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You would think that all of the issues surrounding addition and

multiplication were sewed up in third grade!

Well in this talk we’ll learn about some things they didn’t tell

you . . .
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Here’s one thing they did tell you:

Find 483 × 784.

483

× 784

———

1932

3864

3381

—–——

378672
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If instead you had a problem with two 23-digit numbers, well

you always knew deep down that math teachers are cruel and

sadistic. Just kidding! (Aside: evil laugh . . . )

In principle if you really have to, you could work out 23-digits

times 23-digits on paper, provided the paper is big enough, but

it’s a lot of work.

So here’s the real question: How much work?
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Of course the amount of work depends not only on how long

the numbers are, but on what they are. For example,

multiplying 1022 by 1022, that’s 23-digits times 23-digits, but

you can do it in your head.

In general, you’ll take each digit of the lower number, and

multiply it painstakingly into the top number. It’s less work if

some digit in the lower number is repeated, and there are

definitely repeats, since there are only 10 possible digits. But

even if it’s no work at all, you still have to write it down, and

that’s 23 or 24 digits. At the minimum (assuming no zeroes),

you have to write down 232 = 529 digits for the

“parallelogram” part of the product. And then comes the final

addition, where all of those 529 digits need to be processed.
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So in general if you multiply two n-digit numbers, it would

seem that you’d be taking n2 steps, unless there were a lot of

zeroes. This ignores extra steps, like carrying and so on, but

that at worst changes n2 to maybe 2n2 or 3n2. We say that

the “complexity” of “school multiplication” for two n-digit

numbers is of order n2.
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A. A. Karatsuba (1937–2008): Devised a faster way to multiply

two n-digit numbers, in about n1.6 elementary steps.
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Karatsuba’s method was later improved by Toom, Cook,

Schönhage, & Strassen. After their efforts we have the Fast

Fourier Transform that allows you to multiply in about n · L(n)

steps, where L(n) is short-hand for the number of digits of n.

(So L(n) is the number of digits of the number of digits of the

numbers being multiplied!)

We don’t know if the Fast Fourier Transform is best possible.

In particular:

What is the fastest way to multiply?
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Let’s play Jeopardy Multiplication!

Here are the rules: I give you the answer to the multiplication

problem, and you give me the problem phrased as a question.

You must use whole numbers larger than 1.

So, if I say “15”, you say “What is 3× 5?”

OK, let’s play.

21
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Good. That was easy. Let’s up the ante.

91
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Good. That was easy. Let’s up the ante.

91

What is 7× 13?
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Let’s do 8051.
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Let’s do 8051.

Thinking, thinking . . . . Hmm,
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Let’s do 8051.

Thinking, thinking . . . . Hmm,

8051 = 8100− 49 = 902 − 72 = (90− 7)(90 + 7) = 83× 97.

Got it!

What is 83× 97?
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So, here’s what we don’t know:
How many steps does it take to figure out the factors if
you are given an n-digit number which can be factored?
(A trick problem would be: 17. The only way to write it as
a× b is to use 1, and that was ruled out. So, prime numbers
cannot be factored, and the thing we don’t know is how long it
takes to factor the non-primes.)

The best answer we have so far is about 10n1/3
steps, and even

this is not a theorem, but our algorithm (the number field
sieve) seems to work in practice.

This is all crucially important for the security of Internet
commerce. Or I should say that Internet commerce relies on
the premise that we cannot factor much more quickly than
that.
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Let’s look at an unsolved problem concerning addition.

We all recall the addition table:

+ 1 2 3 4 5 6 7 8 9 10
1 2 3 4 5 6 7 8 9 10 11
2 3 4 5 6 7 8 9 10 11 12
3 4 5 6 7 8 9 10 11 12 13
4 5 6 7 8 9 10 11 12 13 14
5 6 7 8 9 10 11 12 13 14 15
6 7 8 9 10 11 12 13 14 15 16
7 8 9 10 11 12 13 14 15 16 17
8 9 10 11 12 13 14 15 16 17 18
9 10 11 12 13 14 15 16 17 18 19

10 11 12 13 14 15 16 17 18 19 20
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The 10× 10 array of sums has all the numbers from 2 to 20

for a total of 19 different sums.

If you were to try this for the N ×N addition table we’d see all

of the numbers from 2 to 2N for a total of 2N − 1 different

sums.

Now, what if we were to be perverse and instead of having the

numbers from 1 to N , we had some arbitrary list of N different

numbers.

Can you arrange it so there are fewer than 2N − 1 different

sums?
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The 10× 10 array of sums has all the numbers from 2 to 20
for a total of 19 different sums.

If you were to try this for the N ×N addition table we’d see all
of the numbers from 2 to 2N for a total of 2N − 1 different
sums.

Now, what if we were to be perverse and instead of having the
numbers from 1 to N , we had some arbitrary list of N different
numbers.

Can you arrange it so there are fewer than 2N − 1 different
sums?

If you answered “No, there are always at least 2N − 1 different
sums,” you’d be right.
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Now consider the reverse problem. You have a list of N

different numbers, you form the addition table with themselves,

and you find that there are just 2N − 1 different sums.

Must the list be the numbers from 1 to N?
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Now consider the reverse problem. You have a list of N

different numbers, you form the addition table with themselves,
and you find that there are just 2N − 1 different sums.

Must the list be the numbers from 1 to N?

+ 2 5 8 11 14
2 4 7 10 13 18
5 7 10 13 16 19
8 10 13 16 19 22

11 13 16 19 22 25
14 16 19 22 25 28

There are the 9 different sums: 4, 7, 10, 13, 16, 19, 22, 25,
28, all others are repeats of these.
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In fact: If there are just 2N − 1 distinct sums when adding an

N-element set to itself, then the N-element set must be an

arithmetic progression.

Here’s an example where there are many different sums:

+ 1 2 4 8 16
1 2 3 5 9 17
2 3 4 6 10 18
4 5 6 8 12 20
8 9 10 12 16 24

16 17 18 20 24 32
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So, sometimes there are few distinct sums and sometimes
many.
What structure is forced on the set if there are few
distinct sums?
We know the answer when there are very few distinct sums:

Gregory Freiman
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Here’s something with multiplication tables.

Let’s look at the N ×N multiplication table using the numbers

from 1 to N . With addition, we were able to count exactly how

many distinct numbers appear in the table.

How many different numbers appear in the N ×N

multiplication table?
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Let M(N) be the number of distinct entries in the N ×N

multiplication table.

× 1 2 3 4 5
1 1 2 3 4 5
2 2 4 6 8 10
3 3 6 9 12 15
4 4 8 12 16 20
5 5 10 15 20 25

So, M(5) = 14.
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× 1 2 3 4 5 6 7 8 9 10
1 1 2 3 4 5 6 7 8 9 10
2 2 4 6 8 10 12 14 16 18 20
3 3 6 9 12 15 18 21 24 27 30
4 4 8 12 16 20 24 28 32 36 40
5 5 10 15 20 25 30 35 40 45 50
6 6 12 18 24 30 36 42 48 54 60
7 7 14 21 28 35 42 49 56 63 70
8 8 16 24 32 40 48 56 64 72 80
9 9 18 27 36 45 54 63 72 81 90

10 10 20 30 40 50 60 70 80 90 100

M(10) = 42.
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It may be too difficult to expect a neat exact formula for M(N).

Instead, we could ask for its order of magnitude, or even

approximate order of magnitude.

For example, does M(N) go to infinity like a constant times

N2, or more slowly? That is, maybe there is a positive number

c with

M(N)/N2 > c

for all N . Or maybe for every positive number c,

M(N)/N2 < c

for infinitely many choices for N or perhaps for all large N .
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Here are some values of M(N)/N2 (Brent & Kung 1981):

N M(N) M(N)/N2

1 1 1.0000
3 6 0.6667
7 25 0.5102

15 89 0.3956
31 339 0.3528
63 1237 0.3117

127 4646 0.2881
255 17577 0.2703
511 67591 0.2588

1023 258767 0.2473
2047 1004347 0.2397
4095 3902356 0.2327
8191 15202049 0.2266
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And some more values (Brent & Kung 1981, Brent 2012):

N M(N) M(N)/N2

214 − 1 59410556 0.2213
215 − 1 232483839 0.2165
216 − 1 911689011 0.2123
217 − 1 3581049039 0.2084
218 − 1 14081089287 0.2049
219 − 1 55439171530 0.2017
220 − 1 218457593222 0.1987
221 − 1 861617935050 0.1959
222 − 1 3400917861267 0.1933
223 − 1 13433148229638 0.1909
224 − 1 53092686926154 0.1886
225 − 1 209962593513291 0.1865
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And some statistically sampled values (Brent & P 2012):

N M(N)/N2 N M(N)/N2

230 0.1774 2100000 0.0348
240 0.1644 2200000 0.0312
250 0.1552 2500000 0.0269

2100 0.1311 21000000 0.0240
2200 0.1119 22000000 0.0216
2500 0.0919 25000000 0.0186

21000 0.0798 210000000 0.0171
22000 0.0697 220000000 0.0153
25000 0.0586 250000000 0.0133

210000 0.0517 2100000000 0.0122
220000 0.0457 2200000000 0.0115
250000 0.0390 2500000000 0.0095
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Paul Erdős studied this problem in two papers, one in 1955, the

other in 1960.

Paul Erdős, 1913–1996
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In 1955, Erdős proved (in Hebrew) that M(N)/N2 tends to 0

as N runs off to infinity.

In 1960, at the prodding of Linnik and Vinogradov, Erdős

identified (in Russian) how quickly M(N)/N2 tends to 0. Recall

that L(N) denotes the number of (decimal) digits of N . There

is a constant (let’s call it E for Erdős),

E = 0.08607133 . . . ,

such that M(N)/N2 is about 1/L(N)E. That is,

M(N) is about N2/L(N)E.
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A conjecture both deep and profound

is whether a circle is round.

In a paper of Erdős,

written in Kurdish,

a counterexample is found.

Leo Moser
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Erdős says that M(N) is “about” N2/L(N)E. What’s with this
weasel word “about”? Answer: We’re saying that no other
exponent on L(N) than the Erdős constant E does better. But
there could be lower order factors.

In work of Tenenbaum progress was made (in French) in nailing
this down.

In 2008, Ford showed (in English) that M(N) is of order of
magnitude

N2

L(N)EL(L(N))3/2
.

No matter the language,
we still don’t know an asymptotic estimate for M(N),
despite this just being about multiplication tables!
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Here are two famous unsolved problems involving both addition

and multiplication:

Goldbach’s conjecture: Every even number starting with 4

is the sum of two primes.

The twin prime conjecture: There are infinitely many

pairs of primes that differ by 2.
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And here’s another famous problem (in disguised form):

Let A(N) be the least common multiple of 1,2, . . . , N (aka: the

least common denominator when 1,2, . . . , N are denominators).

Let B(N) =
1

1
+

1

2
+ · · ·+

1

A(N)
.

For example: B(10) =
1

1
+

1

2
+ · · ·+

1

2520
≈ 8.4.

Do we always have |B(N)−N | <
√
NL(N)2?

(Recall: L(N) is the number of digits of N .)

The Clay Mathematics Institute offers $1,000,000 for a proof!
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Let me close with one unified problem about addition and

multiplication tables. It’s due to Erdős & Szemerédi.

Look at both the addition and multiplication tables and count

the number of distinct entries.

We’ve seen that if we take the first N numbers we get about

N2/L(N)E entries (since the 2N − 1 from the addition table

is just “noise” compared to the huge number from the

multiplication table).

At the other extreme, if we take for our N numbers the powers

of 2, namely 1,2,4, . . . ,2N−1, then there are at least 1
2N

2

distinct entries in the addition table and only 2N − 1 entries in

the multiplication table.
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The question is: if we make one of these small, must the other

always be large?



× 1 2 3 4 5 6 7 8 9 10

1 1 2 3 4 5 6 7 8 9 10

2 2 4 6 8 10 12 14 16 18 20

3 3 6 9 12 15 18 21 24 27 30

4 4 8 12 16 20 24 28 32 36 40

5 5 10 15 20 25 30 35 40 45 50

6 6 12 18 24 30 36 42 48 54 60

7 7 14 21 28 35 42 49 56 63 70

8 8 16 24 32 40 48 56 64 72 80

9 9 18 27 36 45 54 63 72 81 90

10 10 20 30 40 50 60 70 80 90 100

+ 1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10 11

2 3 4 5 6 7 8 9 10 11 12

3 4 5 6 7 8 9 10 11 12 13

4 5 6 7 8 9 10 11 12 13 14

5 6 7 8 9 10 11 12 13 14 15

6 7 8 9 10 11 12 13 14 15 16

7 8 9 10 11 12 13 14 15 16 17

8 9 10 11 12 13 14 15 16 17 18

9 10 11 12 13 14 15 16 17 18 19

10 11 12 13 14 15 16 17 18 19 20
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Many products Few sums

{1,2, . . . , N}
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× 1 2 4 8 16 32 64 128 256 512

1 1 2 4 8 16 32 64 128 256 512

2 2 4 8 16 32 64 128 256 512 1024

4 4 8 16 32 64 128 256 512 1024 2048

8 8 16 32 64 128 256 512 1024 2048 4096

16 16 32 64 128 256 512 1024 2048 4096 8192

32 32 64 128 256 512 1024 2048 4096 8192 16384

64 64 128 256 512 1024 2048 4096 8192 16384 32768

128 128 256 512 1024 2048 4096 8192 16384 32768 65536

256 256 512 1024 2048 4096 8192 16384 32768 65536 131072

512 512 1024 2048 4096 8192 16384 32768 65536 131072 262144

+ 1 2 4 8 16 32 64 128 256 512

1 2 3 5 9 17 33 65 129 257 513

2 3 4 6 10 18 34 66 130 258 514

4 5 6 8 12 20 36 68 132 260 516

8 9 10 12 16 24 40 72 136 264 520

16 17 18 20 24 32 48 80 144 272 528

32 33 34 36 40 48 64 96 160 288 544

64 65 66 68 72 80 96 128 192 320 576

128 129 130 132 136 144 160 192 256 384 640

256 257 258 260 264 272 288 320 384 512 768

512 513 514 516 520 528 544 576 640 768 1024
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Few products Many sums

{1,2,4, . . . ,2N−1}
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Must one always be large?

Put more precisely: If we have N distinct numbers, must

one of

• the number of distinct pairwise sums,

• the number of distinct pairwise products,

be greater than N1.999 for all large values of N?

We don’t know.

And it’s not for lack of trying.
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The game players with the sum/product problem include:

Erdős, Szemerédi, Nathanson, Chen, Elekes, Bourgain,

Chang, Konyagin, Green, Tao, Solymosi, . . .

The best that’s been proved (Solymosi) is that there are at

least N4/3 different entries.

This list of mathematicians contains two Fields Medalists, a

Wolf Prize winner, an Abel Prize winner, four Salem Prize

Winners, two Crafoord Prize winners, and an Aisenstadt Prize

winner.

And still the problem is not solved!
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My message: We could use a little help with these problems!!
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My message: We could use a little help with these problems!!

THANK YOU
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