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ABSTRACT. We show that (m,jk) | (> for all k < exp(.8y/Iogm)
on a set of numbers m of asymptotic density 1. We also show that
(m + 1)(m +2)...(m + k) divides (*7) on a set of asymptotic
density 1 for k as large as .7logm.

1. INTRODUCTION

In a recent paper [3] T proved some elementary results about the
middle binomial coefficient (27;”) In particular, Theorem 2 of that
paper shows that for each fixed positive integer k, m + k | (27::‘) for
a set of integers m of asymptotic density 1. Following the proof it is
left as an exercise to show that the product (m+1)(m+2)...(m+ k)
divides (QWT) on a set of asymptotic density 1. We prove the following
strengthening.

Theorem 1.1. For any firxedn < 1/logd = .721 ..., we have for a set
of integers m of asymptotic density 1 that

(m+k)! ’ 2m
1.1 —_—
(11) m! m
for all positive integers k < nlogm.

m—+k

Replacing the product with ( .

), we prove the following theorem.

Theorem 1.2. For m in a set of asymptotic density 1, we have

m+ k 2m
1.2 )
for all positive integers k < exp(.8y/logm).

These theorems may be of interest in the context of recent work
towards settling a problem of Erdés using Al (see [5]). One might
compare this note with the write-up of Sothanaphan [4].
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2. PROOF OF THEOREM 1.1

We let p denote a prime variable, and we let v, be the function which
returns the exponent on p in the prime factorization of its argument.

Lemma 2.1. Let
2m
_ vP((m))
ap(m) = ——=m——.
logm/logp
For a set of integers m of asymptotic density 1 we have az(m) = 1/2+
o(1), ag(m) > 34/81 4 o(1), and a,(m) > .39 for all 3 < p < 2logm.

Proof. Note that m has |[logm/logp| + 1 base-p digits and we expect
roughly half of these to be > p/2. More precisely, for p = 2, we expect
half to be > p/2 and for p odd we expect (p — 1)/2p of them to be
> p/2. For 3 < p < 2log x a calculation using the binomial distribution
shows that the number of m < x with fewer than .391logm/ log p base-p
digits at least p/2 is O(z'~¢/1°¢P). Here c is a small positive constant.
Summing this for p < 2logx we get an expression that is o(x) as * —
oo. We can add to this exceptional set those m with as(m) < 1/2—¢ for
any fixed positive €, with ¢ now depending on €. For p = 3 we consider
the base-27 expansion of m, finding that the average number of base-3
carries doubling such a digit engenders is 34/27, so our assertion about
az(m) follows as well. O

If p > 2k, v,((m+ k)!/m!) = max{v,(m+1i) : 1 <i < k}. Asin
3], if this max is j, occurring at m + 4o, then the j least significant
base-p digits of m + 7y are 0, so the j least significant base-p digits of
m are p—ig > p—k > p/2, and so v,((*")) > j = v,((m + k)!/m)).
So assume that p < 2k.

Lemma 2.2. For a set of integers m of asymptotic density 1 we have
log k
log p
for all k with %logm < k <logm and for all p < 2k.

max{v,(m+1i):1<i<k}<3

Proof. We may assume that z/logz < m < z. If 1 < i < k, the
number of m < x with v,(m +14) > 3logk/logp is < z/k3. Summing
this for ¢ < k and p < 2k, the count is < x/k = o(x). Thus, but for
these exceptional values of m we have the inequality in the lemma. [J

Lemma 2.3. For all integers m,k > 0 and primes p, we have

; ((m+k5)!

— ) < vp(k!) + max{v,(m +1i): 1 <i <k}
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Proof. We may assume that the max in the lemma is positive, say it
first occurs at m +ig. If p? | m+ig, then the number of multiples of p
in{m+1,....m+k}\{m+io}is <[k/p’] —1< |k/p’|. Summing
on j we have

o (PR <o tio) + 30 U] < vyl i) (),
pI|mtio

which was to be proved. O

As a corollary, we have for all integers m, k > 0 and primes p,

(2.1) vp<(m2— k)) < max{v,(m+1i): 1 <i<k}

Using Lemmas 2.2, 2.3 we have on a set of integers m of density 1
and for p < 2k, %logm < k < logm that

. . k log k

vp((mA+k)/m!) <v,(k!)+max{v,(m+i): 1 <i <k} < ——1—31 :

b= ogp

For a fixed € > 0, let By = 1/2 — ¢, B35 = 34/81 — ¢, and 3, = .39 for

p > 3. It remains for us to find, in light of Lemma 2.1, how large we

may take k so that

k n 3logk < plogm
p—1 logp log p
holds for all p < 2k. The most difficult value of p to accommodate is

p = 2 and we find that the inequality holds for k as large as (1/log4 —
2¢) logm.

Remark. It should be possible to show in Lemma 2.1 that a; ~ 1/2
for all p < 2logx. A result in this direction is the theorem at the
bottom of page 89 of [2]. The constant 1/log4 is optimal in that if k is
slightly larger, the set of m where the divisibility holds does not have
density 1. In fact, a somewhat larger constant times logm for k& would
eliminate all examples, cf. [1].

3. PROOF OF THEOREM 1.2
Let z be large, D = D, = 1+|log z/logp|, and K = |exp(.8+/logx)].

Lemma 3.1. The number of integers m < x with v,((*™")) < D/log D
for some prime p < 2K is o(x).
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Proof. We follow the proof of [3, Lemma 2] with some improvements.
Let B = D/log D and fix a prime p < 2K. The number of m < z with
fewer than B base-p digits > p/2 is smaller than

ey (V)
j<B
Since B is small compared to D, the sum here is < (ng). A short
calculation with Stirling’s formula shows that this expression is <
exp(O(D loglog D/ log D)), so (LgJ) < g0l/1gP for g larger than an
absolute constant. Replacing |p/2] with p/2 creates an error smaller

than 2971987 g0 our count is then at most
pD27D:L,.O2/logp < x17(2/3)/10gp

for 2 large. Summing this for p < 2K we get < Kz'~(2/3)/1082K) choices
of m < z with vp((%:?)) < B. Since this bound is o(x) as z — oo, the
lemma is proved. U

Lemma 3.2. The number of m < x such that for some p < 2K,
max{v,(m+1i):1<i< K} > D/logD is o(z) as x — oc.

Proof. The count in question is at most

Z Zx/pD/logD <K Z x/pD/logD <K Z xl—l/logD’

p<2K i<K p<2K p<2K

since p” > x. As in [3], the summand here is < Kg!~/(+loglogs) 4
the count is at most K2z!~1/(+leelog) which by our choice of K is
o(x). O

To prove the theorem we need to show that for most integers m

- w(("1)) <ul((C0))

for all primes p and for all ¥ < K. First assume that p > 2k. Then
vp((m:k)) = v,((m+ k)!/m!), so as before (3.1) holds. Thus, it suffices
to consider the case that p < 2k. From Lemma 3.1 we may assume

that v,((*™)) > D/log D for all p < 2k. Using (2.1) and Lemma 3.2,

we may assume that vp((m,jk)) < D/log D, so the desired inequality
follows. This completes the proof of Theorem 1.2.

Remark. The constant .8 in Theorem 1.2 may be replaced with any
number < 4/log2, but beyond that we do not know of any improve-
ments. But at least one can see that if (1.2) holds for asymptotically all
m, then for any fixed € > 0 we have k < m*. To see this, take a large
prime p and consider integers m = p? + c4_1p? ' + - - - + ¢, where each
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¢; <p/2. Then pt (*™). Now take k = p so that p | (m + k)!/m!. The
number of choices for m is > p?/2¢, and each m < 2p?. The proportion
of such numbers m < 2p? is < 214
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