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1. Introduction. Let g be a fixed integer with |g| ≥ 2. Following
E. Bach, R. Lukes, J. Shallit and H. C. Williams [1], we say that an in-
teger n > 0 is an x-pseudopower to base g if n is not a power of g over the
integers but is a power of g modulo all primes p ≤ x, that is, if for all primes
p ≤ x there exists an integer ep ≥ 0 such that n ≡ gep (mod p).

Denote by qg(x) the least x-pseudopower to base g.
A well-known result of A. Schinzel [8] asserts that if f and g > 0 are

integers such that f 6= gk for all integers k ≥ 0, then for infinitely many
primes p the congruence gk ≡ f (mod p) does not have solutions in nonneg-
ative integers k. Therefore,

qg(x)→∞ as x→∞.
E. Bach, R. Lukes, J. Shallit and H. C. Williams [1] have shown that if
the Riemann Hypothesis holds for Dedekind zeta functions, then there is a
constant Ag > 0 such that

qg(x) ≥ exp(Ag
√
x/(log x)2).

On the other hand, if
(1) Mx =

∏
p≤x

p

is the product of all primes p ≤ x, then qg(x) ≤ 2Mx + 1 when x ≥ 2. Since,
by the prime number theorem, Mx = exp(x+ o(x)), we have

(2) qg(x) ≤ exp((1 + o(1))x) as x→∞.
Supported by numerical data, a heuristic argument is given in [1] sug-

gesting that qg(x) for fixed g is about exp(cgx/log x), where cg > 0. In [7],
towards this conjecture, the upper bound
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qg(x) ≤ exp
(
cg
x log log x

log x

)
is proved conditionally under the Extended Riemann Hypothesis.

In [5], combining some bounds of exponential sums with new results
about the average behaviour of the multiplicative order of g modulo prime
numbers, the bound (2) has been improved as

qg(x) ≤ exp(0.88715x)

for x sufficiently large and |g| ≤ x. Here we obtain a further improvement.

Theorem 1. For all sufficiently large numbers x and all integers g with
1 < |g| ≤ x, we have

qg(x) ≤ exp(0.86092x).

The result is based on a combination of the approach of [5] with some new
estimates on the distribution of multiplicative subgroups in residue rings,
which in turn are based on the results and ideas from [2].

We remark that [5] and [7] give some results showing some level of uni-
form distribution for x-pseudopowers to base g, unconditionally and under
the Extended Riemann Hypothesis, respectively. Unfortunately, it seems
that our approach here does not imply results on uniform distribution; it
remains an open problem to improve the estimates of [5] and [7].

2. Preliminaries. For an integer m we use Zm to denote the residue
ring modulo m and we also use Z∗m to denote the group of units of Zm.

Let G be a multiplicative subgroup of Z∗m of order t. We denote by Hm(G)
the largest gap between the elements of G, that is,

Hm(G) = max{H : ∃u ∈ Zm such that u+ j 6∈ G, j = 1, . . . ,H}.
For a prime p with gcd(g, p) = 1, we denote by Gg,p the subgroup of Z∗p

generated by powers of g modulo p, that is,

Gg,p = {n ∈ Zp : n ≡ gk (mod p) for some nonnegative k ∈ Z}.
Clearly, if gcd(g, p) = 1 then Gg,p is a subgroup of Z∗p. Finally, if p | g, then
we define Gg,p = {1}.

We consider the subgroup of Z∗Mx
defined by

(3) Gg(x) = {n ∈ [0,Mx) : n ∈ Gg,p for all primes p ≤ x}.
Since we are assuming that |g| ≤ x, we note that Gg(x) consists of both
the x-pseudopowers to base g in [0,Mx) that are coprime to Mx and the
number 1. Thus, the interval [2, HMx(Gg(x)) + 2] contains at least one x-
pseudopower to the base g and we deduce that

(4) qg(x) ≤ HMx(Gg(x)) + 2.

Therefore we concentrate on getting an upper bound on HMx(Gg(x)).
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3. Gaps between elements of multiplicative subgroups of residue
rings and exponential sums. We need an analogue of [6, Lemma 7.1]
which relates Hm(G) with certain exponential sums.

Given a subgroup G of Z∗m, we denote by Mλ(m,G;h) the number of
solutions to the congruence

λ ≡ aw (mod m), 1 ≤ |a| ≤ h, w ∈ G.

Essentially, Mλ(m,G;h) is the number of nonzero elements of the set λG
that lie in the interval [−h, h]. (Note that λ need not be coprime to m, so
that the translated subgroup λG need not be a coset in Z∗m.)

Also, we put

em(z) = exp(2πiz/m)

and define exponential sums

Sλ(m,G) =
∑
v∈G

em(λv).

Lemma 2. Assume that G is of order t and that for some positive integer
h ≤ m/2 we have ∑

λ∈Zm

Mλ(m,G;h)|Sλ(m,G)| ≤ 0.5t2.

Then, as m→∞,

Hm(G) ≤ m1+o(1)h−1.

Proof. Let us fix some ε > 0. We put

s = d0.5(1 + ε−1)e, Z = dm1+εh−1e.

Obviously, it is enough to show that for a sufficiently large m and any integer
U the congruence

(5) v ≡ U + x1 + · · ·+ xs − y1 − · · · − ys (mod m),
v ∈ G, 0 ≤ x1, y1, . . . , xs, ys < Z,

is solvable. Indeed, in this case we have Hm(G) ≤ 2s(Z − 1) and since ε > 0
is arbitrary the result follows.

For the number Q of solutions to the congruence (5) one easily sees from
the identity

1
m

∑
−(m−1)/2≤a≤m/2

em(az) =
{

1 if z ≡ 0 (mod m),
0 otherwise,
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which holds for any z ∈ Z, that

Q =
∑
v∈G

∑
0≤x1,y1,...,xs,ys<Z

1
m

×
∑

−(m−1)/2≤a≤m/2

em(a(v − U − x1 − · · · − xs + y1 + · · ·+ ys))

=
1
m

∑
−(m−1)/2≤a≤m/2

em(−aU)
∑
v∈G

em(av)

×
∑

0≤x1,y1,...,xs,ys<Z

em(−a(x1 + · · ·+ xs − y1 − · · · − ys))

=
1
m

∑
−(m−1)/2≤a≤m/2

em(−aU)
∣∣∣ ∑
0≤x<Z

em(ax)
∣∣∣2s∑

v∈G
em(av).

Therefore

(6) Q ≥ tZ2sm−1 − σ1m
−1 − σ2m

−1,

where

σ1 =
∑

1≤|a|≤h

∣∣∣ ∑
0≤x<Z

em(ax)
∣∣∣2s∣∣∣∑

v∈G
em(av)

∣∣∣,
σ2 =

∑
h<|a|≤m/2

∣∣∣ ∑
0≤x<Z

em(ax)
∣∣∣2s∣∣∣∑

v∈G
em(av)

∣∣∣.
For 1 ≤ |a| ≤ h we use the trivial estimate∣∣∣ ∑

0≤x<Z
em(ax)

∣∣∣ ≤ Z
and derive

σ1 ≤ Z2s
∑

1≤|a|≤h

∣∣∣∑
v∈G

em(av)
∣∣∣ =

Z2s

#G
∑

1≤|a|≤h

∑
w∈G

∣∣∣∑
v∈G

em(awv)
∣∣∣

=
Z2s

#G
∑
λ∈Zm

Mλ(m,G;h)|Sλ(m,G)|.

Therefore, by the conditions of the lemma, we have

(7) σ1 ≤ 0.5tZ2s.

If h < |a| ≤ m/2 then we use the bound∣∣∣ ∑
0≤x<Z

em(ax)
∣∣∣� m

|a|
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(see [4, bound (8.6)]). From the trivial bound∣∣∣∑
v∈G

em(av)
∣∣∣ ≤ t,

recalling the choice of Z, we obtain

σ2 �
∑

h<|a|≤m/2

(
m

|a|

)2s

t� t
m2s

h2s−1
≤ t Z

2sh

m2sε
� t

Z2sh

m1+ε

as 2sε > 1 + ε for the above choice of s. In particular,

(8) σ2 � tZ2sm−ε.

Substituting (7) and (8) in (6), we obtain

Q ≥ 0.5tZ2sm−1 +O(tZ2sm−1−ε).

Thus Q > 0 provided that m is large enough, and the result follows.

4. Further preparations. Now, for each d |m, we collect together the
terms in the sum in Lemma 2 with gcd(λ,m) = d.

In particular, let Gd be the homomorphic image of G in Z∗m/d. It is easy
to verify that every element of G is mapped to

#{w ∈ G : w ≡ 1 (mod m/d)} =
#G
#Gd

elements of Gd. Thus,

(9)
∑
λ∈Zm

Mλ(m,G;h)|Sλ(m,G)| =
∑
d|m

∑
λ∈Zm

gcd(λ,m)=d

Mλ(m,G;h)|Sλ(m,G)|

=
∑
d|m

(
#G
#Gd

)2 ∑
λ∈Z∗

m/d

Mλ(m/d,Gd;h/d)|Sλ(m/d,Gd)|.

We remark that by the Hölder inequality∑
λ∈Z∗

m/d

Mλ(m/d,Gd;h/d)|Sλ(m/d,Gd)|

=
∑

λ∈Z∗
m/d

Mλ(m/d,Gd;h/d)1/2(Mλ(m/d,Gd;h/d)2)1/4(|Sλ(m/d,Gd)|4)1/4

≤
( ∑
λ∈Z∗

m/d

Mλ(m/d,Gd;h/d)
)1/2( ∑

λ∈Z∗
m/d

Mλ(m/d,Gd;h/d)2
)1/4

×
( ∑
λ∈Z∗

m/d

|Sλ(m/d,Gd)|4
)1/4

.
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Clearly,∑
λ∈Z∗

m/d

Mλ(m/d,Gd;h/d) ≤
∑

λ∈Zm/d

Mλ(m/d,Gd;h/d) ≤ 2h#Gd/d.

Given a multiplicative subgroup H ⊆ Z∗n in the residue ring modulo a
positive integer n, and a positive integer h, we define

(10) V (n,H;h) = #{(u1, u2, v) : u1, u2 ∈ [−h, h], gcd(u1u2, n) = 1,
v ∈ H, u1v ≡ u2 (mod n)}.

We have∑
λ∈Z∗

m/d

Mλ(m/d,Gd;h/d)2

≤
∑

λ∈Z∗
m/d

#{u1, u2 ∈ [−h/d, h/d] : u1, u2 ∈ λGd}

= #{(u1, u2, v1, v2) : u1, u2 ∈ [−h/d, h/d], gcd(u1u2,m/d) = 1,
v1, v2 ∈ Gd, u1v1 ≡ u2v2 (mod m/d)}

= #GdV (m/d,Gd;h/d).

Therefore,

(11)
∑

λ∈Z∗
m/d

Mλ(m/d,Gd;h/d)|Sλ(m/d,Gd)|

≤ 21/2h1/2d−1/2(#Gd)3/4V (m/d,Gd;h/d)1/4W4(m/d,Gd)1/4,
where

W4(m/d,Gd) =
∑

λ∈Z∗
m/d

|Sλ(m/d,Gd)|4.

For V (m/d,Gd;h/d) we use the bound which is readily available from [2].
For the fourth momentW4(m/d,Gd) such general purpose bounds are not

available. However, in the case of our interest, that is, for the modulus m =
Mx (given by (1)) and the subgroup Gg(x) (given by (3)), we obtain such
a bound using some results from [3] and [5]. Substituting these estimates
in (11) enables us to show that the condition of Lemma 2 is satisfied for a
sufficiently large h, which in turn leads to the desired estimate on Hm(G).

5. Bound on V (n,G;h). We recall the following result of [2, Lemma 4],
which gives the desired estimate on V (n,H;h), defined by (10) for an arbi-
trary modulus n ≥ 1 and a subgroup H ⊆ Z∗n.

Lemma 3. Let ν ≥ 1 be a fixed integer and let n → ∞. Assume that H
is a multiplicative subgroup of Z∗n. Then for any positive number h ≤ n, we
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have
V (n,H, h) ≤ hT

2ν+1
2ν(ν+1)n

− 1
2(ν+1)

+o(1) + h2T 1/νn−1/ν+o(1)

as n→∞, where
T = max{#H, n1/2}.

6. Bounds on the fourth moment of exponential sums. For d |Mx,
we consider the homomorphic image of Gg(x) in Z∗Mx/d

, which we denote by
Gg(d;x) (this slightly deviates from our previous notation Gg(x)d, which for
typographical reasons, we prefer to avoid).

As in [5] we remark that by the Chinese remainder theorem we have

(12) Sλ(Mx/d,Gg(d;x)) =
∑

v∈Gg(d;x)

em(λv) =
∏
p≤x

gcd(p,d)=1

∑
v∈Gg,p

ep(λpv),

where λp ∈ Zp is determined by the condition

λp(Mx/p) ≡ λ (mod Mx).

We also remark that when λ runs through ZMx/d, the corresponding
vector (λp)p≤x, p-d runs through the Cartesian product

Ux(d) =
∏
p≤x

gcd(p,d)=1

Z∗p.

Thus, using (12), we obtain

W4(Mx/d,Gg(d;x)) =
∑

λ∈Z∗
Mx/d

|Sλ(Mx/d,Gg(d;x))|4

=
∑

(λp)p≤x, gcd(p,d)=1∈Ux(d)

∏
p≤x

gcd(p,d)=1

∣∣∣ ∑
v∈Gg,p

ep(λpv)
∣∣∣4.

Therefore

(13) W4(Mx/d,Gg(d;x)) =
∏
p≤x

gcd(p,d)=1

∑
λp∈Z∗p

∣∣∣ ∑
v∈Gg,p

ep(λpv)
∣∣∣4.

We now recall the bound of [3, Lemma 3] on the fourth moment of
exponential sums over multiplicative subgroups in a residue ring modulo a
prime (see also [6, Lemma 3.3]).

Lemma 4. For any prime p and subgroup G of Z∗p of order #G = t <

p2/3, the following bound holds:∑
λ∈Z∗p

∣∣∣∑
v∈G

ep(λv)
∣∣∣4 � pt5/2.
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Proof. It is enough to note that by the orthogonality of exponential
functions∑

λ∈Z∗p

∣∣∣∑
v∈G

ep(λv)
∣∣∣4 ≤ ∑

λ∈Zp

∣∣∣∑
v∈G

ep(λv)
∣∣∣4

= p#{v1 + v2 = v3 + v4 : v1, v2, v3, v4 ∈ G},

and then apply the bound of [3, Lemma 3].

For groups of order #G = t > p2/3 we use a different bound which relies
on some classical estimates.

Lemma 5. For any prime p and subgroup G of Z∗p of order #G = t ≥
p2/3, the following bound holds:∑

λ∈Z∗p

∣∣∣∑
v∈G

ep(λv)
∣∣∣4 ≤ p2t.

Proof. We recall the well-known estimate∣∣∣∑
v∈G

ep(λv)
∣∣∣ ≤ p1/2

for any t and λ ∈ Z∗p (see [6, Theorem 3.4]). Therefore∑
λ∈Z∗p

∣∣∣∑
v∈G

ep(λv)
∣∣∣4 ≤ p ∑

λ∈Zp

∣∣∣∑
v∈G

ep(λv)
∣∣∣2 =p

∑
λ∈Zp

∑
v1,v2∈G

ep(λ(v1−v2)) = p2t,

as after the change of the order of summation, the sum over λ vanishes if
v1 6= v2 and is equal to p otherwise.

For a prime p - g we denote by tg,p = #Gg,p the multiplicative order of g
modulo p. We also put tg,p = 1 for p | g. In particular,

#Gg(d;x) =
∏
p≤x

gcd(p,d)=1

tg,p.

We also put
Qg(d;x) =

∏
p≤x

gcd(p,d)=1

tg,p≥p2/3

(tg,pp−2/3).

We are now ready to obtain the desired estimate of W4(Mx,Gg(x)).

Lemma 6. We have

W4(Mx/d,Gg(d;x))� Mx

d
(#Gg(d;x))5/2Qg(d;x)−3/2.
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Proof. Substituting the bound of Lemmas 4 and 5 in (13), we see that

W4(Mx/d,Gg(d;x))�
∏
p≤x

gcd(p,d)=1

tg,p<p2/3

(pt5/2g,p )
∏
p≤x

gcd(p,d)=1

tg,p≥p2/3

(p2tg,p)

=
∏
p≤x

gcd(p,d)=1

(pt5/2g,p )
∏
p≤x

gcd(p,d)=1

tg,p≥p2/3

(pt−3/2
g,p ),

which implies the desired estimate.

7. Bounds on multiplicative orders. We recall the following two
estimates, which are [5, Theorem 1] and [5, Lemma 9], respectively.

Lemma 7. For x sufficiently large, we have

#Gg(x) ≥ exp(0.58045x)

uniformly for 1 < |g| ≤ x.

Let
Qg(x) =

∏
p≤x

tg,p≥p2/3

(tg,pp−2/3).

Lemma 8. For x sufficiently large, we have

Qg(x) ≥ exp(0.000217x)

uniformly for 1 < |g| ≤ x.

8. Concluding the proof of Theorem 1. We now define

Tg(d;x) = max{#Gg(d;x), (Mx/d)1/2}.

Using Lemmas 3 and 6 together with (11), we obtain∑
λ∈Z∗

Mx/d

Mλ(Mx/d,Gd;h/d)|Sλ(Mx/d,Gd)|

� h1/2d−1/2(#Gg(d;x))3/4

×
(
hTg(d;x)

2ν+1
2ν(ν+1)

(
Mx

d

)− 1
2(ν+1)

+o(1)

+ h2Tg(d;x)1/ν
(
Mx

d

)−1/ν+o(1))1/4

×
(
Mx

d
(#Gg(d;x))5/2Qg(d;x)−3/2

)1/4



52 J. Bourgain et al.

� h1/2(#Gg(d;x))11/8M1/4
x d−3/4Qg(d;x)−3/8

×
(
hTg(d;x)

2ν+1
2ν(ν+1)

(
Mx

d

)− 1
2(ν+1)

+o(1)

+ h2Tg(d;x)1/ν
(
Mx

d

)−1/ν+o(1))1/4

.

Recalling (9), we now derive

(14)
∑

λ∈ZMx

Mλ(Mx,G;h)|Sλ(Mx,G)| ≤ (#Gg(x))2
∑
d|Mx

(Ig(d;x) + Jg(d;x)),

where

Ig(d;x) = h3/4(#Gg(d;x))−5/8Qg(d;x)−3/8Tg(d;x)
2ν+1

8ν(ν+1)

×M
2ν+1

8(ν+1)
+o(1)

x d
− 6ν+5

8(ν+1) ,

Jg(d;x) = h(#Gg(d;x))−5/8Qg(d;x)−3/8Tg(d;x)
1
4νM

ν−1
4ν

+o(1)
x d−

3ν−1
4ν .

Therefore, using Tg(d;x) ≤ #Gg(d;x) + (Mx/d)1/2, we have

(15) Ig(d;x) ≤ Ag(d;x) +Bg(d;x), Jg(d;x) ≤ Cg(d;x) +Dg(d;x),

where

Ag(d;x) = h3/4(#Gg(d;x))−
5ν2+3ν−1
8ν(ν+1) Qg(d;x)−3/8M

2ν+1
8(ν+1)

+o(1)
x d

− 6ν+5
8(ν+1) ,

Bg(d;x) = h3/4(#Gg(d;x))−5/8Qg(d;x)−3/8M
(2ν+1)2

16ν(ν+1)
+o(1)

x d
− 12ν2+12ν+1

16ν(ν+1) ,

Cg(d;x) = h(#Gg(d;x))−
5ν−2
8ν Qg(d;x)−3/8M

ν−1
4ν

+o(1)
x d−

3ν−1
4ν ,

Dg(d;x) = h(#Gg(d;x))−5/8Qg(d;x)−3/8M
2ν−1
8ν

+o(1)
x d−

6ν−1
8ν .

We note that
#Gg(d;x) ≥ #Gg(x)/d,

and also that

(16) Qg(d;x) = Qg(x)
∏
p|d

tg,p≥p2/3

(tg,pp−2/3)−1 ≥ Qg(x)/d1/3.

Therefore,

Ag(d;x) ≤ h3/4(#Gg(x))−
5ν2+3ν−1
8ν(ν+1) Qg(x)−3/8M

2ν+1
8(ν+1)

+o(1)
x d−

1
8ν ,

Bg(d;x) ≤ h3/4(#Gg(x))−5/8Qg(x)−3/8M
(2ν+1)2

16ν(ν+1)
+o(1)

x d
− 1

16ν(ν+1) ,

Cg(d;x) ≤ h(#Gg(x))−
5ν−2
8ν Qg(x)−3/8M

ν−1
4ν

+o(1)
x ,

Dg(d;x) ≤ h(#Gg(x))−5/8Qg(x)−3/8M
2ν−1
8ν

+o(1)
x d

1
8ν .
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Notice that all exponents of d in the above estimates on Ag(d;x), Bg(d;x)
and Cg(d;x) are nonpositive. Thus, since∑

d|Mx

1 = 2π(x) = Mo(1)
x ,

in the summation over d in these three expressions, the term with d = 1
dominates. We obtain∑

d|Mx

Ag(d;x) ≤ h3/4(#Gg(x))−
5ν2+3ν−1
8ν(ν+1) Qg(x)−3/8M

2ν+1
8(ν+1)

+o(1)
x ,

∑
d|Mx

Bg(d;x) ≤ h3/4(#Gg(x))−5/8Qg(x)−3/8M
(2ν+1)2

16ν(ν+1)
+o(1)

x ,

∑
d|Mx

Cg(d;x) ≤ h(#Gg(x))−
5ν−2
8ν Qg(x)−3/8M

ν−1
4ν

+o(1)
x .

Unfortunately, the exponent of d in Dg(d;x) is negative. However, if
instead of (16) we use the trivial bound

Qg(d, x) ≥ 1

we derive the alternative estimate

Dg(d;x) ≤ h(#Gg(d;x))−5/8M
2ν−1
8ν

+o(1)
x d−

6ν−1
8ν

≤ h(#Gg(x))−5/8M
2ν−1
8ν

+o(1)
x d−

ν−1
8ν ,

which we use for large values of d (namely for d ≥ Qg(x)3). Thus,∑
d|Mx

Dg(d;x) =
∑
d|Mx

d<Qg(x)3

Dg(d;x) +
∑
d|Mx

d≥Qg(x)3

Dg(d;x)

�
∑
d|Mx

d<Qg(x)3

h(#Gg(x))−5/8Qg(x)−3/8M
2ν−1
8ν

+o(1)
x d

1
8ν

+
∑
d|Mx

d≥Qg(x)3

h(#Gg(x))−5/8M
2ν−1
8ν

+o(1)
x d−

ν−1
8ν

= h(#Gg(x))−5/8Qg(x)−
3(ν−1)

8ν M
2ν−1
8ν

+o(1)
x .

We now choose

ν = 4.
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Then, using Lemmas 7 and 8, one verifies that∑
d|Mx

Ag(d;x) = o(1) for h ≤M0.140283
x ,

∑
d|Mx

Bg(d;x) = o(1) for h ≤M0.146316
x ,

∑
d|Mx

Cg(d;x) = o(1) for h ≤M0.139084
x ,

∑
d|Mx

Dg(d;x) = o(1) for h ≤M0.144092
x .

We now select

h = bM0.139084
x c

(that is, the largest admissible value for which all of the above hold). Using
Lemma 2, we see from the bounds (14) and (15) that the result of Theorem 1
follows.
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