
Fixed points for discrete logarithms

Mariana Levin, U. C. Berkeley

Carl Pomerance, Dartmouth College

Suppose that G is a group and g ∈ G has finite order m. Then

for each t ∈ 〈g〉 the integers n with gn = t form a residue class

mod m. Denote it by

logg t.

The discrete logarithm problem is the computational task of

finding a representative of this residue class; that is, finding an

integer n with gn = t.

1

Finding a discrete logarithm can be very easy. For example, say

G = Z/mZ and g = 1. More specifically, say m = 100 and

t = 17. Then logg t = 17 (or more precisely 17 mod 100).

Lets make it harder: take g as some other generator of Z/mZ.

But then computing logg t is really solving the congruence

ng ≡ t mod m

for n, which we’ve known how to do easily essentially since

Euclid.

2

The cyclic group of order m:

What does this title mean, especially the key word “The”?

Take G1 = Z/100Z and G2 = (Z/101Z)×. Both are cyclic

groups of order 100. Both are generated by 3. And 17 is in

both groups.

So, there are two versions of computing log3 17, one in G1 and

one in G2.

In G1, we are solving 3n ≡ 17 mod 100. The inverse of 3 is 67,

so n ≡ 17 · 67 ≡ 39 mod 100.

In G2, we are solving 3n ≡ 17 mod 101. And this seems much

harder.

3

The moral: when someone talks about the cyclic group of a

given order, they are not concerned with computational issues.

Well, how can we solve 3n ≡ 17 mod 101?

Clearly, one way is trial and error, where we compute each

power of 3 mod 101 till we find our target 17. The complexity

of doing this in a cyclic group of order m is O(m) (and this

upper bound also stands as a lower bound for trial and error for

most target elements t).

The Diffie–Hellman key-exchange protocol:

Say we have a cyclic group generated by g, which everyone

knows. Alice has a secret integer a and “publishes” ga.

Similarly, Bob has a secret integer b and publishes gb.

Alice and Bob want to set up a secure session with a secret key

that only they know, yet they want to set this up over a public

line. Here’s how they do it: Alice takes Bob’s group element gb

and raises it to her secret exponent a, getting (gb)a = gab. Bob

arrives at the same group element via a different method,

namely (ga)b = gab.

Eve (an eavesdropper) knows something’s afoot and knows ga

and gb, but apparently cannot easily compute gab without

finding either a or b, that is without solving the dl problem.

4

So, a group that is well-suited for cryptographic purposes is

one where

• it is easy to apply the group operation;

• it is difficult (in practice) to solve the discrete logarithm

problem.

5

Consider the multiplicative group (Z/pZ)×, where p is a large

prime.

Use the following facts about this group: It is a homomorphic

image of semigroup Z under times. A factorization of an

element of Z coprime to p then maps to a “relation” among

group elements.

For example, in (Z/101Z)×, we have

53 ≡ 125 ≡ 24 ≡ 23 · 3 mod 101, 27 ≡ 128 ≡ 27 ≡ 33 mod 101.

Thus,

3 log3 5 ≡ 3 log3 2 + 1 mod 100, 7 log3 2 ≡ 3 mod 100,

from which it may be deduced that

log3 2 ≡ 43 · 3 ≡ 29 mod 100, log3 5 ≡ 96 mod 100.

6

Using 17 · 6 ≡ 1 mod 101, we have

log3 17 + log3 2 + 1 ≡ 0 mod 100,

so using log3 2 ≡ 29 mod 100

log3 17 ≡ 70 mod 100.

7

This kind of thing can be formalized into the “index calculus”

algorithm:

• Choose random numbers r, each time compute gr mod p,

and save any that happen to factor into small primes.

• After enough of these have been saved, we can use linear

algebra over the ring Z/(p− 1)Z to solve for the dl’s of the

small primes.

• Assuming this is accomplished, again choose random

numbers r until one is found where grt factors into small

primes.

8

If

grt ≡ p
a1
1 . . . p

ak
k mod p,

then using the pre-computed numbers logg pi, we get

logg t ≡ −r+ a1 logg p1 + · · · + ak logg pk mod (p− 1).

This kind of idea can be copied for any group which is a

homomorphic image of a multiplicative structure where we

have factorization into “small” elements. (The set of small

elements used is called the “factor base”.)

9

So, for example, the index calculus method can be used in

many cases for finding dl’s in F×
q . Eg, say q = pa, with p prime

and a large. We can view Fq as Fp[x]/(f(x)) where f is

irreducible of degree a. And Fp[x] is a Euclidean domain.

If a is small, we can view Fq as OK/(p) where K is an algebraic

number field of degree a over Q in which p is inert. Even

though OK may not be a Euclidean domain, and perhaps not

even a PID, we do have unique factorization of ideals and we

do have a sense of size afforded by the norm. Problems remain,

but in many cases the index calculus method is useful.

And there are very important improved versions that employ

ideas from the number field sieve for factoring integers.

10

Thus, cryptographers tend to shy away from the groups F×
q .

What generic algorithms might exist other than listing all of

the powers of g?

Well, there’s “baby steps, giant steps” (known in the CS world
as “meet in the middle”):

• Have g of order m and t ∈ 〈g〉. Find k = ⌈√m ⌉ and g−1.

• Compute the baby steps tg0, tg−1, . . . , tg−(k−1) and the giant

steps g0, gk, . . . , g(k−1)k.

• Sort both lists and find a coincidence between them, say

tg−i = gjk. Then t = gi+jk and logg t = i+ jk.

11

Why must there be a coincidence between the two lists?

Well, since t ∈ 〈g〉, there is some n ∈ [0,m− 1] with gn = t.

Write n in base k, so that since k2 > m− 1, we have n = i+ jk

for some integers i, j ∈ [0, k − 1]. And thus, tg−i = gjk.

The algorithm presupposes labels for group elements that

allows them to be sorted. Sorting can be done in time not

much larger than the size of the set to be sorted, and after

this, finding the match between the two parts takes only

O(k) = O(
√
m) comparisons.

In all, baby steps, giant steps takes O(
√
m logm) group

operations. It is essentially a universal algorithm, so

cryptographers can’t avoid it.

12

A downside of baby steps, giant steps is that it is not so easy

to distribute the work to many computers. Another algorithm

due to Pollard can be distributed and is what’s used in practice

to benchmark cryptosystems. It’s interesting that Pollard’s

method is heuristic while baby steps, giant steps is rigorous.

Of course, if an answer is found, it is easily checked, so the

heuristic part deals with whether the algorithm will terminate

within the supposed time bound (which is also about
√
m).

13

So, can we find a family of convenient groups for which the

only dl algorithms take exponential time?

It’s hard to prove that it is so, but many people feel that

elliptic curve groups over finite fields fit this bill.

But this is for another time, our topic today is not crypto, nor

dl algorithms, but fixed points, the equation

logg x = x.

14

First note that the equation logg x = x doesn’t make complete

sense, since the first “x” is an element of the cyclic group 〈g〉
and the second x is an integer (or residue class modulo the

order of g).

We can make sense by the conflation of integers with residue

classes, as we have already been doing. In particular, in the

group (Z/pZ)× with generator g, the equation logg x = x could

be taken to mean that x is an integer in [1, p− 1] with gx ≡ x
(mod p).

Lets see if such fixed points exist for small primes p:

For p = 2, we have g = 1, x = 1, and yes, gx ≡ x (mod p).

For p = 3, we have g = 2, and 21 6≡ 1 (mod 3), 22 6≡ 2 (mod 3),

so no, there is no fixed point.

15

For p = 5, there are two primitive roots (i.e., cyclic generators

for (Z/pZ)×), namely 2 and 3. One quickly checks that with

the base 3, there are no fixed points, but 23 ≡ 3 (mod 5).

For p = 7, the primitive roots are 3 and 5, and we have

32 ≡ 2 (mod 7), 34 ≡ 4 (mod 7), 35 ≡ 5 (mod 7).

In Guy, section F9, it is mentioned that D. Brizolis conjectured

that for every prime p > 3 there is a primitive root g and an

integer x in [1, p− 1] with logg x = x.

16

A necessary and sufficient condition: Suppose x ∈ [1, p− 1] has

multiplicative order (p− 1)/d. There is a primitive root g for p

with logg x = x if and only if gcd(x, p− 1) = d.

17

Here’s why: Let g0 be a primitive root for p. Every primitive

root for p is of the form gi0, where i is coprime to p− 1. Say

g
j
0 = x, so that (j, p− 1) = d. TFAE:

• There is a primitive root g with gx = x.

• There is an integer i coprime to p− 1 with gix0 = x.

• There is an integer i coprime to p− 1 with ix ≡ j

(mod p− 1).

• gcd(x, p− 1) = gcd(j, p− 1) = d.

18

Let us say that a prime p has the “strong Brizolis property” if

there is a primitive root g in the range [1, p− 1] that is coprime

to p− 1. This is the case d = 1 from the previous criterion.

How many such primitive roots do we expect? Well, there are

exactly ϕ(p− 1) primitive roots in [1, p− 1] and exactly ϕ(p− 1)

integers in this range coprime to p− 1. If these are

“independent events”, then we would expect

(

ϕ(p− 1)

p− 1

)2

(p− 1) =
ϕ(p− 1)2

p− 1

such numbers. Since ϕ(n) > cn/ log logn, the above expression

is at least of order p/(log log p)2, which is positive for all large p.

19

How might we try and prove this?

Lets begin with characteristic functions.

Say f1(g) is 1 if gcd(g, p− 1) = 1 and 0 otherwise, and f2(g) is

1 if g is a primitive root for p and 0 otherwise.

Let N(p) be the number of integers in [1, p− 1] that are both

primitive roots for p and coprime to p− 1. Then

N(p) =
p−1
∑

g=1

f1(g)f2(g).

20

To use this, we need explicit representations for these

characteristic functions. Being coprime to p− 1 is easy, it is

essentially a combinatorial inclusion-exclusion over common

divisors of g and p− 1. We have

f1(g) =
∑

d|gcd(g,p−1)

µ(d),

where µ is the Möbius function. (We have µ(n) = (−1)ω(n) if n

is squarefree and 0 otherwise, where ω(n) is the number of

different primes which divide n.)

21

A combinatorially similar idea works for f2(g), the characteristic

function for primitive roots for p, but here we need to introduce

characters. Let g0 be some primitive root for p and let

ζ = e2πi/(p−1), a primitive (p− 1)st root of 1 in C. There is a

natural isomophism χ from (Z/pZ)× to 〈ζ〉 where χ(g
j
0) = ζj.

Then

f2(g) =
∑

m|p−1

µ(m)

m

m
∑

j=1

χ(g)j(p−1)/m.

This can be seen by noting that the inner sum is m if

g(p−1)/m ≡ 1 (mod p) and 0 otherwise.

22

So for N(p), the number of integers in [1, p− 1] that satisfy the

strong Brizolis property for p,

N(p) =
p−1
∑

g=1

∑

d|gcd(g,p−1)

µ(d)
∑

m|p−1

µ(m)

m

m
∑

j=1

χ(g)j(p−1)/m.

Fine, but are we making any progress? It is perhaps natural to

write g = dh, use χ(g) = χ(d)χ(h) and rearrange a bit. We have

N(p) =
∑

d,m|p−1

µ(d)µ(m)

m

m
∑

j=1

χ(d)j(p−1)/m
(p−1)/d
∑

h=1

χ(h)j(p−1)/m.

Note that the terms in this triple sum with j = m are

∑

d,m|p−1

µ(d)µ(m)

m

p− 1

d
=
ϕ(p− 1)2

p− 1
.

23

We have proved that

∣

∣

∣

∣

∣

N(p) − ϕ(p− 1)2

p− 1

∣

∣

∣

∣

∣

≤
∑

d,m|p−1

|µ(d)µ(m)|
m

m−1
∑

j=1

∣

∣

∣

∣

∣

∣

∣

(p−1)/d
∑

h=1

χ(h)j(p−1)/m

∣

∣

∣

∣

∣

∣

∣

.

Let

S(χj(p−1)/m) = max
n

∣

∣

∣

∣

∣

∣

n
∑

h=1

χ(h)j(p−1)/m

∣

∣

∣

∣

∣

∣

,

when 1 ≤ j ≤ m− 1. Thus,

∣

∣

∣

∣

∣

N(p) − ϕ(p− 1)2

p− 1

∣

∣

∣

∣

∣

≤
∑

d,m|p−1

|µ(d)µ(m)|
m

m−1
∑

j=1

S(χj(p−1)/m).

24

The Pólya–Vinogradov inequality

In 1918, Pólya and Vinogradov independently showed that for a

nonprincipal character ψ modulo q, we have

S(ψ) := max
n

∣

∣

∣

∣

∣

∣

n
∑

h=1

ψ(h)

∣

∣

∣

∣

∣

∣

< cq1/2 log q,

for a universal positive constant c. Here, ψ is a nontrivial

homomorphism from (Z/qZ)× into C× extended to Z by letting

it be 0 when the argument is not coprime to q. Thus,

∑

d,m|p−1

|µ(d)µ(m)|
m

m−1
∑

j=1

S(χj(p−1)/m) = O(4ω(p−1)p1/2 log p),

and since ω(n) = o(logn), we have the above expression being

of magnitude at most p1/2+ǫ.

25

Thus,

N(p) =
ϕ(p− 1)2

p− 1
+O(p1/2+ǫ).

Since as we have seen, the main term is at least of order

p/(log log p)2, this shows that all sufficiently large primes p have

N(p) > 0.

But is it true for all primes p > 3?

26

Questions like this pose a computational challenge, since it

involves putting explict constants on all of the inequalities

involved. And challenges can remain, since the point at which

N(p) > 0 is proved to be true may be too large to do a case

study up to that point.

Some history: W.-P. Zhang in 1995 gave essentially the above

argument but did not work out a starting point for when it is

true.

C. Cobelli and A. Zaharescu in 1999 gave a somewhat different

proof, showing that N(p) > 0 for all p > 102070. They said that

a reorganization of their estimates would likely support a bound

near 1050.

27

So, can we do better?

An elementary argument shows that

4ω(n) < 1404n1/3

for all natural numbers n. Yes, it is a far cry from nǫ, but it is

explicit, and near to best possible for some numbers n.

Further, one can show that

ϕ(n) >
n

2 log logn

for n larger than 1 more than the product of the first 11

primes, about 2 × 1011.

28

Earlier this year, I proved that for ψ a nonprincipal, primitive

Dirichlet character modulo q, we have

S(ψ) = max
n

∣

∣

∣

∣

∣

∣

n
∑

h=1

ψ(h)

∣

∣

∣

∣

∣

∣

≤ q1/2
(

1

2π
(log q+ 2 log log q) + 1

)

.

(Note that “primitive” means that the character is not induced

by another character to a smaller modulus; for a prime

modulus, every nonprincipal character is primitive.)

My proof used some classical Fourier series arguments, a paper

of Landau from 1918, and an idea of Bateman as reported in a

paper of Hildebrand. (There are other explicit versions of this

inequality in the literature, but they are not as sharp.)

29

So, armed with all of these tools, the bound can be brought
down to 1038, but this is still too big to close the gap.

What to do, give up? Not us.

We viewed the formula

N(p) =
∑

d,m|p−1

µ(d)µ(m)

m

m
∑

j=1

χ(d)j(p−1)/m
(p−1)/d
∑

h=1

χ(h)j(p−1)/m

combinatorially as a double inclusion-exclusion, and then used
the Bonferroni inequalities. These allow one to truncate an
inclusion-exclusion at an odd point to get a lower bound (and
at an even point to get an upper bound). So we stop the sum
over d when d has an odd number of primes. For each d, we
have a full inclusion-exclusion over m, so we stop that at an
odd point if the corresponding d has µ(d) = 1 and we stop it at
an even point if µ(d) = −1.

30

Using the Bonferroni inequalities, we greatly reduce the number

of terms which involve the Pólya–Vinogradov inequality at a

sacrifice of a smaller main term. Below 1038 we attacked

separately each possible value for ω(p− 1) so that we didn’t

have to use the one-size-fits-all inequality that we had. Jiggling

parameters, we were able to handle each case with

ω(p− 1) ≥ 12.

For ω(p− 1) = 11, the argument almost works, and we were

able to handle the situation for all but 12 primes p that we

could check directly.

For the cases ω(p− 1) = 10, 9, and 8, we were able to show

that only certain ranges of primes needed to be checked, and

then only those satisfying certain congruences, like p ≡ 1

(mod 210).

31

We also checked exhaustively up to 6.6 × 109, finding no

counterexamples. Our sieve estimates showed that for

ω(p− 1) ≤ 7, any possible counterexample would be below this

bound, thus completing the proof.

Finally:

Theorem. (Levin, P) For every prime p > 3 there is a primitive

root g for p in [1, p− 1] that is coprime to p− 1. In particular,

there is a primitive root g for p and an integer x in [1, p− 1]

with logg x = x.

32

It is expected that our method of proof can work for other

problems involving primitive roots, such as the conjecture of

Vegh that for all primes p > 61, each residue is the difference of

two primitive roots. And some conjectures of Golomb that are

similar, but involve more complicated equations than x− y = z.

There is a fairly wide literature on this group of problems, with

papers of Cohen, Le, Mullen, and Sun, but a computational

gap remains.

33

