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Abstract. A subset of the integers larger than 1 is primitive if no member
divides another. Erdős proved in 1935 that the sum of 1/(a log a) for a running
over a primitive set A is universally bounded over all choices for A. In 1988
he asked if this universal bound is attained for the set of prime numbers. In
this paper we make some progress on several fronts and show a connection to
certain prime number “races” such as the race between π(x) and li(x).

1. Introduction

A set of positive integers > 1 is called primitive if no element divides any other
(for convenience, we exclude the singleton set {1}). There are a number of inter-
esting and sometimes unexpected theorems about primitive sets. After Besicovitch
[4], we know that the upper asymptotic density of a primitive set can be arbitrarily
close to 1/2, whereas the lower asymptotic density is always 0. Using the fact that
if a primitive set has a finite reciprocal sum, then the set of multiples of members
of the set has an asymptotic density, Erdős gave an elementary proof that the set of
nondeficient numbers (i.e., σ(n)/n ≥ 2, where σ is the sum-of-divisors function) has
an asymptotic density. Though the reciprocal sum of a primitive set can possibly
diverge, Erdős [9] showed that for a primitive set A,∑

a∈A

1

a log a
< ∞.

In fact, the proof shows that these sums are uniformly bounded as A varies over
primitive sets.

Some years later in a 1988 seminar in Limoges, Erdős suggested that in fact we
always have

(1.1) f(A) :=
∑
a∈A

1

a log a
≤

∑
p∈P

1

p log p
,

where P is the set of prime numbers. The assertion (1.1) is now known as the Erdős
conjecture for primitive sets.

In 1991, Zhang [19] proved the Erdős conjecture for primitive sets A with no
member having more than 4 prime factors (counted with multiplicity).
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After Cohen [6], we have

(1.2) C :=
∑
p∈P

1

p log p
= 1.63661632336 . . . ,

the sum over primes in (1.1). Using the original Erdős argument in [9], Erdős and
Zhang showed that f(A) < 2.89 for a primitive set A, which was later improved
by Robin to 2.77. These unpublished estimates are reported in [11] by Erdős–
Zhang, who used another method to show that f(A) < 1.84. Shortly after, Clark
[5] claimed that f(A) ≤ eγ = 1.781072 . . . . However, his brief argument appears
to be incomplete.

Our principal results are the following.

Theorem 1.1. For any primitive set A we have f(A) < eγ .

Theorem 1.2. For any primitive set A with no element divisible by 8, we have
f(A) < C + 2.37× 10−7.

Say a prime p is Erdős strong if for any primitive set A with the property that
each element of A has the same least prime factor p, we have f(A) ≤ 1/(p log p).
We conjecture that every prime is Erdős strong. Note that the Erdős conjecture
(1.1) would immediately follow, though it is not clear that the Erdős conjecture
implies our conjecture. Just proving our conjecture for the case of p = 2 would give
the inequality in Theorem 1.2 for all primitive sets A. Currently the best we can
do for a primitive set A of even numbers is that f(A) < eγ/2; see Proposition 2.1
below.

For part of the next result, we assume the Riemann Hypothesis (RH) and the
Linear Independence Hypothesis (LI), which asserts that the sequence of numbers
γn > 0 such that ζ( 12 + iγn) = 0 is linearly independent over Q.

Theorem 1.3. Unconditionally, all of the odd primes among the first 108 primes
are Erdős strong. Assuming RH and LI, the Erdős strong primes have relative lower
logarithmic density > 0.995.

The proof depends strongly on a recent result of Lamzouri [13], who was inter-
ested in the “Mertens race” between

∏
p≤x(1− 1/p) and 1/(eγ log x).

For a primitive set A, let P(A) denote the support of A, i.e., the set of prime
numbers that divide some member of A. It is clear that the Erdős conjecture (1.1)
is equivalent to the same assertion where the prime sum is over P(A).

Theorem 1.4. If A is a primitive set with P(A) ⊂ [3, exp(106)], then

f(A) ≤
∑

p∈P(A)

1

p log p
.

If some primitive set A of odd numbers exists with f(A) >
∑

p∈P(A) 1/(p log p),

Theorem 1.4 suggests that it will be very difficult indeed to give a concrete example!
For a positive integer n, let Ω(n) denote the number of prime factors of n counted

with multiplicity. Let Nk denote the set of integers n with Ω(n) = k. Zhang [20]
proved a result that implies f(Nk) < f(N1) for each k ≥ 2, so that the Erdős
conjecture holds for the primitive sets Nk. More recently, Banks and Martin [2]
conjectured that f(N1) > f(N2) > f(N3) > · · · . The inequality f(N2) > f(N3)
was just established by Bayless, Kinlaw, and Klyve [3]. We prove the following
result.
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Theorem 1.5. There is a positive constant c such that f(Nk) ≥ c for all k.

We let the letters p, q, r represent primes. In addition, we let pn represent the nth
prime. For an integer a > 1, we let P (a) and p(a) denote the largest and smallest
prime factors of a. Modifying the notation introduced in [11], for a primitive set A
let

Ap = {a ∈ A : p(a) ≥ p},
A′

p = {a ∈ A : p(a) = p},
A′′

p = {a/p : a ∈ A′
p}.

We let f(a) = 1/(a log a), and so f(A) =
∑

a∈A f(a). In this language, Zhang’s full
result [20] states that f((Nk)

′
p) ≤ f(p) for all primes p, k ≥ 1. We also let

g(a) =
1

a

∏
p<P (a)

(
1− 1

p

)
, h(a) =

1

a logP (a)
,

with g(A) =
∑

a∈A g(a) and h(A) =
∑

a∈A h(a).

2. The Erdős approach

In this section we will prove Theorem 1.1. We begin with an argument inspired
by the original 1935 paper of Erdős [9].

Proposition 2.1. For any primitive set A, if q /∈ A, then

f(A′
q) < eγg(q) =

eγ

q

∏
p<q

(
1− 1

p

)
.

Proof. For each a ∈ A′
q, let Sa = {ba : p(b) ≥ P (a)}. Note that Sa has asymptotic

density g(a). Since A′
q is primitive, we see that the sets Sa are pairwise disjoint.

Further, the union of the sets Sa is contained in the set of all natural numbers m
with p(m) = q, which has asymptotic density g(q). Thus, the sum of densities for
each Sa is dominated by g(q), that is,

g(A′
q) =

∑
a∈A′

q

g(a) ≤ g(q).(2.1)

By Theorem 7 in [17], we have for x ≥ 285,

(2.2)
∏
p≤x

(
1− 1

p

)
>

1

eγ log(2x)
,

which may be extended to all x ≥ 1 by a calculation. Thus, since each a ∈ A′
q is

composite,

g(a) =
1

a

∏
p<P (a)

(
1− 1

p

)
>

e−γ

a log
(
2P (a)

) ≥ e−γ

a log a
= e−γf(a).

Hence by (2.1),

f(A′
q)/e

γ < g(A′
q) ≤ g(q).

�
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Remark 2.2. Let σ denote the sum-of-divisors function, and let A be the set of
n with σ(n)/n ≥ 2 and σ(d)/d < 2 for all proper divisors d of n, the set of
primitive nondeficient numbers. Then an appropriate analog of g(A) gives the
density of nondeficient numbers recently shown in [12] to lie in the tight interval
(0.2476171, 0.2476475). In [14], an analog of Proposition 2.1 is a key ingredient for
sharp bounds on the reciprocal sum of the primitive nondeficient numbers.

Remark 2.3. We have g(P) = 1. Indeed, it is easy to see by induction over primes
r that ∑

p≤r

g(p) =
∑
p≤r

1

p

∏
q<p

(
1− 1

q

)
= 1−

∏
p≤r

(
1− 1

p

)
.

Letting r → ∞ we get that g(P) = 1. There is also a holistic way of seeing this.
Since g(p) is the density of the set of integers with least prime factor p, it would
make sense that g(P) is the density of the set of integers which have a least prime
factor, and this density is 1. To make this rigorous, one notes that the density of
the set of integers whose least prime factor is > y tends to 0 as y → ∞. As a
consequence of g(P) = 1, we have

(2.3)
∑
p>2

g(p) =
1

2
,

an identity we will find to be useful.

For a primitive set A, let

Ak = {a ∈ A : 2k‖a}, Bk = {a/2k : a ∈ Ak}.
The next result will help us prove Theorem 1.1.

Lemma 2.4. For a primitive set A, let k ≥ 1 be such that 2k /∈ A. Then we have

f(Ak) <
eγ

2k

∑
p/∈A
p>2

g(p).

Proof. The hypothesis 2k /∈ A implies that 1 /∈ Bk, so that Bk is a primitive set. If
2kp /∈ A for a prime p > 2, then (Bk)′p is a primitive set of odd composite numbers,

so by Proposition 2.1, f((Bk)′p) < eγg(p).

Now if 2kp ∈ A for some odd prime p, then (Bk)′p = {p}, and note that p /∈ A

by primitivity. We have f(2kp) < 2−keγg(p) since

1

2kp log(2kp)
≤ 1

2kp log(2p)
<

eγ

2k
g(p),

which follows from (2.2). Since (Bk)′p 	= ∅ implies p /∈ A, we have

f(Ak) =
∑
p/∈A
p>2

f(2k·(Bk)′p) ≤
∑

p∈Bk,p/∈A
p>2

f(2kp) + 2−k
∑

p/∈Bk,p/∈A
p>2

f((Bk)′p)

<
eγ

2k

∑
p/∈A
p>2

g(p).

�

With Lemma 2.4 in hand, we prove f(A) < eγ .
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Proof of Theorem 1.1. From Erdős–Zhang [11], we have that f(A3) < 0.92. If
2 ∈ A, then A′

2 = {2}, so that f(A) = f(A3) + f(A′
2) < 0.92 + 1/(2 log 2) < eγ .

Hence we may assume that 2 /∈ A. If A contains every odd prime, then A′
2 consists

of at most one power of 2, and the calculation just concluded shows we may assume
this is not the case. Hence there is at least one odd prime p0 /∈ A. By Proposition
2.1, we have

f(A) =
∑
p

f(A′
p) =

∑
p∈A

f(p) +
∑
p/∈A

f(A′
p) <

∑
p∈A

f(p) + eγ
∑
p/∈A
p>2

g(p) + f(A′
2).

(2.4)

First suppose A contains no powers of 2. Then by Lemma 2.4,

f(A′
2) =

∑
k≥1

f(Ak) <
∑
k≥1

eγ

2k

∑
p/∈A
p>2

g(p) = eγ
∑
p/∈A
p>2

g(p).

Substituting into (2.4), we conclude, using (2.3), that

f(A) <
∑
p∈A

f(p) + 2eγ
∑
p/∈A
p>2

g(p) ≤ 2eγ
∑
p>2

g(p) = eγ .(2.5)

For the last inequality in (2.5) we used that for every prime p,

(2.6)
f(p)

eγg(p)
< 1.082,

which follows after a short calculation using [17, Theorem 7].
Now if 2K ∈ A for some positive integer K, then K is unique and K ≥ 2. Also

AK = {2K} and Ak = ∅ for all k > K, so again by Lemma 2.4,

f(A′
2) =

K∑
k=1

f(Ak) < f(2K) +

K−1∑
k=1

eγ

2k

∑
p/∈A
p>2

g(p) = f(2K) + (1− 21−K)eγ
∑
p/∈A
p>2

g(p).

Substituting into (2.4) gives

f(A)<
∑
p∈A

f(p) + f(2K) + (2− 21−K)eγ
∑
p/∈A
p>2

g(p) ≤ f(2K) + (2− 21−K)eγ
∑
p>2

g(p)

≤ f(2K) + (1− 2−K)eγ < eγ ,(2.7)

using identity (2.3), inequality (2.6), and f(2K) < 2−Keγ . This completes the
proof. �

3. Mertens primes

In this section we will prove Theorems 1.3 and 1.4. Note that by Mertens’
theorem, ∏

p<x

(
1− 1

p

)
∼ 1

eγ log x
, x → ∞,

where γ is Euler’s constant. We say a prime q is Mertens if

(3.1) eγ
∏
p<q

(
1− 1

p

)
≤ 1

log q
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and let PMert denote the set of Mertens primes. We are interested in Mertens
primes because of the following consequence of Proposition 2.1, which shows that
every Mertens prime is Erdős strong.

Corollary 3.1. Let A be a primitive set. If q ∈ PMert, then f(A′
q) ≤ f(q). Hence

if A′
q ⊂ {q} for all q /∈ PMert, then A satisfies the Erdős conjecture.

Proof. By Proposition 2.1 we have f(A′
q) ≤ max{eγg(q), f(q)}. If q ∈ PMert, then

eγg(q) =
eγ

q

∏
p<q

(
1− 1

p

)
≤ 1

q log q
= f(q),

so f(A′
q) ≤ f(q). �

Now, one would hope that the Mertens inequality (3.1) holds for all primes q.
However, (3.1) fails for q = 2 since eγ > 1/ log 2. Nevertheless, we have computed
that q is indeed a Mertens prime for all 2 < q ≤ p108 = 2,038,074,743, thus proving
the unconditional part of Theorem 1.3.

3.1. Proof of Theorem 1.3. To complete the proof, we use a result of Lamzouri
[13] relating the Mertens inequality to the race between π(x) and li(x), studied by
Rubinstein and Sarnak [18]. Under the assumption of RH and LI, he proved that
the set N of real numbers x satisfying

eγ
∏
p≤x

(
1− 1

p

)
>

1

log x

has logarithmic density δ(N ) equal to the logarithmic density of numbers x with
π(x) > li(x), and in particular

δ(N ) = lim
x→∞

1

log x

∫
t∈N∩[2,x]

dt

t
= 0.00000026 . . . .(3.2)

We note that if a prime p = pn ∈ N , then for p′ = pn+1 we have [p, p′) ⊂ N
because the prime product on the left-hand side is constant on [p, p′), while 1/ log x
is decreasing for x ∈ [p, p′).

The set of primes Q in N is precisely the set of non-Mertens primes, so Q =
P \ PMert. From the above observation, we may leverage knowledge of the contin-
uous logarithmic density δ(N ) to obtain an upper bound on the relative (upper)
logarithmic density of non-Mertens primes

δ̄(Q) := lim sup
x→∞

1

log x

∑
p≤x
p∈Q

log p

p
.(3.3)

From the above observation, we have

δ(N ) ≥ lim sup
x→∞

1

log x

∑
p≤x
p∈Q

∫ p′

p

dt

t
= lim sup

x→∞

1

log x

∑
p≤x
p∈Q

log(p′/p).

Then letting dp = p′ − p be the gap between consecutive primes, we have

δ(N ) ≥ lim sup
x→∞

1

log x

∑
p≤x
p∈Q

dp
p
,
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since
∑

log(p′/p) =
∑

dp/p + O(1). The average gap is roughly log p, so we may
consider the primes for which dp < ε log p for a small positive constant ε to be
determined.

We claim that

lim sup
x→∞

1

log x

∑
p≤x

dp<ε log p

log p

p
≤ 16ε,(3.4)

from which it follows that

δ̄(Q) = lim sup
x→∞

1

log x

∑
p≤x
p∈Q

log p

p
≤ lim sup

x→∞

1

log x

( ∑
p≤x
p∈Q

dp≥ε log p

dp/ε

p
+

∑
p≤x

dp<ε log p

log p

p

)

≤ δ(N )/ε+ 16ε.

Hence to prove Theorem 1.3 it suffices to prove (3.4), since taking ε =
√
δ(N )/4

gives

δ̄(Q) < 8
√
δ(N ) < 4.2× 10−3.(3.5)

By Riesel-Vaughan [16, Lemma 5], the number of primes p up to x with p + d
also prime is at most ∑

p≤x
p+d prime

1 ≤ 8c2x

log2 x

∏
p|d
p>2

p− 1

p− 2
,(3.6)

where c2 is for the twin-prime constant 2
∏

p>2 p(p − 2)/(p − 1)2 = 1.3203 . . . .

Denote the prime product by F (d) =
∏

p|d
p>2

p−1
p−2 , and consider the multiplicative

function H(d) =
∑

u|d μ(u)F (d/u). We have H(2k) = 0 for all k ≥ 1, and for p > 2

we have H(p) = F (p)− 1 and H(pk) = 0 if k ≥ 2. Thus,

∑
d≤y

F (d) =
∑
d≤y

∑
u|d

H(u) =
∑
u≤y

H(u)
∑

d≤y/u

1 ≤ y
∑
u≤y

H(u)

u
≤ y

∏
p>2

(
1 +

H(p)

p

)

= y
∏
p>2

(
1 +

(p− 1)/(p− 2)− 1

p

)
= y

∏
p>2

(
1 +

1

p(p− 2)

)
=

2y

c2
.

Using (3.6), we have

∑
p≤x

dp<ε log p

1 ≤
∑

d≤ε log x

∑
p≤x

p+d prime

1 ≤ 8c2x

log2 x

∑
d≤ε log x

F (d) ≤ ε
8c2c

′
2x

log x
= ε

16x

log x
.

Thus, (3.4) now follows by partial summation, and the proof is complete.

Remark 3.2. The concept of relative upper logarithmic density of the set of non-
Mertens primes in (3.3) can be replaced in the theorem with

δ̄0(Q) := lim sup
x→∞

1

log log x

∑
p≤x
p∈Q

1

p
.
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Indeed, δ̄0(Q) ≤ δ̄(Q) follows from the identity∑
p≤x
p∈Q

1

p
=

1

log x

∑
p≤x
p∈Q

log p

p
+

∫ x

2

1

t(log t)2

∑
p≤t
p∈Q

log p

p
dt.

Remark 3.3. Greg Martin has indicated to us that one may be able to prove (under
RH and LI) that the relative logarithmic density of Q exists and is equal to the
logarithmic density of N . This topic will be addressed in a future paper.

3.2. Proof of Theorem 1.4. We now use some numerical estimates of Dusart [8]
to prove Theorem 1.4.

We say a pair of primes p ≤ q is a Mertens pair if∏
p≤r<q

(
1− 1

r

)
>

log p

log pq
.

We claim that every pair of primes p, q with 2 < p ≤ q < e10
6

is a Mertens pair.

Assume this and let A be a primitive set supported on the odd primes up to e10
6

.
By (2.1), if p /∈ A, we have

1

p
≥

∑
a∈A′

p

1

a

∏
p≤r<P (a)

(
1− 1

r

)
>

∑
a∈A′

p

log p

a log(pP (a))

≥
∑
a∈A′

p

log p

a log a
= f(A′

p) log p.

Dividing by log p we obtain f(A′
p) ≤ f(p), which also holds if p ∈ A. Thus, the

claim about Mertens pairs implies the theorem.
To prove the claim, first note that if p is a Mertens prime, then p, q is a Mertens

pair for all primes q ≥ p. Indeed, we have

∏
p≤r<q

(
1− 1

r

)
=

∏
r<p

(
1− 1

r

)−1 ∏
r<q

(
1− 1

r

)
> eγ log p

∏
r<q

(
1− 1

r

)
.

By (2.2), this last product exceeds e−γ/ log(2q) > e−γ/ log(pq), and using this in
the above display shows that p, q is indeed a Mertens pair. Since all of the odd
primes up to p108 are Mertens, to complete the proof of our assertion, it suffices to
consider the case when p > p108 . Define Ep via the equation∏

r<p

(
1− 1

r

)
=

1 + Ep

eγ log p
.

Using [8, Theorem 5.9], we have for p > 2,278,382,

(3.7) |Ep| ≤ .2/(log p)3.

A routine calculation shows that if p ≤ q < e4.999(log p)4 , then∏
p≤r<q

(
1− 1

r

)
=

log p

log q
· 1 + Eq

1 + Ep
>

log p

log pq
.

It remains to note that 4.999(log p108)
4 > 1,055,356.

It seems interesting to record the principle that we used in the proof.
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Corollary 3.4. If A is a primitive set such that p(a), P (a) is a Mertens pair for
each a ∈ A, then f(A) ≤ f(P(A)).

Remark 3.5. Kevin Ford has noted to us the remarkable similarity between the
concept of Mertens primes in this paper and the numbers

γn =

⎛
⎝γ +

∑
k≤n

log pk
pk − 1

⎞
⎠ ∏

k≤n

(
1− 1

pk

)

discussed in Diamond–Ford [7]. In particular, while it may not be obvious from
the definition, the analysis in [7] on whether the sequence γ1, γ2, . . . is monotone is
quite similar to the analysis in [13] on the Mertens inequality. Though the numerical
evidence seems to indicate we always have γn+1 < γn, this is disproved in [7], and
it is indicated there that the first time this fails may be near 1.9 · 10215. This may
also be near where the first odd non-Mertens prime exists. If this is the case and
under assumption of RH, it may be that every pair of primes p ≤ q is a Mertens
pair when p > 2 and q < exp(3 · 1011).

4. Odd primitive sets

We say a primitive set is odd if every member of the set is an odd number. In this
section we prove Theorem 1.2 and establish a curious result on parity for primitive
sets.

Let

ε0 =
∑
p>2

p/∈PMert

(eγg(p)− f(p)) .

Lemma 4.1. We have 0 ≤ ε0 < 2.37× 10−7.

Proof. By the definition of PMert, the summands in the definition of ε0 are non-
negative, so that ε0 ≥ 0. If p > 2 is not Mertens, then p > p108 > 2× 109, so that
(3.7) shows that

(4.1) eγg(p)− f(p) <
1

5p(log p)4
.

By [8, Proposition 5.16], we have

pn > n(logn+ log log n− 1 + (log log n− 2.1)/ log n, n ≥ 2.

Using this we find that ∑
n>108

1

5pn(log pn)4
< 2.37× 10−7,

which with (4.1) completes the proof. �

Remark 4.2. Clearly, a smaller bound for ε0 would follow by raising the search limit
for Mertens primes. Another small improvement could be made using the estimate
in [1] for pn. It follows from the ideas in Remark 3.3 that ε0 > 0. Further, it may be
provable from the ideas in Remark 3.5 that ε0 < 10−12 if the Riemann Hypothesis
holds.
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We have the following result.

Theorem 4.3. For any odd primitive set A, we have

f(A) ≤ f(P(A)) + ε0.(4.2)

Proof. Assume that A is an odd primitive set. If p ∈ P(A) is Mertens, Corollary 3.1
implies that f(A′

p) ≤ f(p), while if p ∈ P(A) is not Mertens we have by Proposition
2.1 that f(A′

p) ≤ max{f(p), eγg(p)} = eγg(p). Thus,

f(A) =
∑

p∈P(A)

f(A′
p) ≤

∑
p∈P(A)∩PMert

f(p) +
∑

p∈P(A)\PMert

eγg(p) ≤ ε0 +
∑

p∈P(A)

f(p)

by the definition of ε0. This completes the proof. �
This theorem yields the following corollary.

Corollary 4.4. If A is a primitive set containing no multiple of 8, then (4.2) holds.

Proof. We have seen the corollary in the case that A is odd. Next, suppose that
A contains an even number but no multiple of 4. If 2 ∈ A, the result follows by
applying Theorem 4.3 to A \ {2}, so assume 2 /∈ A. Then A′′

2 is an odd primitive
set and f(A′

2) ≤ f(A′′
2)/2. We have by the odd case that

(4.3) f(A) = f(A3) + f(A′
2) < f(P(A3)) + ε0 +

1

2
(f(P(A′′

2)) + ε0) .

Since
1

2
f(P(A′′

2)) ≤
1

2
f(P \ {2}) < 0.4577

and f(2) = 0.7213 . . . , (4.3) and Lemma 4.1 imply that f(A) < f(P(A)), which is
stronger than required. The case when A contains a multiple of 4 but no multiple
of 8 follows in a similar fashion. �

Since a cube-free number cannot be divisible by 8, (4.2) holds for all primitive
sets A of cube-free numbers. Also, the proof of Corollary 4.4 can be adapted to show
that (4.2) holds for all primitive sets A containing no number that is 4 (mod 8).

We close out this section with a curious result about those primitive sets A where
(4.2) does not hold. Namely, the Erdős conjecture must then hold for the set of
odd members of A. Put another way, (4.2) holds for any primitive set A for which
the Erdős conjecture for the odd members of A fails.

Theorem 4.5. If A is a primitive set with f(A) > f(P(A)) + ε0, then f(A3) <
f(P(A3)).

Sketch of proof. Without loss of generality, we may include in A all primes not in
P(A) and so assume that P(A) = P and f(A) > C + ε0. By Theorem 4.3 we may
assume that A is not odd, and by Corollary 4.4 we may assume that 2 /∈ A. By the
proof of Theorem 1.1 (see (2.5) and (2.7)), if 3 ∈ A, we have

f(A) < f(3) +
2

3
eγ < C,

a contradiction, so we may assume that 3 /∈ A. We now apply the method of proof
of Theorem 1.1 to A3, where powers of 3 replace powers of 2. This leads to

f(A3) <
1

2
eγ < C − f(2) = f(P(A3)).

This completes the argument. �
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5. Zhang primes and the Banks–Martin conjecture

Note that ∑
p≥x

1

p log p
∼ 1

log x
, x → ∞.

In Erdős–Zhang [11] and in Zhang [20], numerical approximations to this asymptotic
relation are exploited. Say a prime q is Zhang if∑

p≥q

1

p log p
≤ 1

log q
.

Let PZh denote the set of Zhang primes. We are interested in Zhang primes because
of the following result.

Theorem 5.1. If P(A′
p) ⊂ PZh, then f(A′

p) ≤ f(p). Hence the Erdős conjecture

holds for all primitive sets A supported on PZh.

Proof. As in [11] it suffices to prove the theorem in the case that A is a finite set. By
d◦(A) we mean the maximal value of Ω(a) for a ∈ A. We proceed by induction on
d◦(A′

p). If d◦(A′
p) ≤ 1, then f(A′

p) ≤ f(p). If d◦(A′
p) > 1, then f(A′

p) ≤ f(A′′
p)/p.

The primitive set B := A′′
p satisfies f(B) = f(Bp) =

∑
q≥p f(B

′
q). Since d◦(B′

q) ≤
d◦(B) < d◦(A′

p), by induction we have f(B′
q) ≤ f(q). Thus, since p is Zhang,

f(A′′
p) = f(B) =

∑
q≥p

f(B′
q) ≤

∑
q≥p

1

q log q
≤ 1

log p
,

from which we obtain f(A′
p) ≤ f(A′′

p)/p ≤ 1/(p log p). This completes the proof. �
From this one might hope that all primes are Zhang. However, the prime 2 is

not Zhang since C > 1/ log 2, and the prime 3 is not Zhang since C − 1/(2 log 2) >
1/ log 3. Nevertheless, as with Mertens primes, it is true that the remaining primes
up to p108 are Zhang. Indeed, starting from (1.2), we computed that∑

p≥q

1

p log p
= C −

∑
p<q

1

p log p
≤ 1

log q
for all 3 < q ≤ p108 .(5.1)

The computation stopped at 108 for convenience, and one could likely extend this
further with some patience. It seems likely that there is also a “race” between∑

p≥q 1/(p log p) and 1/ log q, as with Mertens primes, and that a large logarithmic
density of primes q are Zhang, with a small logarithmic density of primes failing to
be Zhang.

A related conjecture due to Banks and Martin [2] is the chain of inequalities∑
p

1

p log p
>

∑
p≤q

1

pq log pq
>

∑
p≤q≤r

1

pqr log pqr
> · · · ,

succinctly written as f(Nk) > f(Nk+1) for all k ≥ 1, where Nk = {n : Ω(n) =
k}. As mentioned in the introduction, we know only that f(N1) > f(Nk) for
all k ≥ 2 and f(N2) > f(N3). More generally, for a subset Q of primes, let
Nk(Q) denote the subset of Nk supported on Q. A result of Zhang [20] implies
that f(N1(Q)) > f(Nk(Q)) for all k > 1, while Banks and Martin showed that
f(Nk(Q)) > f(Nk+1(Q)) if

∑
p∈Q 1/p is not too large. We prove a similar result in

the case where Q is a subset of the Zhang primes and we replace f(Nk(Q)) with
h(Nk(Q)). Recall that h(A) =

∑
a∈A 1/(a logP (a)).
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Proposition 5.2. For all k ≥ 1 and Q ⊂ PZh, we have h(Nk(Q)) ≥ h(Nk+1(Q)).

Proof. Since the primes in Q are Zhang primes, we have

h(Nk+1(Q)) =
∑

q1≤···≤qk+1

qi∈Q

1

q1 · · · qkqk+1 log qk+1

=
∑

q1≤···≤qk
qi∈Q

1

q1 · · · qk
∑

qk+1≥qk

1

qk+1 log qk+1

≤
∑

q1≤···≤qk
qi∈Q

1

q1 · · · qk log qk
= h(Nk(Q)).

This completes the proof. �
It is interesting that if we do not in some way restrict the primes used, the analog

of the Banks–Martin conjecture for the function h fails. In particular, we have

h(N2) >
∑

m≤104

1

pm

∑
n≥m

1

pn log pn
=

∑
m≤104

1

pm

(
C −

∑
k<m

1

pk log pk

)
> 1.638,

while h(N1) = C < 1.637.
It is also interesting that the analog of the Banks–Martin conjecture for the

function g is false since

1 = g(N1) = g(N2) = g(N3) = · · · .
We have already shown in (2.1) that g(A′

q) ≤ g(q) for any primitive set A and prime
q, so the analog for g of the strong Erdős conjecture holds.

5.1. Proof of Theorem 1.5. We now return to the function f and prove Theo-
rem 1.5.

We may assume that k is large. Let m = �
√
k� and let B(n) = ee

n

. We have

f(Nk) =
∑

Ω(a)=k

1

a log a
>

∑
Ω(a)=k

ee
k
<a≤ee

k+m

1

a log a

=
∑
j≤m

∑
Ω(a)=k

B(k+j−1)<a≤B(k+j)

1

a log a
>

∑
j≤m

1

logB(k + j)

∑
Ω(a)=k

B(k+j−1)<a≤B(k+j)

1

a
.

Thus it suffices to show that there is a positive constant c such that for j ≤ m we
have

(5.2)
∑

Ω(a)=k
B(k+j−1)<a≤B(k+j)

1

a
≥ c

logB(k + j)

m
= c

ek+j

m
,

since the proposition will follow.
Let Nk(x) denote the number of members of Nk in [1, x]. We use the Sathe–

Selberg theorem (see [15, Theorem 7.19]), from which we have that uniformly for
B(k) < x ≤ B(k +m), as k → ∞,

Nk(x) ∼
x

k!

(log log x)k

log x
.
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This result also follows from Erdős [10].
We have ∑

Ω(a)=k
B(k+j−1)<a≤B(k+j)

1

a
>

∫ B(k+j)

B(k+j−1)

Nk(x)−Nk(B(k + j − 1))

x2
dx

�
∫ B(k+j)

2B(k+j−1)

Nk(x)

x2
dx.

Thus, ∑
Ω(a)=k

B(k+j−1)<a≤B(k+j)

1

a
� (log logB(k + j − 1))k

k!

∫ B(k+j)

2B(k+j−1)

dx

x log x

=
(k + j − 1)k

k!
(log logB(k + j)− log log(2B(k + j − 1)))

� (k + j − 1)k

k!
� ek+j

√
k
,

the last estimate following from Stirling’s formula. This proves (5.2) and so the
theorem.

The sets Nk and Theorem 1.5 give us the following result.

Corollary 5.3. We have that

lim sup
x→∞

{f(A) : A ⊂ [x,∞), A primitive} > 0.
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∑

p≤n 1/(p log p), J. Number Theory

39 (1991), no. 1, 14–17, DOI 10.1016/0022-314X(91)90030-F. MR1123165
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