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Abstract. For a natural number n, let λ(n) denote the order of the largest cyclic
subgroup of (Z/nZ)∗. For a given integer a, let Na(x) denote the number of n ≤ x
coprime to a for which a has order λ(n) in (Z/nZ)∗. Let R(n) denote the number
of elements of (Z/nZ)∗ with order λ(n). It is natural to compare Na(x) with∑

n≤x R(n)/n. In this paper we show that the average of Na(x) for 1≤ a ≤ y is
indeed asymptotic to this sum, provided y ≥ exp((2+ ε)(log x log log x)1/2), thus
improving a theorem of the first author who had this for y ≥ exp((log x)3/4). The
result is to be compared with a similar theorem of Stephens who considered the case
of prime numbers n.

§1. Introduction. Let n be a natural number. It was known to Gauss that the
multiplicative group (Z/nZ)∗ is cyclic if and only if n is not divisible by two
different odd primes nor divisible by four, except for n = 4 itself. In particular,
this holds whenever n is prime. When (Z/nZ)∗ is cyclic, a generator is called
a primitive root. In general, let λ(n) be the exponent of (Z/nZ)∗, the maximal
order of any element in the group. Following Carmichael [1], we broaden the
definition of a primitive root to an element of (Z/nZ)∗ which has order λ(n).

There are various natural questions associated with these concepts.

(1) Let R(n) denote the number of residues modulo n which are primitive
roots for n. Thus, R(n)/n is the proportion of residues modulo n which
are primitive roots. What is R(n)/n on average, and what is it on average
for prime n?

(2) For a fixed integer a, let Na(x) denote the number of natural numbers n ≤ x
for which a is a primitive root, and let Pa(x) denote the number of such n
which are prime. What is the asymptotic distribution of Na(x) and Pa(x)?

(3) What is the average asymptotic behavior of Na(x) as a runs over a short
interval, and what is it for Pa(x)?

We first review what is known for the prime case. If p is prime, the
multiplicative group (Z/pZ)∗ is cyclic of order p − 1, and so it follows
that R(p)= ϕ(p − 1), where ϕ is Euler’s function. One has (see Stephens
[13, Lemma 1])

1
π(x)

∑
p≤x

R(p)

p
∼ A as x→∞, (1)

where

A =
∏

p

(
1−

1
p(p − 1)

)
= 0.3739558136 . . .
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is known as Artin’s constant. This suggests that typically we should have
Pa(x)∼ Aπ(x). It is easy to see though that for some choices of a this cannot
hold, namely, for a a square or a =−1, since for each such a there are at most
two primes for which a is a primitive root. Artin’s conjecture is the assertion that
for all other values of a there are infinitely many primes for which a is a primitive
root and, in fact, there is a positive rational ca with Pa(x)∼ ca Aπ(x). This
conjecture was proved by Hooley [2] under the assumption of the generalized
Riemann hypothesis. For surveys, see Li and Pomerance [7], Moree [11] and
Murty [12].

Concerning the third question, Stephens [13] has shown unconditionally that,
if y > exp(4(log x log log x)1/2), then

1
y

∑
1≤a≤y

Pa(x)∼ Aπ(x) as x→∞. (2)

Turning to the composite case, the first author in [5] showed that
(1/x)

∑
n≤x R(n)/n does not tend to a limit as x→∞. We have

x ≥
∑
n≤x

R(n)

n
�

x

log log log x

and

lim sup
x→∞

1
x

∑
n≤x

R(n)

n
> 0, lim inf

x→∞

1
x

∑
n≤x

R(n)

n
= 0.

Let E denote the set of integers a which are a power higher than the
first power or a square times a member of {±1,±2}. It was shown by the
first author in [4] that for a ∈ E we have Na(x)= o(x), and that for every
integer a we have lim infx→∞ Na(x)/x = 0. In [8] we showed that, under the
assumption of the generalized Riemann hypothesis, for each integer a 6∈ E we
have lim supx→∞ Na(x)/x > 0.

To complete our brief review of the literature, the first author showed in [6]
that, for y ≥ exp((log x)3/4),

1
y

∑
1≤a≤y

Na(x)∼
∑
n≤x

R(n)

n
as x→∞. (3)

The goal of this paper is to improve the range for y in (3) to a range for y
similar to that in (2). We use similar methods to those already used in these
problems. Let

L(x)= exp((log x log log x)1/2).

We prove the following theorem.

THEOREM 1. For y ≥ L(x)8,

1
y

∑
1≤a≤y

Na(x)=
∑
n≤x

R(n)

n
+ O

(
x

y1/7

)
.
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Further, for any fixed ε > 0 and L(x)2+ε ≤ y ≤ L(x)8,

1
y

∑
1≤a≤y

Na(x)=
∑
n≤x

R(n)

n
+ O

(
x L(x)1/2+ε/6

y1/4 +
x log x

y5/32

)
.

In particular, (3) holds in the range y ≥ L(x)2+ε.

We remark that our proof can be adapted to the case of Pa(x), and so allows
an improvement of (2) to the range y ≥ L(x)2+ε.

§2. Preliminaries. Variables p, q always denote primes. For a positive
integer n, we write pa

‖ n if pa
| n and pa+1 - n. In this case, we also write

vp(n)= a. The universal exponent function λ(n) can be computed from the
prime factorization of n as follows:

λ(n)= lcm{λ(pa) : pa
‖ n},

where λ(pa)= ϕ(pa) unless p = 2, a ≥ 3, in which case λ(2a)= 1
2ϕ(2

a)=

2a−2. For each prime q | λ(n) (which is equivalent to the condition q | ϕ(n))
let

Dq(n)= {p
a
‖ n : vq(λ(p

a))= vq(λ(n))}.

If vq(λ(n))= v > 0, let 1q(n) denote the number of cyclic factors Cqv in
(Z/nZ)∗, so that

1q(n)= #Dq(n),

except in the case q = 2 and 23
∈D2(n), when 12(n)= 1+ #D2(n). Then

(see [5, 10]),
R(n)= ϕ(n)

∏
q|ϕ(n)

(1− q−1q (n)). (4)

Let rad(m) denote the largest square-free divisor of m. Let

E(n)= {a mod n : aλ(n)/ rad(λ(n))
≡ 1(mod n)},

so that E(n) is a subgroup of (Z/nZ)∗. We say that a character χ mod n is
elementary if it is trivial on E(n). Clearly the order of an elementary character
is square-free. For each square-free number h | ϕ(n), let ρn(h) be the number of
elementary characters mod n of order h. It is not hard to see that

ρn(h)=
∏
q|h

(q1q (n) − 1). (5)

For a character χ mod n, let

c(χ)=
1
ϕ(n)

∑
′

b

χ(b),

where ′ indicates that the sum is over primitive roots mod n in [1, n]. Further, let

c̄(χ)=

{
1/ρn(ord χ) if χ is elementary,

0 if χ is not elementary.
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PROPOSITION 2. If χ mod n is a character, then |c(χ)| ≤ c̄(χ).

Proof. Various elements of the proof are in [6]; we give a self-contained proof
here. To see that c(χ)= 0 for χ not elementary, note that the primitive roots
mod n comprise a union of some of the cosets of the subgroup E(n) in (Z/nZ)∗,
so that we can factor

∑
a∈E(n) χ(a) out of the character sum

∑
′

b χ(b). This
factor is zero unless χ is trivial on E(n); that is, c(χ)= 0 for χ not elementary.

Suppose now that χ is elementary. For each prime q | ϕ(n), let Sq(n) be the
q-Sylow subgroup of (Z/nZ)∗. This group has exponent qvq (λ(n)); let Rq(n)
denote the set of members with this order. Then a residue b mod n is a primitive
root mod n if and only if it is of the form

∏
q|ϕ(n) bq , where each bq ∈ Rq(n),

and, if it has such a representation, then it is unique. Thus,

ϕ(n)c(χ)=
∑
′

b mod n

χ(b)=
∏

q|ϕ(n)

( ∑
bq∈Rq (n)

χ(bq)

)
.

The inner character sum is #Rq(n) if q - ord χ , since in this case χ acts as the
trivial character on Sq(n). Suppose that q | ord χ . Since Sq(n)\Rq(n)⊂ E(n)
and χ is elementary,∑

b∈Rq (n)

χ(b) =
∑

b∈Sq (n)

χ(b)−
∑

b∈Sq (n)
b 6∈Rq (n)

χ(b)= 0−
∑

b∈Sq (n)
b 6∈Rq (n)

χ(b)

= −(#Sq(n)− #Rq(n)).

We have #Rq(n)= #Sq(n)(1− q−1q (n)), and so we conclude that

∑
b∈Rq (n)

χ(b)=

{
−#Sq(n)q−1q (n) if q | ord χ,

#Sq(n)(1− q−1q (n)) if q - ord χ.

Thus, using (4) and (5), we have

ϕ(n)c(χ) =
∏

q|ord χ

−#Sq(n)

q1q (n)

∏
q|ϕ(n)
q-ord χ

#Sq(n)(1− q−1q (n))

=
(−1)ωR(n)∏

q|ord χ
(q1q (n) − 1)

=
(−1)ωR(n)

ρn(ord(χ))
,

where ω is the number of primes dividing ord(χ). The proposition now follows
since R(n)≤ ϕ(n). 2

PROPOSITION 3. Suppose that k, d are coprime positive integers and
that ψ is an elementary character mod kd that is induced by a character
χ mod k. Each of the following holds:
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(i) vq(λ(k))= vq(λ(kd)) for each q | ord ψ;
(ii) χ is elementary;
(iii) c̄(χ)≥ |c(ψ)|.

Proof. Let h = ord ψ = ord χ , let q | h, let v = vq(λ(k)), and let w =
vq(λ(kd)). Clearly, v ≤ w. Since χ has order h, there is some integer a with

χ(a) 6= 1 and aqv
′

≡ 1 (mod k) for some v′ ≤ v. Since k, d arecoprime, there is
an integer b with b ≡ a (mod k) and b ≡ 1 (mod d). Then

bqv
′

≡ 1 (mod kd) and ψ(b)= χ(a) 6= 1.

Since ψ is elementary, it follows that b 6∈ E(kd), so that v′ >w − 1. Thus, we
have v ≥ v′ ≥ w, which completes the proof of (i).

Suppose that χ is not elementary, so that χ is not trivial on E(k). This
then implies that there is some a ∈ E(k) with χ(a) 6= 1. As above, there is
some b with b ≡ a (mod k) and b ≡ 1 (mod d). Since λ(k)/ rad(λ(k)) divides
λ(kd)/ rad(λ(kd)), it follows that b ∈ E(kd). However, ψ(b)= χ(a) 6= 1,
contradicting the assumption that ψ is elementary. This proves (ii).

Using (i) and k, d coprime we immediately have 1q(k)≤1q(kd) for each
q | h, so that (5) implies that ρk(ord χ)≤ ρkd(ord ψ). Thus, (iii) follows from
(ii) and Proposition 2. 2

§3. The proof. Our starting point is a lemma from [6]. Let X(n) denote the
set of non-principal elementary characters mod n, and let

S(x,y) =
∑
n≤x

∑
χ∈X(n)

c(χ)
∑

1≤a≤y

χ(a).

It is shown in [6] that∑
1≤a≤y

Na(x)= y
∑
n≤x

R(n)

n
+ S(x,y) + O(x log x). (6)

Thus, we would like to show that |S(x,y)| is small. A natural thought is to use
character sum estimates to majorize the sum of χ(a), but to do this, it will be
convenient to deal with primitive characters.

Let χ0,n denote the principal character mod n and let
∑
∗ denote a sum over

non-principal primitive characters. We have

S(x,y) =
∑
n≤x

∑
k|n

∑
∗

χ mod k
χχ0,n∈X(n)

c(χχ0,n)
∑
a≤y

χ(a)χ0,n(a)

=

∑
n≤x

∑
k|n

∑
∗

χ mod k

c(χχ0,n)
∑
d|n

(d,k)=1

χ(d)µ(d)
∑

a≤y/d

χ(a),
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where we can drop the condition χχ0,n ∈ X(n) since, if χχ0,n is not elementary,
then Proposition 2 implies that c(χχ0,n)= 0. Thus,

|S(x,y)| ≤
∑
d≤x

|µ(d)|
∑

km≤x/d
(k,d)=1

∑
∗

χ mod k

|c(χχ0,dkm)|

∣∣∣∣ ∑
a≤y/d

χ(a)

∣∣∣∣
=

∑
d≤x

|µ(d)|Sd , (7)

say.
We have

Sd =
∑

k≤x/d
(k,d)=1

∑
m1≤x/dk
rad(m1)|k

∑
m2≤x/dkm1
(m2,k)=1

∑
∗

χ mod k

|c(χχ0,dkm1m2)|

∣∣∣∣ ∑
a≤y/d

χ(a)

∣∣∣∣
≤

∑
k≤x/d
(k,d)=1

∑
m1≤x/dk
rad(m1)|k

∑
m2≤x/dkm1
(m2,k)=1

∑
∗

χ mod k

c̄(χχ0,km1)

∣∣∣∣ ∑
a≤y/d

χ(a)

∣∣∣∣
≤

∑
k≤x/d

∑
rad(m)|k

x

dkm

∑
∗

χ mod k

c̄(χχ0,km)

∣∣∣∣ ∑
a≤y/d

χ(a)

∣∣∣∣, (8)

where the first inequality follows from Propositions 2 and 3.
We now give an estimate that will be useful in the cases with d large. To do

this, we trivially majorize the character sum |
∑

a≤y/d χ(a)| with y/d , so that

Sd ≤
xy

d2

∑
k≤x/d

1
k

∑
rad(m)|k

1
m

∑
∗

χ mod k

c̄(χχ0,km).

The sum over m and χ is estimated as follows.

LEMMA 4. If k is a positive integer, then∑
rad(m)|k

1
m

∑
∗

χ mod k

c̄(χχ0,km)≤
k

ϕ(k)
τ (ϕ(k)),

where τ is the divisor function.

Proof. For each h | ϕ(k), consider those primitive characters χ mod k of
order h. The number of them for which χχ0,km is an elementary character with
modulus km is at most ρkm(h). Hence, the contribution to the inner sum for
each h is at most one, so that the inner sum is majorized by τ(ϕ(k)). Further, the
sum on m of 1/m, which is an infinite sum, has an Euler product and is seen to
be k/ϕ(k). Thus, the lemma follows. 2

Using Lemma 4, we have

Sd ≤
xy

d2

∑
k≤x/d

1
ϕ(k)

τ (ϕ(k)). (9)
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We deduce from [9] that∑
n≤x

τ(ϕ(n))� x exp(c(log x/log log x)1/2) (10)

for any fixed c >
√

8/eγ = 2.1193574 . . . . Using this result, the estimate
1/ϕ(k)� (log log x)/k for k ≤ x , and partial summation, we obtain from (9)
that

Sd �
xy

d2 exp(3(log x/log log x)1/2). (11)

We use this estimate when d is large.
For a positive integer k and positive reals w, z, let

F(k, z)=
∑

rad(m)|k

1
m

∑
∗

χ mod k

c̄(χχ0,km)

∣∣∣∣∑
a≤z

χ(a)

∣∣∣∣,
T (w, z)=

∑
k≤w

F(k, z),

S(w, z)= w
∑
k≤w

1
k

F(k, z).

Note that
Sd ≤ S(x/d, y/d). (12)

We now look to estimate S(w, z) and, to do this, we first estimate T (w, z) so
that a partial summation calculation will give us S(w, z).

LEMMA 5. For w, z ≥ 3 and z ≥ L(w)6, uniformly,

T (w, z)� wz13/16L(w)1/4. (13)

Further, if L(w)8 ≥ z ≥ L(w)2, then as w→∞,

T (w, z)≤ wz3/4L(w)1/2+o(1). (14)

Proof. We first consider the case when w ≤ z3/2. We have, by the Pólya–
Vinogradov inequality (see [3, Theorem 12.5]),

T (w, z)�
∑
k≤w

k1/2 log k
∑

rad(m)|k

1
m

∑
∗

χ mod k

c̄(χχ0,km).

Using Lemma 4, we have

T (w, z)�
∑
k≤w

k3/2 log k

ϕ(k)
τ (ϕ(k))≤ w3/2 log w

∑
k≤w

1
ϕ(k)

τ (ϕ(k)).

Thus, using the same argument that allowed us to deduce (11) from (9), we have

T (w, z)� w3/2 exp(3(log w/log log w)1/2).
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Since w3/2
≤ wz3/4 when w ≤ z3/2, the lemma follows in this case.

Now assume that w > z3/2. We use Hölder’s inequality. Let r be a positive
integer, so that writing 1/m as 1/m(2r−1)/2r

· 1/m1/2r ,

T (w, z)2r
≤ A2r−1

· B, (15)

where

A =
∑
k≤w

rad(m)|k

1
m

∑
∗

χ mod k

c̄(χχ0,km)
2r/(2r−1),

B =
∑
k≤w

rad(m)|k

1
m

∑
∗

χ mod k

∣∣∣∣∑
a≤z

χ(a)

∣∣∣∣2r

=

∑
k≤w

k

ϕ(k)

∑
∗

χ mod k

∣∣∣∣∑
a≤z

χ(a)

∣∣∣∣2r

.

Using 0≤ c̄(χχ0,km)≤ 1, Lemma 4 and (10), we have

A� w exp(3(log w/log log w)1/2). (16)

To estimate B we use the large sieve (see [3, Theorem 7.13]) and [13,
Lemmas 3, 4 and 5], and obtain

B� (w2
+ zr )zr (r log z)r

2

uniformly for integers r ≥ 1 and numbers w ≥ 3, z ≥ 3. We let

r = d2 log w/log ze,

so that w2
≤ zr , which implies that

B� z2r (r log z)r
2
.

Further, r < 2 log w/log z + 1< (8/3) log w/log z, using w > z3/2. Thus,
r log z < 3 log w. We conclude that

B1/2r
� z(r log z)r/2 < z exp

(
r

2
log(3 log w)

)
< z exp

(
4
3
·

log w log(3 log w)
log z

)
. (17)

Since r < (8/3) log w/log z, we have w1/2r > z3/16, so that, from (16), we have

A(2r−1)/2r
�

w

z3/16 exp(3(log w/log log w)1/2).

Using this estimate with (15) and (17), we have

T (w, z)� wz13/16 exp
(

3
(

log w
log log w

)1/2

+
log w log(3 log w)

(3/4) log z

)
,

and so the lemma follows in the range z ≥ L(w)6.
If z ≤ L(w)8, then the above choice of r is (2+ o(1)) log w/log z, so

that (16) implies that A(2r−1)/2r
≤ wz−1/4L(w)o(1). Further, if z ≥ L(w)2, then

the first part of (17) shows that B1/2r
≤ zL(w)1/2+o(1), so that the inequality

T (w, z)≤ wz3/4L(w)1/2+o(1) follows from (15). 2
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We are now ready to complete the proof of the theorem. Using Lemma 5 and
partial summation, we deduce that if z ≥ L(w)6, then

S(w, z)� w log w · z13/16L(w)1/4. (18)

If L(w)8 ≥ z ≥ L(w)2, then using S(w, z)= T (w, z)+ w
∫ w

1 u−2T (u, z) du,
we distinguish the cases L(u)8 ≤ z and L(u)8 > z. In the first case, we
use (13) and L(u)1/4 ≤ z1/32 to obtain an upper bound of order log w · z27/32

for the integral. In the second case, we use (14) to obtain the upper bound
z3/4L(w)1/2+o(1) for the integral. So, for any fixed δ > 0, when L(w)8 ≥ z ≥
L(w)2 we have

S(w, z)� wz3/4L(w)1/2+δ + w log w · z27/32. (19)

Suppose first that L(x)8 ≤ y ≤ x . For d ≤ y1/4, we have y/d ≥ y3/4
≥

L(x)6 ≥ L(x/d)6. Thus, from (12) and (18),

Sd ≤ S(x/d, y/d)�
xy log x

d29/16 y3/16 L(x)1/4.

Summing this for d ≤ y1/4 and (11) for d > y1/4, and using (6) and (7), we have
the theorem in the case that y ≥ L(x)8.

Now let ε > 0 and assume that L(x)2+ε ≤ y ≤ L(x)8. If d ≤ y/L(x)2+ε/2,
for large x we see that L(x/d)8 ≥ L(x)8/d ≥ y/d ≥ L(x)2+ε/2 > L(x/d)2.
Thus, by (12) and (19) with δ = ε/6, we have

Sd ≤ S(x/d, y/d)�
xy

d7/4 y1/4 L(x)1/2+ε/6 +
xy log x

d59/32 y5/32 .

We sum this for d ≤ y/L(x)2+ε/2, add in the sum of the estimate in (11) for
larger d , and obtain from (7) that

1
y

S(x,y)�
x

y1/4 L(x)1/2+ε/6 +
x log x

y5/32 +
x

y
L(x)2+ε/2+ε/6.

Note that the first term dominates the third in the given range for y. We now
use (6) to complete the proof of the theorem.
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