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To motivate the topic, let’s begin with elliptic curves.

If a, b ∈ Q are such that 4a3 + 27b2 6= 0, the curve

y2 = x3 + ax+ b

is nonsingular. In this case the set of rational points on the

projectivized version of the curve, namely

{(u : v : w) ∈ P2(Q) : wv2 = u3 + auw2 + bw3}

form an abelian group, with group identity (0 : 1 : 0), the

“point at infinity.” The group law is found via the familiar

chord/tangent construction, and it is a theorem that it is

finitely generated. It is not known if the rank of this group can

be arbitrarily large.
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The geometric view of the group law on an elliptic curve with

rational (or real) coefficients gives formulae for group addition

and doubling via calculus and analytic geometry. These

formulae continue to make sense even when we have trouble

picturing what a chord or a tangent looks like.

Let q be a prime power, say a power of the prime p, and let Fq
be a finite field with q elements (it’s unique up to

isomorphism). For u an indeterminate, we have the rational

function field Fq(u).

If we consider elliptic curves defined over Fq(u) and the points

on such a curve with coordinates in Fq(u), then again, we have

a finitely generated abelian group. And again we can ask if the

rank can be arbitrarily large.
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In 1967, Shafarevich and Tate gave a family of elliptic curves

over Fq(u) where the ranks grow arbitrarily large. Their family

was considered “isotrivial” meaning that the j-invariant of each

curve was in Fq.

In a 2002 Annals paper, Ulmer exhibited a non-isotrivial family,

namely

y2 + xy = x3 − ud

which has positive-integer parameter d. (The curve is not given

here in Weierstrass form.) In particular, for this curve defined

over Fq(u) (of characteristic p), if d = qn + 1, then the rank of

the curve is about qn/2n.
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More generally, he showed that if −1 ∈ 〈p〉d (the notation

means that pn ≡ −1 (mod d) for some n), then the rank of

y2 + xy = x3 − ud over Fq is within 4 of

∑
e|d

ϕ(e)

lq(e)
.

Here, the notation lq(e) stands for the order of q in the unit

group modulo e. So, the fraction ϕ(e)/lq(e) is just the index of

〈q〉e in Ue.

In the case that d = qn + 1, the hypothesis −1 ∈ 〈p〉d clearly

holds, and each lq(e)|2n, so

∑
e|d

ϕ(e)

lq(e)
≥

1

2n

∑
e|d
ϕ(e) =

d

2n
=
qn + 1

2n
.
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Some natural questions:

• What is the rank on average?

• What is the rank normally?

• Given p, how frequently do we have −1 ∈ 〈p〉d?
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Let’s begin with the last question, namely, how special is it for
d to have the property that pn ≡ −1 (mod d) for some n.

To be specific, lets take p = 2 and consider the two sets of
integers:

S : = {d : d | 2n − 1 for some positive integer n}
T : = {d : d | 2n + 1 for some positive integer n}.

Surely they should not be very different!

But they are. For starters, S is just the set of odd numbers, it
has asymptotic density 1/2.

Note that if p ≡ 7 (mod 8), then p cannot divide any member of
T . Indeed, (2/p) = 1, so the order of 2 in Up divides (p− 1)/2,
which is odd. Hence there can be no n with 2n ≡ −1 (mod p).
Thus, there can be no member of T divisible by such a prime p.
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What can we say about the integers which have no prime

factor p ≡ 7 (mod 8)?

For any finite set P of primes, the density of integers not

divisible by any member of P is

∏
p∈P

(
1−

1

p

)
.

Now suppose that P runs over all finite subsets of the primes

p ≡ 7 (mod 8).
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Since ∑
p≤x

p≡7 (mod 8)

1

p
=

1

4
log logx+O(1),

it follows that ∏
p≤x

p≡7 (mod 8)

(
1−

1

p

)
� (logx)−1/4.

In fact, using the fundamental lemma of the sieve, we get that∑
m≤x

p|m =⇒ p 6≡7 (mod 8)

1 �
x

(logx)1/4
.
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By following these ideas more carefully, one can prove that for

p fixed, the number of integers d ≤ x not divisible by p and for

which −1 ∈ 〈p〉d is (cp + o(1))x/(logx)2/3, as x→∞, where cp is

a positive constant.

As for the other questions concerning a statistical study of the

ranks in this family, there have been some results of P and

Shparlinski, and also more recently of Gottschlich.
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Let Rq(d) denote the rank of the elliptic curve y2 + xy = x3− ud
over Fq.

P & Shparlinski (2010). There is an absolute positive
constant α > 1

2 such that

1

x

∑
d≤x

Rq(d) > xα

for all sufficiently large x depending on q. Further,
∑
d≤x
−1∈〈p〉d

1


−1

∑
d≤x
−1∈〈p〉d

Rq(d) ≤ x1−log log logx/(2 log logx).

And for d in set of asymptotic density 1, we have, as d→∞,

Rq(d) ≥ (log d)(1
3 + o(1)) log log log d.

10



Concerning this last result on the normal size of Rq(d), we
conjectured something stronger if d was forced to run through
the set where −1 ∈ 〈p〉d, namely

Conjecture (P & Shparlinski). But for o(x/(logx)2/3)
choices of d ≤ x with −1 ∈ 〈p〉d, we have as x→∞

Rq(d) = (log d)(1+o(1)) log log log d

But it seems we were wrong:

Gottschlich (2012?). Assuming the GRH, but for
o(x/(logx)2/3) choices for d ≤ x with −1 ∈ 〈p〉d, we have as
x→∞

Rq(d) = (log d)(1
3 + o(1)) log log log d.
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In a more recent paper, Ulmer got a similar formula for the

rank for another family of curves: y2 = x(x+ 1)(x+ ud). This

is (essentially) the Legendre curve. In a very recent preprint,

Ulmer, together with Conceição and Hall, extended the set of

d’s for which the rank formula holds. If we again use the

notation Rq(d) for the rank, they have shown that for p odd,

Rq(d) =
∑
e|d

〈p〉e is balanced

ϕ(e)

lq(e)
.

So, what does it mean for 〈p〉e to be balanced?

It is a generalization of −1 ∈ 〈p〉e (when e > 2) as we shall now

see.
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Assume d > 2. Consider a subgroup H of the unit group Ud.
We say H is balanced if each coset aH of H in Ud contains an
equal number of elements in (0, d/2) as in (d/2, d).

For example, H = Ud is a balanced subgroup of Ud.

Also H = {1,−1} = 〈−1〉d is balanced. Indeed, if a ∈ Ud, then a
and −a are not both in the same half.

If K is a subgroup of Ud containing a balanced subgroup H,
then K too is balanced. Indeed, K is a union of some cosets of
H, say a1H, . . . , akH. Then each coset bK is a union of the
cosets ba1H, . . . , bakH, and since each of these is split 50-50
between the two halves of Ud, so too is bK split 50-50.

As a corollary, if −1 ∈ 〈p〉d, then 〈p〉d is balanced, as is each 〈p〉e
for e | d, e > 2.
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However, containing −1 is not the only way for a subgroup of

Ud to be balanced. Here is an interesting family:

Suppose 4 | d. Then 〈12d+ 1〉 is balanced in Ud.

It’s easy to see, since if a ∈ Ud, then a is odd, so that 1
2da = 1

2d

in Ud. Thus, a(1
2d+ 1) = 1

2d+ a, so that a and a(1
2d+ 1) lie in

different halves of Ud.
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Some natural questions:

• Is there a simple criterion for a subgroup H of Ud to be
balanced?

• What are the minimal balanced subgroups of Ud? (It means
that the subgroup should not contain any balanced proper
subgroups.)

• Must a minimal balanced subgroup be cyclic?

• What is the distribution of numbers d such that 〈p〉d is
balanced? In particular, are there substantially more of
them than for the simpler criterion −1 ∈ 〈p〉d?
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For a criterion for a subgroup to be balanced, we turn to

characters.

For a finite abelian group G, a character is a homomorphism

from G to the multiplicative group of complex numbers, so

necessarily to the group of roots of unity.

A character χ on Ud may be extended to a Dirichlet character

modulo d: one takes χ(n) = χ(n (mod d)) when (n, d) = 1, and

χ(n) = 0 otherwise.

The trivial character on Ud corresponds to the prinicipal

character χ0,d modulo d, which is just the characteristic

function of the integers coprime to d.
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A character χ modulo d is said to be induced by a character χ′

modulo d′ if d′ | d and χ = χ′χ0,d.

The conductor of a character χ modulo d is the smallest d′ for

which there is a character χ′ modulo d′ that induces χ.

A character χ modulo d is primitive if its conductor is d.

A character χ modulo d is odd if χ(−1) = −1 and otherwise it

is even. Note that an odd character is an odd function, and an

even character is an even function.
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For χ a character modulo d, let

cχ =
∑

a∈(0,d/2)

χ(a).

P & Ulmer (2012). A subgroup H of Ud is balanced if and

only if cχ = 0 for each odd character χ modulo d which is trivial

on H.

A very simple example: H = 〈−1〉 in Ud. There are no odd

characters modulo d that are trivial on H, so H is balanced.
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What can be said about cχ in general?

If χ is even, then it is almost obvious that cχ = 0, in fact,

that’s why the criterion mentions only odd characters.

If χ is odd and primitive modulo d, we have that

cχπiτ(χ̄) = L(1, χ̄)(χ̄(2)− 2)d,

where τ(χ̄) is the Gauss sum, and L(1, χ̄) =
∑
n>0 χ̄(n)/n.

In particular, for χ odd and primitive, cχ 6= 0. As a corollary, if

H is balanced in Ud there cannot be any odd primitive

characters modulo d that are trivial on H.
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We can work out exactly when cχ 6= 0. Here χ is an odd
character modulo d induced by a primitive character χ′

modulo d′ (so that d′ is the conductor of χ). Then cχ 6= 0
precisely when both

• Either d/d′ is odd or d ≡ 2 (mod 4).

• For each odd prime ` | d with ` - d′, we have χ′(`) 6= 1.

An application: Suppose that 4 | d and H = 〈12d+ 1〉d. Note
that Ud/H ∼= U1

2d
. Thus if χ is a character modulo d that is

trivial on H it is essentially a character modulo 1
2d, so that the

conductor d′ of χ divides 1
2d. This shows that d/d′ is even, and

so the first bullet implies that cχ = 0. Hence H is balanced.
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We can use this criterion to enumerate all pairs H,Ud where H

is a balanced subgroup of Ud and |H| = n. In particular, if H

does not contain −1 nor 1
2d+ 1 in the case that 4 | d, then

there are only finitely many possibilities for pairs H,Ud.

In the case n = 2, the only sporadic balanced subgroups of

order 2 are

• d = 24 and H = 〈17〉 or 〈19〉.

• d = 60 and H = 〈41〉 or 〈49〉.
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Engberg has enumerated the sporadic balanced subgroups of

order 4 and order 6. It’s possible that a minimal balanced

subgroup is always cyclic; so far no counterexamples have been

found.

He has also found some infinite families of minimal sporadic

subgroups, so maybe the word “sporadic” needs to be

replaced...

Despite the existence of such infinite families, P & Ulmer

conjecture that for most numbers d for which 〈p〉d is balanced,

we have −1 ∈ 〈p〉d or 4 | d and 1
2d+ 1 ∈ 〈p〉d.
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To make this precise, for a given integer p with |p| > 1, let

Bp = {d : (d, p) = 1, 〈p〉d is balanced},
Bp,1 = {d : (d, p) = 1, − 1 ∈ 〈p〉d},
Bp,0 = {d : 4 | d, (d, p) = 1, 1

2d+ 1 ∈ 〈p〉d}.

For any set A of integers, let A(x) = A ∩ [1, x].

Then we conjecture that

|Bp(x)| = |Bp,0(x)|+ (1 + o(1))|Bp,1(x)|

as x→∞.
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P & Ulmer (2012). If p is odd, then

|Bp,0(x)| �p
x

log logx
.

In all cases, there is a number δp > 0 such that

|Bp(x) \ Bp,0(x)| = O

(
x

(logx)δp

)
.

In particular, if p is odd,

|Bp(x)| = (1 + o(1))|Bp,0(x)|

as x→∞.

(We show in the case of p an odd prime that we may take

δp = 1
16.)
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So the surprise here is that there are so many more members
of Bp,0 (when p is odd) than of Bp,1. (Recall that when p is
prime, |Bp,1(x)| ∼ cpx/(logx)2/3.)

Why does this happen?

Say p is odd. Consider d = 2jm coprime to p, where m is odd
and j ≥ 2. What can we say about

v2(lp(d)) ?

(By v2(n) we mean that i with 2i | n and 2i+1 - n.) Well, we
have

v2(lp(d)) = max{v2(lp(2j)), v2(lp(m))}.

Further, it is an easy exercise to see that when lp(m) is even
that d ∈ Bp,0 if and only if v2(lp(2j)) > v2(lp(m)).
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Further we have v2(lp(2j)) = j +Op(1).

So, what can we say about v2(lp(m))? Since m is odd, we have

v2(lp(m)) = max{v2(lp(r)) : r prime, r | m}.

We can show that usually 2v2(lp(m)) � log logx, from which our

result then follows.

To anticipate a possible question, I remark that we have

sketched a proof that there is no positive constant βp such that

|Bp,0(x)| ∼ βp
x

log logx
as x→∞.



Finally we can use our results plus the techniques from the

2010 work of P and Shparlinski to get results on average and

normally for Rq(d) for the Legendre curve over Fq(u). In

particular for p an odd prime, we have for almost all d ∈ Bp that

Rq(d) = (log d)(1+o(1)) log log log d as d→∞, the upper bound

implicit here depending on the GRH.
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THANK YOU
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