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Abstract. We show that
(
m+k
k

)
|
(
2m
m

)
for all k ≤ exp(.8

√
logm)

on a set of numbers m of asymptotic density 1. We also show that
(m + 1)(m + 2) . . . (m + k) divides

(
2m
m

)
on a set of asymptotic

density 1 for k as large as .7 logm.

1. Introduction

In a recent paper [3] I proved some elementary results about the
middle binomial coefficient

(
2m
m

)
. In particular, Theorem 2 of that

paper shows that for each fixed positive integer k, m + k |
(
2m
m

)
for

a set of integers m of asymptotic density 1. Following the proof it is
left as an exercise to show that the product (m+ 1)(m+ 2) . . . (m+ k)
divides

(
2m
m

)
on a set of asymptotic density 1. We prove the following

strengthening.

Theorem 1.1. For any fixed η < 1/ log 4 = .721 . . . , we have for a set
of integers m of asymptotic density 1 that

(1.1)
(m+ k)!

m!

∣∣∣ (2m

m

)
for all positive integers k ≤ η logm.

Replacing the product with
(
m+k
k

)
, we prove the following theorem.

Theorem 1.2. For m in a set of asymptotic density 1, we have

(1.2)

(
m+ k

k

) ∣∣∣ (2m

m

)
for all positive integers k ≤ exp(.8

√
logm).

These theorems may be of interest in the context of recent work
towards settling a problem of Erdős using AI (see [5]). One might
compare this note with the write-up of Sothanaphan [4].
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2. Proof of Theorem 1.1

We let p denote a prime variable, and we let vp be the function which
returns the exponent on p in the prime factorization of its argument.

Lemma 2.1. Let

αp(m) =
vp
((

2m
m

))
logm/ log p

.

For a set of integers m of asymptotic density 1 we have α2(m) = 1/2+
o(1), α3(m) ≥ 34/81 + o(1), and αp(m) ≥ .39 for all 3 < p < 2 logm.

Proof. Note that m has blogm/ log pc+ 1 base-p digits and we expect
roughly half of these to be ≥ p/2. More precisely, for p = 2, we expect
half to be ≥ p/2 and for p odd we expect (p − 1)/2p of them to be
≥ p/2. For 3 < p < 2 log x a calculation using the binomial distribution
shows that the number of m ≤ x with fewer than .39 logm/ log p base-p
digits at least p/2 is O(x1−c/ log p). Here c is a small positive constant.
Summing this for p < 2 log x we get an expression that is o(x) as x→
∞. We can add to this exceptional set those m with α2(m) ≤ 1/2−ε for
any fixed positive ε, with c now depending on ε. For p = 3 we consider
the base-27 expansion of m, finding that the average number of base-3
carries doubling such a digit engenders is 34/27, so our assertion about
α3(m) follows as well. �

If p > 2k, vp((m + k)!/m!) = max{vp(m + i) : 1 ≤ i ≤ k}. As in
[3], if this max is j, occurring at m + i0, then the j least significant
base-p digits of m + i0 are 0, so the j least significant base-p digits of
m are p − i0 ≥ p − k > p/2, and so vp(

(
2m
m

)
) ≥ j = vp((m + k)!/m!).

So assume that p ≤ 2k.

Lemma 2.2. For a set of integers m of asymptotic density 1 we have

max{vp(m+ i) : 1 ≤ i ≤ k} ≤ 3
log k

log p

for all k with 1
2

logm < k < logm and for all p ≤ 2k.

Proof. We may assume that x/ log x < m ≤ x. If 1 ≤ i ≤ k, the
number of m ≤ x with vp(m + i) > 3 log k/ log p is ≤ x/k3. Summing
this for i ≤ k and p ≤ 2k, the count is � x/k = o(x). Thus, but for
these exceptional values of m we have the inequality in the lemma. �

Lemma 2.3. For all integers m, k > 0 and primes p, we have

vp

((m+ k)!

m!

)
≤ vp(k!) + max{vp(m+ i) : 1 ≤ i ≤ k}.
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Proof. We may assume that the max in the lemma is positive, say it
first occurs at m+ i0. If pj | m+ i0, then the number of multiples of pj

in {m+ 1, . . . ,m+ k} \ {m+ i0} is ≤ dk/pje − 1 ≤ bk/pjc. Summing
on j we have

vp

((m+ k)!

m!

)
≤ vp(m+ i0) +

∑
pj |m+i0

bk/pjc ≤ vp(m+ i0) + vp(k!),

which was to be proved. �

As a corollary, we have for all integers m, k > 0 and primes p,

(2.1) vp

((m+ k

k

))
≤ max{vp(m+ i) : 1 ≤ i ≤ k}.

Using Lemmas 2.2, 2.3 we have on a set of integers m of density 1
and for p ≤ 2k, 1

2
logm < k < logm that

vp((m+k)!/m!) ≤ vp(k!)+max{vp(m+i) : 1 ≤ i ≤ k} < k

p− 1
+3

log k

log p
.

For a fixed ε > 0, let β2 = 1/2 − ε, β3 = 34/81 − ε, and βp = .39 for
p > 3. It remains for us to find, in light of Lemma 2.1, how large we
may take k so that

k

p− 1
+ 3

log k

log p
≤ βp

logm

log p

holds for all p ≤ 2k. The most difficult value of p to accommodate is
p = 2 and we find that the inequality holds for k as large as (1/ log 4−
2ε) logm.

Remark. It should be possible to show in Lemma 2.1 that αp ∼ 1/2
for all p ≤ 2 log x. A result in this direction is the theorem at the
bottom of page 89 of [2]. The constant 1/ log 4 is optimal in that if k is
slightly larger, the set of m where the divisibility holds does not have
density 1. In fact, a somewhat larger constant times logm for k would
eliminate all examples, cf. [1].

3. Proof of Theorem 1.2

Let x be large, D = Dp = 1+blog x/ log pc, andK = bexp(.8
√

log x)c.

Lemma 3.1. The number of integers m ≤ x with vp(
(
2m
m

)
) ≤ D/ logD

for some prime p ≤ 2K is o(x).
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Proof. We follow the proof of [3, Lemma 2] with some improvements.
Let B = D/ logD and fix a prime p ≤ 2K. The number of m ≤ x with
fewer than B base-p digits ≥ p/2 is smaller than

dp/2eD
∑
j<B

(
D

j

)
.

Since B is small compared to D, the sum here is �
(
D
bBc

)
. A short

calculation with Stirling’s formula shows that this expression is ≤
exp(O(D log logD/ logD)), so

(
D
bBc

)
≤ x.01/ log p for x larger than an

absolute constant. Replacing bp/2c with p/2 creates an error smaller
than x.01/ log p, so our count is then at most

pD2−Dx.02/ log p ≤ x1−(2/3)/ log p

for x large. Summing this for p ≤ 2K we get ≤ Kx1−(2/3)/ log(2K) choices
of m ≤ x with vp(

(
2m
m

)
) ≤ B. Since this bound is o(x) as x → ∞, the

lemma is proved. �

Lemma 3.2. The number of m ≤ x such that for some p < 2K,
max{vp(m+ i) : 1 ≤ i ≤ K} > D/ logD is o(x) as x→∞.

Proof. The count in question is at most∑
p<2K

∑
i≤K

x/pD/ logD ≤ K
∑
p<2K

x/pD/ logD < K
∑
p<2K

x1−1/ logD,

since pD > x. As in [3], the summand here is < Kx1−1/(1+log log x), so
the count is at most K2x1−1/(1+log log x), which by our choice of K is
o(x). �

To prove the theorem we need to show that for most integers m

(3.1) vp

((m+ k

k

))
≤ vp

((2m

m

))
for all primes p and for all k ≤ K. First assume that p > 2k. Then
vp(
(
m+k
k

)
) = vp((m+ k)!/m!), so as before (3.1) holds. Thus, it suffices

to consider the case that p ≤ 2k. From Lemma 3.1 we may assume
that vp(

(
2m
m

)
) > D/ logD for all p ≤ 2k. Using (2.1) and Lemma 3.2,

we may assume that vp(
(
m+k
k

)
) ≤ D/ logD, so the desired inequality

follows. This completes the proof of Theorem 1.2.

Remark. The constant .8 in Theorem 1.2 may be replaced with any
number <

√
log 2, but beyond that we do not know of any improve-

ments. But at least one can see that if (1.2) holds for asymptotically all
m, then for any fixed ε > 0 we have k � mε. To see this, take a large
prime p and consider integers m = pd + cd−1p

d−1 + · · ·+ c0, where each
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ci < p/2. Then p -
(
2m
m

)
. Now take k = p so that p | (m+ k)!/m!. The

number of choices for m is > pd/2d, and each m ≤ 2pd. The proportion
of such numbers m ≤ 2pd is ≤ 21−d
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