Z/100Z and G2 = (Z/101Z)×. Both are cyclic
groups of order 100. Both are generated by 3. And 17 is in
both groups.

So, there are two versions of computing log3 17, one in G1 and
one in G2.

In G1, we are solving 3n ≡ 17 mod 100. The inverse of 3 is 67,
so n ≡ 17 · 67 ≡ 39 mod 100.

In G2, we are solving 3n ≡ 17 mod 101. And this seems much
harder.
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The moral: when someone talks about the cyclic group of a

given order, they are not concerned with computational issues.

The algorithmic question of computing discrete logarithms is

venerable and also important. Why important?
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Whitfield Diffie Martin Hellman
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The Diffie–Hellman key-exchange protocol:

Say we have a cyclic group generated by g, which everyone
knows. Alice has a secret integer a and “publishes” ga.
Similarly, Bob has a secret integer b and publishes gb.

Alice and Bob want to set up a secure session with a secret key
that only they know, yet they want to set this up over a public
line. Here’s how they do it: Alice takes Bob’s group element gb

and raises it to her secret exponent a, getting (gb)a = gab. Bob
arrives at the same group element via a different method,
namely (ga)b = gab.

Eve (an eavesdropper) knows something’s afoot and knows ga

and gb, but apparently cannot easily compute gab without
finding either a or b, that is without solving the dl problem.
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So, a group that is well-suited for cryptographic purposes is

one where

• it is easy to apply the group operation;

• it is difficult (in practice) to solve the discrete logarithm

problem.
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However, our topic in this talk is not crypto, nor dl algorithms,

but fixed points, the equation

logg x = x.

First note that the equation logg x = x doesn’t make complete

sense, since the first “x” is an element of the cyclic group 〈g〉
and the second x is an integer (or residue class modulo the

order of g).

We can make sense by the conflation of integers with residue

classes, as we have already been doing. In particular, in the

group (Z/pZ)× with generator g, the equation logg x = x could

be taken to mean that x is an integer in [1, p− 1] with gx ≡ x
(mod p).
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Lets see if such fixed points exist for small primes p:

For p = 2, we have g = 1, x = 1, and yes, gx ≡ x (mod p).

For p = 3, we have g = 2, and 21 6≡ 1 (mod 3), 22 6≡ 2 (mod 3),

so no, there is no fixed point.

For p = 5, there are two primitive roots (i.e., cyclic generators

for (Z/pZ)×), namely 2 and 3. One quickly checks that with

the base 3, there are no fixed points, but 23 ≡ 3 (mod 5).

For p = 7, the primitive roots are 3 and 5, and we have

32 ≡ 2 (mod 7), 34 ≡ 4 (mod 7), 35 ≡ 5 (mod 7).
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In Guy, section F9, it is mentioned that D. Brizolis conjectured

that for every prime p > 3 there is a primitive root g and an

integer x in [1, p− 1] with logg x = x.

Lemma. Yes for p, if there is a primitive root x in [1, p− 1]

that is coprime to p− 1.

Proof. If such x exists, say xy ≡ 1 (mod p− 1) and let g = xy.

Then g is a primitive root for p and gx = xxy ≡ x (mod p). �

More generally, a necessary and sufficient condition: Suppose

x ∈ [1, p− 1] has multiplicative order (p− 1)/d. There is a

primitive root g for p with logg x = x if and only if

gcd(x, p− 1) = d.
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Let us say that a prime p has the “Brizolis property” if there is

a primitive root g in the range [1, p− 1] that is coprime to p− 1.

How many such primitive roots do we expect? Well, there are

exactly ϕ(p− 1) primitive roots in [1, p− 1] and exactly ϕ(p− 1)

integers in this range coprime to p− 1. If these are

“independent events”, then we would expect(
ϕ(p− 1)

p− 1

)2

(p− 1) =
ϕ(p− 1)2

p− 1

such numbers. Since ϕ(n) > cn/ log logn, the above expression

is at least of order p/(log log p)2, which is positive for all large p.
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How might we try and prove this?

Lets begin with characteristic functions.

Say f1(g) is 1 if gcd(g, p− 1) = 1 and 0 otherwise, and f2(g) is

1 if g is a primitive root for p and 0 otherwise.

Let N(p) be the number of integers in [1, p− 1] that are both

primitive roots for p and coprime to p− 1. Then

N(p) =
p−1∑
g=1

f1(g)f2(g).
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To use this, we need explicit representations for these

characteristic functions. Being coprime to p− 1 is easy, it is

essentially a combinatorial inclusion-exclusion over common

divisors of g and p− 1. We have

f1(g) =
∑

d|gcd(g,p−1)

µ(d),

where µ is the Möbius function.
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Johann Peter Gustav Lejeune Dirichlet, quite the character . . .
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A combinatorially similar idea works for f2(g), the characteristic

function for primitive roots for p, but here we need to introduce

characters. Let g0 be some primitive root for p and let

ζ = e2πi/(p−1), a primitive (p− 1)st root of 1 in C. There is a

natural isomophism χ from (Z/pZ)× to 〈ζ〉 where χ(gj0) = ζj.

Then

f2(g) =
∑

m|p−1

µ(m)

m

m∑
j=1

χ(g)j(p−1)/m.

This can be seen by noting that the inner sum is m if

g(p−1)/m ≡ 1 (mod p) and 0 otherwise.
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So for N(p), the number of integers in [1, p− 1] that satisfy the

Brizolis property for p,

N(p) =
p−1∑
g=1

∑
d|gcd(g,p−1)

µ(d)
∑

m|p−1

µ(m)

m

m∑
j=1

χ(g)j(p−1)/m.

Fine, but are we making any progress? It is perhaps natural to

write g = dh, use χ(g) = χ(d)χ(h) and rearrange a bit. We have

N(p) =
∑

d,m|p−1

µ(d)µ(m)

m

m∑
j=1

χ(d)j(p−1)/m
(p−1)/d∑
h=1

χ(h)j(p−1)/m.

Note that the terms in this triple sum with j = m are

∑
d,m|p−1

µ(d)µ(m)

m

p− 1

d
=
ϕ(p− 1)2

p− 1
.
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We have proved that∣∣∣∣∣N(p)−
ϕ(p− 1)2

p− 1

∣∣∣∣∣ ≤ ∑
d,m|p−1

|µ(d)µ(m)|
m

m−1∑
j=1

∣∣∣∣∣∣∣
(p−1)/d∑
h=1

χ(h)j(p−1)/m

∣∣∣∣∣∣∣ .
Let

S
(
χj(p−1)/m

)
= max

n

∣∣∣∣∣∣
n∑

h=1

χ(h)j(p−1)/m

∣∣∣∣∣∣ ,
when 1 ≤ j ≤ m− 1. Thus,∣∣∣∣∣N(p)−

ϕ(p− 1)2

p− 1

∣∣∣∣∣ ≤ ∑
d,m|p−1

|µ(d)µ(m)|
m

m−1∑
j=1

S
(
χj(p−1)/m

)
.
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George Pólya I. M. vinogradov
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The Pólya–Vinogradov inequality

In 1918, Pólya and Vinogradov independently showed that for a

nonprincipal character ψ modulo q, we have

S(ψ) := max
n

∣∣∣∣∣∣
n∑

h=1

ψ(h)

∣∣∣∣∣∣ < cq1/2 log q,

for a universal positive constant c. Here, ψ is a non-principal

character with modulus q. Thus,

∑
d,m|p−1

|µ(d)µ(m)|
m

m−1∑
j=1

S
(
χj(p−1)/m

)
= O(4ω(p−1)p1/2 log p),

and since ω(n) = o(logn), we have the above expression being

of magnitude at most p1/2+ε.
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Thus,

N(p) =
ϕ(p− 1)2

p− 1
+O(p1/2+ε).

Since as we have seen, the main term is at least of order

p/(log log p)2, this shows that all sufficiently large primes p have

N(p) > 0.

But is it true for all primes p > 3?
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Questions like this pose a computational challenge, since it

involves putting explict constants on all of the inequalities

involved. And challenges can remain, since the point at which

N(p) > 0 is proved to be true may be too large to do a case

study up to that point.

Some history: W.-P. Zhang in 1995 gave essentially the above

argument but did not work out a starting point for when it is

true.

C. Cobelli and A. Zaharescu in 1999 gave a somewhat different

proof, showing that N(p) > 0 for all p > 102070. They said that

a reorganization of their estimates would likely support a bound

near 1050.
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So, can we do better? And how good is the Pólya–Vinogradov
inequality?

It’s easy to show via an averaging argument that for χ primitive,

S(χ) ≥
1

π

√
q.

So, apart from the “log q” factor, the Pólya–Vinogradov
inequality is best possible.

Assuming the GRH: S(χ)� √q log log q.

Paley (1932): For infinitely many quadratic characters,
S(χ)� √q log log q.

Granville, Soundararajan (2007), Goldmakher (2009): For χ
primitive of odd order h, S(χ)�h

√
q(log q)(h/π) sin(π/h)+o(1), as

q →∞.
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Andrew Granville K. Soundararajan
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Leo Goldmakher
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Recently I proved that for ψ a primitive Dirichlet character

modulo q, we have

S(ψ) = max
n

∣∣∣∣∣∣
n∑

h=1

ψ(h)

∣∣∣∣∣∣ ≤ q1/2
(

1

2π
(log q + 2 log log q) + 1

)
.

My proof used some classical Fourier series arguments, a paper

of Landau from 1918, and an idea of Bateman as reported in a

paper of Hildebrand. (There are other explicit versions of this

inequality in the literature, but they are not as sharp.)
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Edmund Landau Paul T. Bateman
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A. J. Hildebrand

28



Armed with this fairly strong and explcit version of the

Pólya–Vinogradov inequality, it is possible to close the gap on

the Brizolis problem.

Levin, Pomerance (2010): For each prime p 6= 3 there is a

primitive root g and an integer x ∈ [1, p− 1] with gx ≡ x
(mod p).

We had written up a draft of this paper this past winter, and

mentioned it to Soundararajan. Since our proof was fairly

lengthy, with much computation still needed, he suggested a

simpler approach.
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Mariana Levin
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A “smoothed” Pólya–Vinogradov inequality:

Let SN(χ) = max
M

∣∣∣∣∣∣
∑

M≤a≤M+2N

χ(a)
(

1−
∣∣∣∣a−MN − 1

∣∣∣∣)
∣∣∣∣∣∣.

Say what?

The ugly-looking factor with χ(a) is merely a “tent” that rises
linearly from a = M , where it is 0, to a = M +N , where it is 1,
and then falls back to 0 at a = M + 2N .

So, the formula for it is a bit off-putting, but it is just a simple
“tent”.

Levin, Pomerance, Soundararajan (2010): For χ primitive

and N ≤ q, we have SN(χ) ≤ √q −
N
√
q

.
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The result is nearly best possible.

Treviño (2010): For χ primitive, max
N≤q

SN(χ) ≥
2

π2

√
q.

Actually, he has a slightly larger constant here, but he favors

this one, which has a neat proof. For the value of N that he

uses, which is near q/2, the upper bound in the LPS theorem is

a bit more than twice the Treviño lower bound.

Does the GRH have anything to say here? What if χ has odd

order? Are there special quadratic characters?
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Enrique Treviño
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The proof of the smoothed version of Pólya–Vinogradov is

based on Poisson summation and Gauss sums, and is almost

immediate. (A similar result for prime moduli is due to Hua in

1942.)

Let H(t) = max{0,1− |t|}. We wish to estimate

S =
∑
a∈Z

χ(a)H
(
a−M
N

− 1
)
.

Use the Gauss-sum trick, so that

S =
1

τ(χ̄)

q−1∑
j=1

χ̄(j)
∑
a∈Z

e(aj/q)H
(
a−M
N

− 1
)
.
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If one then applies Poisson summation to the inner sum and

then estimates trivially through the triangle inequality, one gets

(since the Fourier transform Ĥ is nonnegative)

|S| ≤
N
√
q

∑
k∈Z\qZ

Ĥ

(
kN

q

)
.

Via another call to Poisson summation, this last quantity is at

most
√
q −N/√q.
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Using the smoothed Pólya–Vinogradov inequality makes the
proof of the fixed point theorem much simpler.

Using just our smoothed Pólya–Vinogradov inequality gets us
that the property holds for p > 1025. To bring the story down
to a computable level, we let uv be the largest squarefree divisor
of p− 1, with u having the “small” primes and v the “large”
primes. Using our inequality we proved that N(p) > 0 if both
s < 1/2, where s is the reciprocal sum of the primes in v, and

√
p >

4ω(u)

ϕ(u)
·

1 + 2ω(v)

1− 2s
.

Using this criterion with v the product of the largest 6 primes
in p− 1, we handled all the cases with ω(p− 1) ≥ 10. In the
remaining cases we handled every p with p > 1.25× 109. We
then checked each prime to this level. QED
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Is the smoothed Pólya–Vinogradov inequality a “one-hit

wonder”?

Another possible application:

Let B(χ) be the smallest positive integer n with χ(n) 6= 0,1.

Ankeny, Oesterlé, Bach: Assuming the GRH, if χ is a

nonprincipal character modulo q, then B(χ) < 3 log2 q.

Vinogradov, Burgess: Unconditionally, B(χ) < q1/4
√
e+ε.
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38



Computational problem: Choose some target function T (q),

like q1/2 or smaller, and find all examples of a character χ

modulo q, with B(χ) > T (q).

Granville, Mollin, Williams (2000): For χ the quadratic

character to a positive fundamental discriminant q, if

B(χ) >
√
q/2, then q ≤ 3705.

Treviño is working on improving this result, both by improving

the bound T (q) and dealing with all primitive characters.

So, it is expected that the smoothed Pólya–Vinogradov

inequality will become another arrow in our quiver for attacking

computational problems.
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