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SOME PROBLEMS OF ERDŐS
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For Richard Guy on his 99th birthday. May his sequence be unbounded.

Abstract. Let σ(n) denote the sum of all of the positive divisors of n, and
let s(n) = σ(n)− n denote the sum of the proper divisors of n. The functions
σ(·) and s(·) were favorite subjects of investigation by the late Paul Erdős.
Here we revisit three themes from Erdős’s work on these functions. First, we
improve the upper and lower bounds for the counting function of numbers
n with n deficient but s(n) abundant, or vice versa. Second, we describe a
heuristic argument suggesting the precise asymptotic density of n not in the
range of the function s(·); these are the so-called nonaliquot numbers. Finally,
we prove new results on the distribution of friendly k-sets, where a friendly

k-set is a collection of k distinct integers which share the same value of
σ(n)
n

.

1. Introduction

Let σ(n) be the sum of the natural number divisors of n, so that σ(n) =
∑

d|n d.

Let s(n) be the sum of only the proper divisors of n, so that s(n) = σ(n) − n.
Interest in these functions dates back to the ancient Greeks, who classified numbers
as deficient, perfect, or abundant according to whether s(n) < n, s(n) = n, or
s(n) > n, respectively. For example, 10 is deficient, 12 is abundant, and 6 is
perfect. The ancient Greeks also found and remarked on 2-cycles, where s(n) = m
and s(m) = n, calling such a pair amicable; for example, 220 and 284.

A conjecture of Catalan in 1888 [8], as amended by Dickson in 1913 [12], claims
that for every positive integer n, the aliquot sequence n, s(n), s(s(n)), . . . either
terminates at 0 or enters some cycle, such as a perfect number, an amicable pair,
or some longer cycle. Despite much numerical work, there are still 12 numbers
n < 1000 for which the conjecture is in doubt, the first being 276. This numerical
work uncovered long stretches where some aliquot sequences grow monotonically
and exponentially, and other stretches where they decay in like manner. This
behavior was taken into account in the Guy–Selfridge [25] counter-conjecture that
for asymptotically all even numbers n, the aliquot sequence starting with n is
unbounded.

It was proved by Lenstra [29] that for each k there is an aliquot sequence that
strictly increases for k terms. Erdős [20] showed that this is common and, in fact, if
n is abundant, then but for a set of numbers n of asymptotic density 0, the aliquot
sequence starting with n strictly increases for k terms. In the same paper, Erdős
claimed the analogous result for deficient numbers (with “increases” replaced with
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“decreases”), but this claim was retracted in [22]. In that paper, the claim was
shown for k = 2. It is conjectured that the full claim holds, but this has never been
shown.

These results assert that if n is abundant, it is likely that s(n) is also abundant,
and similarly for deficient. Say n is an aliquot reversal if this fails. More precisely,
say n is an up-down reversal if n is nondeficient yet s(n) is deficient, and say n is
a down-up reversal if n is deficient and s(n) is nondeficient.

Though the terminology is new to this paper, aliquot reversals have been studied
for some time because of their connection with amicable pairs; in fact the lesser
member of an amicable pair is an up-down reversal, while the larger member is a
down-up reversal. Erdős was the first to prove, in [15], that the set of numbers
involved in an amicable pair has vanishing asymptotic density, and he did this by
showing that there are few up-down reversals. The count of up-down reversals was
improved later by Rieger [40], by Erdős–Rieger [21], and by the second author (see
[36]). In that last paper it was shown that the number of n ≤ x giving an up-down
reversal is at most

(1.1) x/ exp((c+ o(1))(log3 x log4 x)
1/2), as x → ∞,

for a certain absolute constant c > 0. Here, the subscripts indicate iteration of
the natural log function. The proof uses results of Erdős [13] for the count of
primitive nondeficient numbers. Incorporating an improvement on these results
due to Avidon [3], this argument gives c = 1. In [33, Corollary 1.5], the same upper
estimate (1.1) was shown for the number of down-up reversals in [1, x], but only
with the smaller constant c = 1

10 .
Our first theorem is an improvement on these upper bounds.

Theorem 1.1. Both the count of down-up reversals in [1, x] and the count of up-

down reversals in [1, x] are bounded above by (1.1) with c =
√
3.

The proof uses recent results from [2] on the number of solutions n to congruences
of the form σ(n) ≡ a (mod n).

The problem of obtaining lower bounds on the number of aliquot reversals does
not seem to have been previously considered. Note that the upper bounds of the
last paragraph just barely give density 0. In the following results we show there is
a reason for this: reversals are fairly common. We prove the following.

Theorem 1.2. The number of up-down reversals in [1, x] is � x/(log2 x)(log3 x)
3.

Theorem 1.3. The number of down-up reversals in [1, x] is � x/(log2 x)(log3 x)
2.

One might wonder if these results lend support to the Catalan–Dickson conjec-
ture or to the Guy–Selfridge counter-conjecture. It is helpful to think in terms of
parity. In fact, n and s(n) have opposite parity precisely when n is a square or a
double of a square, and such n comprise a very sparse set. In addition, it follows
from the proof in [20] that for each fixed k, almost all n have the same parity as
sk(n) (the kth iterate of s at n). Since an aliquot sequence terminates only if it
hits a prime, a perhaps reasonable conjecture is that aliquot sequences beginning
with even numbers usually either are unbounded or enter some cycle of even num-
bers. Numbers involved in such cycles have density 0 (see [28]). Numerical evidence
indicates that most numbers involved in these cycles are amicable (i.e., they are
in a 2-cycle), and we know that amicable numbers are quite sparsely distributed
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(see [38]). Thus, despite the fact that our results show nonmonotonicity is fairly
common, the Guy–Selfridge point of view is believable. And some cases of non-
monotonicity are quite rare. For example, take numbers n ≡ 6 (mod 12), n > 6.
They are abundant, but the number of them to x with s(n) deficient is O(x1/2).
Further, in a recent preprint of Bosma [6], it is shown that about 1/3 of the even
numbers to 1 million have their aliquot sequence still open beyond 1099. This evi-
dence seems to put a chill on the Catalan–Dickson conjecture! On the other hand,
it is hard to align this numerical evidence with the recent paper of Bosma–Kane
[7] where it is shown that the geometric mean of s(2n)/2n for n ≤ x tends to a
constant smaller than 1 as x → ∞.

We remark that the lower bounds in Theorems 1.2, 1.3 are established for even
numbers. It would be of interest to see what kind of lower bounds can be established
for odd numbers.

We turn now to our second topic. Positive integers not in the range of s(·) are
said to be nonaliquot, though the more colorful term untouchable (see Alanen [1])
has also been used. The concept dates back to at least ca. 1000 CE [41]. A useful
initial observation is that if p and q are distinct primes, then s(pq) = p+ q + 1. A
slightly stronger form of Goldbach’s conjecture is that every even integer n ≥ 8 is
a sum of two distinct primes. If so, then every odd n ≥ 9 belongs to the range of
s(·); noting that s(2) = 1, s(4) = 3, and s(8) = 7, we would have that 5 is the only
odd nonaliquot number.

While the conjecture of the last paragraph remains out of reach, it follows from
(independent) work of Chudakov, van der Corput, and Estermann that almost all
even numbers can be written as a sum of two distinct primes. (See [46, Chapter 3]
for a modern treatment.) Hence, the set of odd nonaliquot numbers has asymptotic
density zero.

What about even numbers? In [18], Erdős proved that a positive proportion
of even numbers are nonaliquot. By an elaboration of Erdős’s methods, Chen and
Zhao [9] have shown that the nonaliquot even integers make up a set of lower density
greater than 0.06. (This improves earlier results reported in [5] and [44, Corollary
9.2, p. 64].) Erdős was unable to decide whether or not a positive proportion of
even numbers do belong to the image of s, but this has been resolved affirmatively
in very recent work of Luca and the second author [30].

In §3, refining some thoughts in [44], we propose a probabilistic model for s(·)
that suggests a precise value for the density of nonaliquot numbers.

Conjecture 1.4. The set of nonaliquot numbers has asymptotic density Δ, where

Δ = lim
y→∞

1

log y

∑
a≤y
2|a

1

a
e−a/s(a).

At y = 2 · 1010, the expression inside the limit has value 0.171822. Table 1
collects counts of nonaliquot numbers up to 1010; these counts are consistent with
a limiting density of ≈ 0.17.

Finally, we consider the distribution of the rational numbers σ(n)
n . We are inter-

ested here in statistics for

F (n;x) = #

{
m ≤ x : m 
= n,

σ(m)

m
=

σ(n)

n

}
,
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Table 1. Counts U(x) of nonaliquots to various heights x from
108 through 1010, along with the corresponding densities D(x).

x U(x) D(x) x U(x) D(x)

100000000 16246940 0.1625 1000000000 165826606 0.1658
200000000 32721193 0.1636 2000000000 333261274 0.1666
300000000 49265355 0.1642 3000000000 501171681 0.1671
400000000 65855060 0.1646 4000000000 669372486 0.1673
500000000 82468000 0.1649 5000000000 837801755 0.1676
600000000 99107582 0.1652 6000000000 1006383348 0.1677
700000000 115764316 0.1654 7000000000 1175094232 0.1679
800000000 132438792 0.1655 8000000000 1343935989 0.1680
900000000 149128373 0.1657 9000000000 1512867678 0.1681

10000000000 1681871718 0.1682

Table 2. Counts of primitive friendly pairs. Here “Limit” is L
with the “Count” being the number of pairs to 10L and “Exponent”
being that E such that Count = 10LE .

Limit 3 4 5 6 7 8 9 10 11

Count 9 19 38 66 148 292 548 966 1688
Exponent .318 .320 .316 .303 .310 .308 .304 .298 .293

thought of as a random variable on the set of natural numbers n ≤ x, equipped
with the uniform measure. A theorem of Wirsing [47] asserts that an equation of

the form σ(n)
n = α has at most xo(1) solutions n ≤ x, as x → ∞, uniformly in α.

Thus, we have a pointwise bound F (n;x) = xo(1), as x → ∞. The average behavior
of F (n;x) was determined by Erdős [17, Theorem 2]; for a certain constant c > 0,

(1.2)
∑
n≤x

F (n;x) ∼ cx, as x → ∞.

Note that
∑

n≤x F (n;x) counts the number of ordered pairs of distinct integers

(n,m) ∈ [1, x]2 with σ(n)
n = σ(m)

m , and this is the way Erdős states his result.

Call a pair (unordered) of distinct integers n andm a friendly pair if σ(n)
n = σ(m)

m .
Evidently, if u is coprime to nm, then un, um is also a friendly pair. Call the friendly
pair n,m primitive friendly if n and m have no nontrivial common unitary divisor.
(We say d is a unitary divisor of n, and write d ‖ n, if d | n and gcd(d, n/d) = 1.)
The key ingredient in Erdős’s proof of (1.2) is the convergence of

∑
1
m , where m

runs over the larger members of the primitive friendly pairs (with multiplicities).
We prove a substantially stronger result on the distribution of such pairs:

Theorem 1.5. The number of primitive friendly pairs contained in [1, x] is at most

x
1
2+o(1), as x → ∞.

Erdős’s theorem on the convergence of
∑

1
m follows immediately by partial sum-

mation. The exponent 1
2 appears to be the limit of our method, but the numerical

data (see Table 2) suggest that this is not sharp. Perhaps the true count of primitive
friendly pairs in [1, x] is xo(1).
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Table 3. N1(x), N2(x), N3(x), and N4(x) for x = 10j , with 3 ≤
j ≤ 10.

103 104 105 106 107 108 109 1010

N1(x) 37 348 3475 34746 347471 3474564 34745605 347456117
N2(x) 3 30 283 2816 28089 280938 2809813 28097701
N3(x) 0 12 82 857 8517 85365 853513 8535154
N4(x) 0 0 10 85 853 8457 84605 845674

By studying primitive friendly k-sets for integers k ≥ 2, we are able to show that
F (n;x) has a limiting distribution. Set Nk(x) = #{n ≤ x : F (n;x) ≥ k}.

Theorem 1.6. For each fixed nonnegative integer k, we have Nk(x) = (αk+o(1))x,
as x → ∞, for some constant αk. Moreover, αk → 0 as k → ∞.

Clearly, α0 = 1. Though the constants αk for k ≥ 1 are effectively computable
(via the proof of Theorem 1.6), we have not found good rigorous numerical estimates
for them. However, explicit computations of Nk(x) suggest that α1 = 0.0347 . . . ,
α2 = 0.0028 . . . , α3 = 0.00085 . . . , and α4 = 0.000084 . . . ; see Table 3.

Notation. We use the Bachmann–Landau �, O and o-notations, with their usual
meanings, as well as the associated Vinogradov � and � notations. P (n) denotes
the largest prime factor of n, with the convention that P (1) = 1, and rad(n)
denotes the largest squarefree divisor of n. We reserve the letter p, with or without
subscripts or dashes, for primes. We write vp(n) for the exponent on the highest
power of p dividing n. The notation gcud(m,n) stands for the greatest common
unitary divisor of m and n. We use ϕ for Euler’s totient function, ω for the number
of prime divisors, Ω for the number of prime factors counted with multiplicity, and
τ for the total number of divisors.

2. Aliquot reversals

2.1. Upper bounds.

2.1.1. A structural lemma on primitive nondeficient numbers. The proof of The-
orem 1.1 runs along similar lines as the proof of the main theorem of [36]. In
particular, the primitive nondeficient numbers play a critical role. (These are num-
bers n with σ(n)/n ≥ 2 and for each proper divisor d of n, σ(d)/d < 2.) The
main new ingredient is a lemma that is perhaps of independent interest: Almost
all primitive nondeficient numbers n have P (n) � n1/3.

We will deduce the lemma from the results of [2] concerning solutions n to the
congruence σ(n) ≡ a (mod n). In that paper, n is called a regular solution if

n = pm, where p � m, m | σ(m), and σ(m) = a.

(It is straightforward to check that these numbers n are solutions of the congruence.)
In the remaining case, n is called sporadic. Note that regular solutions can exist
only when a > 0. The following is a slightly less precise form of [2, Theorem 1].

Proposition 2.1. The number of sporadic solutions n ≤ x to σ(n) ≡ a (mod n)
is at most x1/2+o(1), as x → ∞, uniformly for |a| ≤ x1/4.
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The restriction |a| ≤ x1/4 is inconvenient for our purposes. We can ameliorate
this as follows. Call a sporadic solution n to σ(n) ≡ a (mod n) convenient if all of
the following hold:

(i) k := σ(n)−a
n is an integer at least 2,

(ii) if d is a unitary divisor of n with d < n, then σ(d)
d < k,

(iii) there is a prime q > P (n) with σ(nq)
nq > k.

Proposition 2.2. The number of convenient solutions n ≤ x to σ(n) ≡ a (mod n)
is at most x1/2+o(1), as x → ∞, uniformly in a with |a| ≤ x.

Sketch of the proof. Hornfeck and Wirsing [27, Satz 2] have shown that there are
xo(1) multiply perfect numbers n ≤ x; hence, we may assume that a 
= 0.

While not phrased this way in [2], the proof of [2, Theorem 1] when a 
= 0 is
handled there by reduction to the convenient case. Indeed, Lemma 5 in [2] asserts
that if n is a sporadic solution to σ(n) ≡ a (mod n) and n > 6a2 log(6|a|), then
n is convenient. In our setup here, we start by assuming n is convenient. Thus,
the conclusion of [2, Lemma 5] holds trivially. Moreover, only the convenience
hypothesis is needed in the proofs of Lemmas 6 and 7 from [2]. That is, both of
those lemmas hold with the assumption of convenience replacing the hypothesis “n
is a sporadic solution satisfying n > 6a2 log(6|a|)”.

With these lemmas in place, we can again run the proof of [2, Theorem 1].
It proceeds exactly as before, except that now there is no need to assume n >
6a2 log(6|a|). That assumption was responsible for the restriction |a| ≤ x1/4, which
can now also be dispensed with. Following the proof through, we deduce that there
are at most x1/2+o(1) convenient solutions n ≤ x, uniformly for |a| ≤ x. �

We now deduce the key lemma.

Lemma 2.3. Fix ε > 0. The number of primitive nondeficient n ≤ x with P (n) >
n1/3+ε is Oε(x

1−ε), as x → ∞.

Proof. After a dyadic subdivision argument, it is enough to prove the claimed upper
bound for the number of primitive nondeficient n ∈ (x, 2x] with P (n) > x1/3+ε. By
[27] or [47], the number of perfect n ≤ 2x is xo(1), as x → ∞. Thus, we can assume
that n is abundant. We can also assume P (n)2 � n, since otherwise n belongs to a
set of size at most 2x

∑
p>x1/3+ε p−2 � x2/3−ε. Write n = pm, where p = P (m).

Since n = mp is primitive nondeficient,

2 >
σ(m)

m
>

2

σ(p)/p
> 2− 2x−1/3−ε.

Hence,

−2mx−1/3−ε < a := σ(m)− 2m < 0

and

|a| < 2mx−1/3−ε ≤ 4
x

p
x−1/3−ε = 4x2/3−ε/p.

The integer m is a sporadic solution to σ(m) ≡ a (mod m). Moreover, conditions
(i)–(iii) in the definition of a convenient solution are easily verified for m, with
k = 2 and q = p.

Fixing a and p, Proposition 2.2 shows that the number of corresponding values
of m ≤ 2x/p is Oε((x/p)

1/2+ε/2). Summing on a ∈ (−4x2/3−ε/p, 0), the number of
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possibilities for m given p is

�ε
x2/3−ε

p
·
(
x

p

)1/2+ 1
2 ε

� x7/6− 1
2 ε

p3/2
.

Summing on p > x1/3+ε gives a final upper bound of Oε(x
1−ε), as desired. �

Remark. The proof can be improved to achieve the upper bound x1− 3
2 ε+o(1), as

x → ∞. For our purposes, any power-savings upper bound is sufficient.

It would be desirable to prove Lemma 2.3 with a smaller exponent than 1
3 . If the

lemma holds with 1
R (say), then the arguments below show that Theorem 1.1 holds

with c =
√
R. In particular, if R can be taken arbitrarily large, we would have a

qualitative improvement over any bound of the shape (1.1). Such an improvement
would follow from a conjecture posed in [2]:

Conjecture 2.4. Let x ≥ 3, and let a be an integer with |a| ≤ x/2. Let k be an
integer with k ≥ 2. The number of solutions n ≤ x to σ(n) = kn+ a is

� (log x)C ,

where both the implied constant and C are absolute constants.

Remark. This is a corrected form of the conjecture as it appeared in [2]. The
original formulation allowed k = 0 and k = 1; these cases must be excluded to
account for popular values a of σ(n) or s(n).

2.1.2. Proof of Theorem 1.1. Let

y = y(x) =
log2 x

2 log3 x
.

We begin with a lemma.

Lemma 2.5. The number of integers n ≤ x for which σ(n) is not divisible by every
integer m ≤ y is O(x/ log2 x).

Proof. We use [36, Theorem 2], which asserts that for coprime integers �, k with
k > 0, the number of integers n ≤ x such that no prime p ≡ � (mod k) has p ‖ n is
O(x/(logx)1/ϕ(k)), uniformly. Applied with � = −1, k = m the result implies that
the number of n counted in the lemma is

�
∑
m≤y

x

(log x)1/ϕ(m)
≤

∑
m≤y

x

(log x)1/m
≤

∑
m≤y

x

(log2 x)
2
� x

log2 x
. �

For future reference we state the result of Avidon [3] mentioned in the introduc-
tion.

Lemma 2.6. The number of primitive nondeficient numbers a ≤ t is at most

t/ exp((1 + o(1))
√
log t log2 t), t → ∞.

We shall also use a result of Toulmonde [45, Théorème 1] (see the discussion in
§10) on the modulus of continuity of the distribution function for σ(n)/n.

Lemma 2.7. If α is in the range of σ(n)/n, then uniformly for T ≥ 3, the number
of integers m ≤ x with

α− 1

T
≤ σ(m)

m
< α

is � x/ exp( 15
√
log T log2 T ).
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Proof of Theorem 1.1. Let ε > 0 be fixed. Suppose n ≤ x is nondeficient with s(n)
deficient, and let a be the least nondeficient number that divides n. If each prime
power dividing a is at most y, then Lemma 2.5 implies that but for O(x/ log2 x)
choices for n, we may assume that a | σ(n). This in turn implies that a | s(n),
contradicting that s(n) is deficient. Thus, a has a prime power divisor exceeding y.
If a > y3−ε, then Lemma 2.6 implies that the number of n ≤ x divisible by such a
primitive nondeficient number a is at most x/ exp((1 + o(1))

√
(3− ε) log3 x log4 x)

as x → ∞. Hence we may assume that a ≤ y3−ε and a is divisible by a prime power
q > y. If q is a proper power, the number of n ≤ x divisible by such a large power
is O(x/

√
log2 x), so we may assume that q is prime and q > a1/3+ε/9. But then,

by Lemma 2.3, the number of n ≤ x divisible by such a primitive nondeficient a is
Oε(x/y

ε/9). Since ε may be taken arbitrarily close to 0, our result follows.
The argument for down-up reversals is similar, but more difficult. Suppose

n ≤ x is deficient and s(n) is not deficient, and let a be the least nondeficient
number dividing s(n). Again, by Lemma 2.5, if each prime power dividing a is at
most y, then we may assume that a | σ(n). This implies that a | n, contradicting n
deficient. Thus, we may assume a has some prime power divisor greater than y.

Write n = mp where p = P (n). By standard results on the distribution of
integers all of whose prime factors are small (see [10]), we may assume that p >
x1/ log3 x and p � m. We have s(n) = ps(m) + σ(m) ≡ 0 (mod a). Let a′ =
gcd(a, s(m)). The congruence implies that a′ | σ(m), so that a′ | m. The congruence
also implies that p is in a residue class modulo a/a′.

We first assume that

a ≤ Z := x1/2 log3 x.

Given a,m, a′, by the Brun–Titchmarsh inequality, the number of choices for p ≤
x/m is

� x

mϕ(a/a′) log(x/m(a/a′))
� x log3 x

mϕ(a/a′) log x
� x log3 x

m(a/a′) log x
,

where for the last step we use that a is primitive nondeficient, so that ϕ(a/a′) �
a/a′. We have a′ | m, so summing the displayed upper bound over m and then over
a′, we get that the number of choices is

� τ (a)

a
x log3 x.

We can restrict to a which have no proper prime power divisor in (y, Z]. Indeed,
by an argument analogous to that just seen, the number of n as above for which s(n)
is divisible by a given prime power �v ≤ Z is O(xτ (�v)�−v log3 x) = O(xv�−v log3 x).
Summing over proper prime powers �v > y, we find that only a negligible set of n
arise in this manner. Since a ≤ Z, we may assume that a is divisible by a prime
� > y.

We now wish to find a good upper bound for the sum of τ (a)/a as a runs over
primitive nondeficient numbers divisible by a prime greater than y. We first assume
that a ≤ y3−ε. Then P (a) > a1/3+ε/9. Using τ (a) = ao(1) as a → ∞ and Lemma
2.3 we have

∑
τ (a)/a ≤ y−ε/9+o(1), which is sufficient for our needs. So now assume

that a > y3−ε. If also τ (a) ≤ exp(ε
√
log a log2 a), a brief calculation with Lemma

2.6 suffices.
Now assume that y3−ε < a ≤ Z and τ (a) > exp(ε

√
log a log2 a). We forget at

this point that a is running over primitive nondeficient integers. For each fixed



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.
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positive integer j,

(2.1)
∑
k≤T

τ (k)j

k
≤

∏
p≤T

(
1 +

2j

p
+Oj

(
1

p2

))
�j (log T )

2j .

Let T ≥ y3−ε and consider values of k ∈ (T, T 2] with

τ (k) > z(T ) := exp(ε
√
log T log2 T ).

We have ∑
T<k≤T 2

τ(k)>z(T )

τ (k)

k
≤ 1

z(T )j−1

∑
T<k≤T 2

τ (k)j

k
�j

(log T )2
j

z(T )j−1
.

Thus, letting T range over numbers of the form (y3−ε)2
i

, for i = 0, 1, 2, . . . ,

∑
a>y3−ε

τ(a)>z(a)

τ (a)

a
�j

(log y)2
j

z(y3−ε)j−1
.

If we choose j = �ε−1�, and let ε be arbitrarily small, this estimate completes the
argument in the case a ≤ Z.

Now we assume a > Z. Since a | s(n) and s(n) ≤ n, we have a ≤ x. Consider
the “Z-prefix” divisor b of a. This is the largest divisor of a in [1, Z] with each
prime dividing b bounded above by each prime dividing a/b. We may assume that

(2.2) b > Z1/3.

Indeed, if b ≤ Z1/3, then every prime factor of a/b is greater than Z2/3, so that

σ(a/b)

a/b
= 1 +O

(
log x

Z2/3

)
,

since a/b has fewer than log x distinct prime factors. Also, since b is deficient, we
have

σ(b)

b
≤ 2− 1

b
≤ 2− 1

Z1/3
.

The last two displays imply that for x sufficiently large, we have a deficient, a
contradiction. Thus, we have (2.2).

Let B denote the set of integers b ∈ (Z1/3, Z] which are the Z-prefix for some
primitive nondeficient a ∈ (Z, x]. We will show that there are very few integers
n ≤ x with s(n) divisible by some member of B. To do this, we show that the set
B is rather sparse.

Let Y := Z1/ log2 x, and assume that b ∈ B and P (b) > Y . Then, as above,

σ(a/b)

a/b
= 1 +O

(
log x

Y

)
,

so for a to be nondeficient, there is some absolute constant c > 0 such that

2 >
σ(b)

b
≥ 2− c log x

Y
.

By Lemma 2.7, for t ∈ (Z1/3, Z], the number of integers b ≤ t which satisfy the last

display is at most t/ exp( 18
√
log x/ log3 x) for all sufficiently large x. (Here 8 could

be replaced with any number exceeding 5
√
2.)
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We also wish to count the number of b ∈ B, b ≤ t with P (b) ≤ Y . For this we
ignore the condition b ∈ B and use only a standard result in [10]: the number of

such b is at most t/(log x)
1
4 log3 x for all sufficiently large x.

As in the case a ≤ Z, we find that the number of integers n ≤ x with b | s(n)
for some b ∈ B (and assuming n = pm with p > x1/ log3 x and p � m) is

� x log3 x
∑
b∈B

τ (b)

b
.

Again as before we treat the cases of τ (b) small and large separately. If τ (b) ≤
(log x)

1
8 log3 x, then our estimates for the number of b ≤ t suffice to give an acceptable

estimate. If τ (b) > (log x)
1
8 log3 x, we use (2.1) with j = 2, getting

∑
Z1/3<b≤Z

τ(b)>(log x)
1
8

log3 x

τ (b)

b
≤ 1

(log x)
1
8 log3 x

∑
Z1/3<b≤Z

τ (b)2

b
� (log x)4−

1
8 log3 x.

This too is sufficiently small, so completing our proof. �
2.2. Lower bounds. Here we prove Theorems 1.2, 1.3.

Proof of Theorem 1.2. Let x be large, let k be the least integer with 2k > log2 x,
and let p be a prime with 2k < p < 2k+1 − 1. We shall consider numbers n =
2kpmq ≤ x where x1/6 < m ≤ x1/3 and q is prime with q > x1/3. Since 2kp
is abundant, such numbers n are abundant. With no further restrictions on the
parameters m, q, the number of n’s created in this way is � x/ log2 x log3 x. We
will show that with some mild restrictions on m, q we can be assured that s(n) is
deficient, and these restrictions will only reduce our count by a factor of (log3 x)

2.
We shall want the numbers m to satisfy:

(i) 2k | σ(m),
(ii) p � σ(m),
(iii) m has no prime factors below (log2 x)

2.

We can ensure m satisfies (ii) and (iii) by eliminating those m divisible by any of

• a proper prime power rα ≥ p/2,
• a prime r ≡ −1 (mod p),
• a prime r ≤ (log2 x)

2.

Let t ∈ [x1/6, x1/3]. By Brun’s sieve [26, Theorem 2.2], there is an absolute constant
η > 0 such that the number of m ≤ t divisible by no prime r ≤ tη in the second or
third bullet points is

� t
∏

r≤(log2 x)2

(
1− 1

r

) ∏
r≤tη

r≡−1 (mod p)

(
1− 1

r

)

� t

log3 x
exp

(
−

∑
r≤tη

r≡−1 (mod p)

1

r

)
� t

log3 x
.

(The sum on r here is O(1), by the Brun–Titchmarsh inequality and the bound
p � log2 t.) The number of m ≤ t divisible by some prime r > tη with r ≡ −1
(mod p) is � t

∑
tη<r≤t, r≡−1 (mod p)

1
r � t/p � t/ log2 x, which is o(t/ log3 x),

as x → ∞. Finally, the number of m ≤ t divisible by some proper prime power
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rα ≥ p/2 is � t/
√
p � t/

√
log2 x, and this is also o(t/ log3 x). Thus, there are

� t/ log3 x values of m ≤ t satisfying (ii) and (iii). In fact, this is the correct order
of magnitude for this count, since (iii) by itself already implies an upper bound of
the same form.

We now turn to (i). We apply the Turán–Kubilius inequality [43, Theorem 1,
p. 302] to investigate the normal order of the additive function v2(σ(m)). Uniformly
for x1/6 ≤ t ≤ x1/3, ∑

pv≤t

v2(σ(p
v))p−v(1− p−1) ∼ 2 log2 x

and ∑
pv≤t

v2(σ(p
v))p−v � log2 x.

Hence, the number of positive integers m≤t where v2(σ(m))< log2 x is O(t/ log2 x).
Since k � log3 x, this is also an upper bound on the number of failures of (i).

We conclude that there are � t/ log3 x values of m ≤ t satisfying all of (i)–(iii).
By partial summation,

(2.3)
∑
m

1

m
� log x

log3 x
,

where the sum is over m ∈ (x1/6, x1/3] satisfying (i)–(iii).
For each m, let f0(m) =

∑
r|m 1/r, where r runs over primes. Using that m is

free of prime factors up to (log2 x)
2 gives

∑
m

1

m
f0(m) =

∑
r>(log2 x)2

1

r

∑
m: r|m

1

m
≤

∑
r>(log2 x)2

1

r2

∏
p≤x

p>(log2 x)2

(1− 1/p)−1,

which is � log x
(log2 x)2(log3 x)2 . In what follows, we will assume that

(2.4) f0(m) ≤ 1

2(log2 x)
2
.

Note that discarding contrary values ofm changes
∑

m
1
m only by O(logx/(log3 x)

2)
and so preserves the validity of (2.3).

We now complete the construction of a number n = 2kpmq by choosing a prime
q ∈ (x1/3, x/2kpm]. Suppose an odd prime r divides s(n). Then

s(n) = qs(2kpm) + σ(2kpm) ≡ 0 (mod r).

If r | s(2kpm), then r | σ(2kpm), so that r | 2kpm. Such a prime r cannot be 2
by assumption, and it cannot be p, since p � σ(2k) and p � σ(m). Thus, r | m,
and so r > (log2 x)

2. We conclude that if 2 < r ≤ (log2 x)
2 and r | s(n), then

r � s(2kpm). We now restrict the q’s that are available to us by removing for each
odd prime r ≤ (log2 x)

2 a single coprime residue class that will ensure that r � s(n).
By another application of Brun’s sieve, this cuts down the number of choices for q
by a factor proportional to log3 x. For a surviving prime q, let

f1(q) =
∑

2<r<x1/4

r�m

r|s(2kpmq)

1

r
.
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If r | s(2kpmq) and r � m, then as we have seen, q is in a fixed residue class
mod r. Using that q also avoids one residue class modulo each prime not exceed-
ing (log2 x)

2, the Brun–Titchmarsh inequality implies that the average value of
f1(q), over surviving primes q, is � 1/((log2 x)

2 log3 x). Keeping (2.4) in mind, we

conclude that there are � π(x/2kpm)
log3 x � x

2kpm log x log3 x
values of q for which

(2.5)
∑
r>2

r|s(2kpmq)

1

r
≤ 1

(log2 x)
2
.

We finally note that for m, q chosen as above, we have 2k+1 | σ(2kpmq), so that
2k ‖ s(2kpmq). Hence, s(2kpmq)/2k has only odd prime factors. From (2.5), we
conclude that s(2kpmq) is deficient. The theorem then follows with the estimate:∑

p

∑
m

∑
q

1 �
∑
p

∑
m

x

2kpm log x log3 x
�

∑
p

x

2kp(log3 x)
2

� x

2k(log3 x)
3
� x

log2 x(log3 x)
3
,

where we have used (2.3). �

Proof of Theorem 1.3. We take k as the least integer with 2k > 10 log2 x. We
consider numbers n = 2kmqr ≤ x with q, r primes, x1/8 < m ≤ x1/4, x1/4 < q ≤
x1/3, and r > x1/3. As in the last proof, we impose some conditions on m. Namely,
we insist that m satisfy all of

(i′) m has no prime factors below (log2 x)
2,

(ii′) 2k | σ(m),
(iii′) (2.4) holds,
(iv′) for I := [2k, 2k+1 − 1), we have

∑
p∈I, p�σ(m)

1
p > 1

10
1

log3 x .

We will show we can construct a collection of such m that satisfies

(2.6)
∑
m

1

m
� log x

log3 x
.

It will turn out that the most stringent restriction is the first one.
By an elementary sieve, those m ∈ (x1/8, x1/4] satisfying (i′) have

(2.7)
∑
m

1

m
∼ 1

16eγ
log x

log3 x
,

as x → ∞. By arguments seen above, restricting m further to satisfy (ii′) changes
the value of

∑
m

1
m by O(log x/ log2 x), and restricting m to satisfy (iii′) affects the

sum only by O(log x/(log3 x)
2). Hence, (2.7) still holds if m is restricted to satisfy

all of (i′)–(iii′).
We now turn to (iv′). Changing

∑
m

1
m by O(log x/

√
log2 x), we can assume

that m is not divisible by any proper prime power exceeding 5 log2 x. If p ∈ I and
p | σ(m), then there is a prime power �α ‖ m with p | σ(�α); since �α > p/2 >
5 log2 x, it follows that α = 1. Let

f2(m) =
∑
p∈I

p|σ(m)

1

p
.
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Using that m ≤ x1/4 and that m is free of prime factors up to (log2 x)
2, we see that

as x → ∞, ∑
m

1

m
f2(m) ≤

∑
p∈I

1

p

∑

≡ 1 (mod p)

∑
m: 
|m

1

m

≤
(
1

8
+ o(1)

)
log x

log3 x
·
∑
p∈I

1

p

∑

≤x


≡ 1 (mod p)

1

�
.

From [36, Theorem 1 and Remark 1], the final sum on � is at most (1 + o(1)) log2 x
p ,

as x → ∞, uniformly for p ∈ I. Inserting this estimate above,

∑
m

1

m
f2(m) ≤

(
1

8
+ o(1)

)
log x

log3 x
log2 x ·

∑
p∈I

1

p2
≤

(
1

80
+ o(1)

)
log x

(log3 x)
2
.

Hence, the contribution to the left-hand side of (2.7) from those values of m with

f2(m) ≥ 1
2 log3 x is at most ( 1

40 + o(1)) log x
log3 x . Since

1
16eγ − 1

40 > 1
100 , after discarding

these m we may still assert (2.6). Moreover, since
∑

p∈I
1
p ∼ log 2

log3 x and log 2− 1
2 >

1
10 , we have ∑

p∈I
p�σ(m)

1

p
>

1

10

1

log3 x

for all remaining m (and all large x).
Note that for any choice of distinct primes q, r greater than m, the number

2kmqr is deficient; indeed, for large x,

σ(2kmqr)

2kmqr
< 2

(
1− 1

2k+1

)⎛
⎝∏

p|m

(
1 +

1

p− 1

)⎞⎠(
1 +

1

x1/8

)2

< 2

(
1− 1

40 log2 x

)(
1 +O

(
1

(log2 x)
2

))(
1 +O

(
1

x1/8

))
,

and this is < 2(1 − 1
80 log2 x ) < 2. We shall show that with some mild restrictions

on q, r, we will have s(2kmqr) abundant. For m satisfying the above restrictions,
let S(m) be the set of primes p ∈ I with p � σ(m) and let Sm be the product of the
members of S(m).

We next consider primes q ∈ (x1/4, x1/3]. They are chosen with the requirements
that both q + 1 and s(2kmq) are coprime to Sm. We have s(2kmq) = qs(2km) +
σ(2km). By our choices of k,m, we have σ(2km) coprime to Sm. So for a prime
p | gcd(s(2kmq), Sm), q is in a particular residue class mod p. Similarly this holds
too for p | q + 1. Thus, the density of the primes q which avoid these classes is at
least ∏

p|Sm

p− 3

p− 1
∼ 1, as x → ∞.

So, almost all of the primes q ∈ (x1/4, x1/3] may be used, and for these primes q,
we have gcd(s(2kmq), Sm) = 1 and gcd(q + 1, Sm) = 1.

We now choose primes r ∈ (x1/3, x/(2kmq)] with gcd(s(2kmqr), Sm) > 1. For
such a prime r, s(2kmqr) is abundant. Let p | Sm. Note that for any prime
r � 2kmq, we have s(2kmqr) = rs(2kmq) + σ(2kmq). Further, we have p � s(2kmq)



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

14 PAUL POLLACK AND CARL POMERANCE

and p � σ(2kmq). By the prime number theorem for progressions, the fraction of r
with p | s(2kmqr) is asymptotically 1/(p− 1). Similarly, if pp′ | Sm, the fraction of
choices for r with pp′ | s(2kmqr) is asymptotically O(1/pp′). Since

∑
p|Sm

1

p− 1
� 1

log3 x
,

∑
pp′|Sm

1

pp′
� 1

(log3 x)
2
,

we have that the proportion of primes r with gcd(s(2kmqr), Sm) > 1 is � 1/ log3 x.
Putting these thoughts together, we have that the number of choices for m, q, r

is∑
m

∑
q

∑
r

1 �
∑
m

∑
q

x

2kmq log x log3 x
�

∑
m

x

2km log x log3 x
� x

2k(log3 x)
2
.

Since 2k � log2 x, this completes the proof of the theorem. �

3. The density of nonaliquot numbers

3.1. A heuristic argument. For a positive integer y, let

Ay = lcm[1, 2, . . . , y].

For a positive integer a | Ay, let

Ta = {n : gcd(n,Ay) = a},

and let Ta(x) denote the set of members of Ta∩ [1, x]. We assume that s maps Ta to
Ta for each a | Ay. This is asymptotically true if n > ee

y

and y → ∞. Further, we
assume that for n ∈ Ta we have σ(n)/n ≈ σ(a)/a. This is asymptotically true up
to sets of vanishing density as y → ∞. We assume in addition that s is a random
map subject to the prior assumptions.

Now suppose a is even. If s(m) ∈ Ta(x), then m ∈ Ta and m ≤ x/(σ(a)/a−1) =
(a/s(a))x, so that m ∈ Ta((a/s(a))x). The probability that an integer n ∈ Ta(x) is
not in the range of s is about

(
1− 1

|Ta(x)|

)|Ta((a/s(a))x)|
.

Now |Ta(x)| ∼ (ϕ(Ay)/aAy)x, so the above probability is asymptotically

exp

(
− a

s(a)

)
.

We thus would have that the density Δ of even numbers not in the range of s is

(3.1) Δ = lim
y→∞

ϕ(Ay)

Ay

∑∗

a|Ay

1

a
e−a/s(a),

where the ∗ indicates that a runs over even numbers. Since almost all odd numbers
are in the image of s, Δ is also the density of nonaliquot numbers.

We now prove that the limit (3.1) exists. Let

Py =
ϕ(Ay)

Ay
=

∏
p≤y

(
1− 1

p

)
, Sy =

∑∗

P (a)≤y

1

a
e−a/s(a), S′

y =
∑∗

a|Ay

1

a
e−a/s(a).
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Note that S′
y ≤ Sy. The difference comes from those a with P (a) ≤ y and a � Ay.

Such a number a is divisible by pk for some prime power pk > y and p ≤ y. Writing
a = pka′, we have

(3.2)
∑∗

P (a)≤y
a�Ay

1

a
e−a/s(a) ≤

∑
p≤y

∑
k> log y

log p

1

pk

∑
P (a′)≤y

1

a′
� log y

∑
p≤y

1

y
� 1.

Since, by Mertens’ theorem, Py ∼ e−γ/ log y as y → ∞, we have

PySy − PyS
′
y � 1

log y
.

Thus the limit in (3.1) exists if and only if limy→∞ PySy exists, in which case this
latter limit is also Δ.

For a prime q, we have Pq = Pq−1(1− 1
q ) and, for q > 2,

Sq − Sq−1 =
∑∗

P (a)<q

∑
i≥1

1

aqi
e−aqi/s(aqi) >

∑∗

P (a)<q

∑
i≥1

1

aqi
e−a/s(a) =

1

q − 1
Sq−1.

Thus,

PqSq > Pq−1

(
1− 1

q

)
Sq−1

(
1 +

1

q − 1

)
= Pq−1Sq−1.

Since PySy is always at most 1
2 , it follows that the limit in (3.1) exists and

(3.3) Δ = lim
y→∞

e−γ

log y

∑∗

a|Ay

1

a
e−a/s(a) = lim

y→∞

e−γ

log y

∑∗

P (a)≤y

1

a
e−a/s(a).

We would like to compute a numerical approximation to Δ, and it may seem that
the first expression in (3.3) is more easily computed than the second, since it involves
a finite sum while the latter involves an infinite sum. However, we claim the infinite
sum can be replaced with the sum over a ≤ y, while changing e−γ to 1. That is,

(3.4) Δ = lim
y→∞

1

log y

∑∗

a≤y

1

a
e−a/s(a).

The equation (3.4) may be proved as follows: Introduce a parameter z ≥ 2,
which will eventually be chosen as a slow-growing function of y. Define hz(n) =∑

d|n, 1<d≤z 1/d. For even a,

0 ≤ e−
a

s(a) − e−
1

hz(a) = e−
a

s(a)

(
1− e

1
s(a)/a

− 1
hz(a)

)
� e−

a
s(a)

(
s(a)

a
− hz(a)

)
.

Thus,

0 ≤
∑∗

a≤y

1

a
e−

a
s(a) −

∑∗

a≤y

1

a
e−

1
hz(a) �

∑∗

a≤y

1

a
e−

a
s(a)

∑
d|a
d>z

1

d

≤
∑
d>z

1

d

∑∗

a≤y
d|a

1

a
≤ log y

∑
d>z

1

d2
� 1

z
log y.(3.5)

A nearly identical computation gives

(3.6)
∑∗

P (a)≤y

1

a
e−a/s(a) −

∑∗

P (a)≤y

1

a
e−

1
hz(a) � 1

z
log y.
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Note that hz(a) = hz(gcd(a,Az)), and that when a is even, d = gcd(a,Az) is also
even. Hence, for all large y we have

∑∗

P (a)≤y

1

a
e−

1
hz(a) =

∑
d|Az

2|d

∑
P (a)≤y

gcd(a,Az)=d

1

a
e−

1
hz(d) =

∑
d|Az

2|d

e−
1

hz(d)

∑
P (a)≤y

d|a

1

a

∑
j|a/d
j|Az/d

μ(j)

=
∑
dj|Az

2|d

μ(j)e−
1

hz(d)

∑
P (a)≤y
dj|a

1

a
=

∑
dj|Az

2|d

μ(j)e−
1

hz(d)

dj

∑
P (a)≤y

1

a
.

Again almost identically, we have

∑∗

a≤y

1

a
e−

1
hz(d) =

∑
dj|Az

2|d

μ(j)

dj
e−

1
hz(d)

∑
a≤y/dj

1

a
.

By Mertens’ theorem (with the elementary error estimate shown in [43, Theorem
10, p. 17]),

1

log y

∑
P (a)≤y

1

a
=

eγ

log y

∑
a≤y

1

a
+O

(
1

log y

)
=

eγ

log y

∑
a≤y/dj

1

a
+O

(
log(dj) + 1

log y

)
.

Making this substitution, we find that

(3.7)

∣∣∣∣∣
e−γ

log y

∑∗

P (a)≤y

1

a
e−

1
hz(a) − 1

log y

∑∗

a≤y

1

a
e−

1
hz(a)

∣∣∣∣∣ �
1

log y

∑
dj|Az

log dj

dj
� (log z)3

log y
.

By choosing z = exp((log y)1/4), say, from (3.2), (3.5), (3.6), and (3.7), we see that∣∣∣∣∣
e−γ

log y

∑∗

a|Ay

1

a
e−a/s(a) − 1

log y

∑∗

a≤y

1

a
e−a/s(a)

∣∣∣∣∣ �
1

(log y)1/4
.

Thus, (3.4) follows. This completes the heuristic justification of Conjecture 1.4.

3.2. Computations. The following strategy was used to construct Table 1. Ex-
plicit computations on Goldbach’s conjecture have shown that every even number
in [8, 4 · 1018] is a sum of two distinct primes p and q (see [31]). Hence, 5 is the
only odd nonaliquot number up to 1018. In [39, §5], an algorithm is described that

enumerates the elements of s(N) ∩ [1, N ] in time Õ(N). We ran the algorithm to
N = 1010. We made one modification, necessitated by memory constraints: Instead
of using a 0-1 array to record which numbers had appeared so far, the even numbers
in the range of s were written to disk as they were found by the algorithm, and
sorted later with the GNU sort utility. The final data file required 36.1 GB.

On the computation of an approximation for Δ, this is straightforward using
(3.4) for large values of y. Note that Δ is effectively computable, since the above
calculations show that for each fixed integral value of z ≥ 2,

lim
y→∞

e−γ

log y

∑
dj|Az

2|d

μ(j)

dj
e−

1
hz(d)

∑
P (a)≤y

1

a
=

∑
dj|Az

2|d

μ(j)

dj
e−

1
hz(d)
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Table 4. Counts Uϕ(x) of numbers not in the range of sϕ(·) to
various heights x from 108 through 1010, along with the corre-
sponding densities Dϕ(x).

x Uϕ(x) Dϕ(x) x Uϕ(x) Dϕ(x)

100000000 11355049 0.1136 1000000000 113482572 0.1135
200000000 22718595 0.1136 2000000000 226723208 0.1134
300000000 34079552 0.1136 3000000000 339811983 0.1133
400000000 45433178 0.1136 4000000000 452815609 0.1132
500000000 56783449 0.1136 5000000000 565739195 0.1131
600000000 68129835 0.1135 6000000000 678597689 0.1131
700000000 79472816 0.1135 7000000000 791405364 0.1131
800000000 90811869 0.1135 8000000000 904168542 0.1130
900000000 102146368 0.1135 9000000000 1016908189 0.1130

10000000000 1129598504 0.1130

is within 4/z of Δ. We have not used this approach, but we record some interme-
diate values for the expression in (3.4) at y = 10j and 2 · 10j for 6 ≤ j ≤ 10:

106 : 0.166923, 2·106 : 0.167484, 107 : 0.168599, 2·107 : 0.169014, 108 : 0.169857,

2·108 : 0.170176, 109 : 0.170834, 2·109 : 0.171088, 1010 : 0.171617, 2·1010 : 0.171822.

3.3. A ϕ analogue. Let sϕ(n) = n − ϕ(n). As with s(n), partial results on
Goldbach’s conjecture imply that the range of sϕ(·) contains all odd numbers but
for a set of asymptotic density 0. Little is known about even values. In [19] Erdős
asks if a positive proportion of even numbers are of the form sϕ(n) and if a positive
proportion of even numbers are not of the form sϕ(n). The proof in [30] does give
a positive proportion of evens that are of the form sϕ(n), but the even numbers
not of this form remain an enigma. However, as with s(n) the problem is amenable
to calculation and heuristics. Let Uϕ(x) denote the number of integers in [1, x] not
of the form sϕ(n). By an analogous algorithm from [39], we have extended the
calculations of that paper 100-fold; see Table 4. The data file had 42.1 GB. (This
file is larger than the one with nonaliquots since there are more even numbers n
with sϕ(n) ≤ 1010 than there are with s(n) ≤ 1010.)

The conjectural density is

(3.8) Δϕ := lim
y→∞

1

log y

∑∗

a≤y

1

a
e−a/sϕ(a).

At y = 2 · 1010 this expression rounds to 0.090595. It is difficult to say if the actual
counts are supportive of the conjectural density Δϕ; the evidence is somewhat less
compelling than with the nonaliquots. At least the count densities seem to have
peaked and are now slowly descending, perhaps to the limit Δϕ. With both the
nonaliquots and the ϕ analogues, the heuristic is very much an “at infinity” type of
argument, while the counts are definitely very finite. It might be of some interest
to try to do a statistical sample of random numbers that are much larger than our
exhaustive counts, but it is not clear how one would decide if a given very large
number n is of the required form.
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Here are the intermediate calculations of the expression in (3.8) for various values
of y:

106 : 0.089193, 2·106 : 0.089353, 107 : 0.089673, 2·107 : 0.089791, 108 : 0.090033,

2·108 : 0.090124, 109 : 0.090312, 2·109 : 0.090385, 1010 : 0.090536, 2·1010 : 0.090595.

4. Primitive friendly pairs

We begin by collecting some results needed for the proof of Theorem 1.5. The
following lemma says that we have a strong bound on the number of solutions to
σ(n)
n = α, even if we specify only the denominator of α. For the proof of this result,

in a more precise form, see [32, Theorem 4.1].

Lemma 4.1. The number of n ≤ x for which σ(n)/n can be written as a fraction
with a given denominator d is at most xo(1), as x → ∞, uniformly in d ≤ x.

The next lemma is implicit in the proof of [23, Theorem 11]; for an explicit
statement and proof, see [32, Lemma 4.2].

Lemma 4.2. Let m be an integer in [1, x]. The number of integers n ∈ [1, x] for
which rad(n) | m is xo(1), as x → ∞, uniformly in m.

The next result, which was inspired by Erdős’s method of proof in [16], appears
as [35, Lemma 3.1].

Lemma 4.3. Given a natural number m, the following algorithm outputs a unitary
divisor a of m with gcd(a, σ(a)) = 1. Moreover, at most xo(1) inputs m ≤ x
correspond to the same output a, as x → ∞.

Algorithm A:

Input: A natural number m
Output: A divisor a of m for which a ‖ m and gcd(a, σ(a)) = 1
Factor m = pe11 pe22 · · · pekk , where p1 > p2 > · · · > pk.

a ← 1 // Initialize

for i = 1 to k do
if gcd(σ(peii a), peii a) = 1 then

a ← peii a
end

end

return a

Proof of Theorem 1.5. Suppose that n and n′ form a primitive friendly pair con-
tained in [1, x]. Write n = N1N2, where N1 is squarefree, N2 is squarefull, and
gcd(N1, N2) = 1. Define n2 and n3 by the equation N2 = n2n3, where n2 is the
output of Algorithm A when m = N2. Note that n2 and n3 are coprime squarefull
integers, since n2 is a unitary divisor of N2. Write

σ(n)

n
=

σ(n′)

n′ =
A

B
, where gcd(A,B) = 1,

and let U = rad(gcud(B, n2)). Define N ′
1, N

′
2, n

′
2, n

′
3, U

′ analogously, but now with
reference to n′ instead of n. Since gcud(n2, n

′
2) = 1, it follows that gcd(U,U ′) = 1.

With L = �log x�, choose θ1, θ2, θ3, δ ∈ { 1
L ,

2
L , . . . ,

L−1
L , 1} for which

N1 ∈ [e−1xθ1 , xθ1 ], n2 ∈ [e−1xθ2 , xθ2 ], n3 ∈ [e−1xθ3 , xθ3 ], and U ∈ [e−1xδ, xδ].
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Define θ′1, θ
′
2, θ

′
3, δ

′ analogously. Finally, choose θ ∈ { 1
L ,

2
L , . . . ,

L−1
L , 1} with

B ∈ [e−1xθ, xθ].

So, running over all of the L9 = xo(1) possibilities for the θi, the θ
′
i, δ, δ

′, and δ0, we
cover all possibilities for n, n′. Thus, it is enough to prove that the number of pairs
n, n′ corresponding to a given choice of these variables is bounded by x1/2+o(1), as
x → ∞. We will establish four upper bounds on the number of these pairs n, n′.
The theorem will follow by combining these upper bounds.

Our first upper bound uses that

(4.1) B2 | n2n3n
′
2n

′
3.

To prove this, write B = B1B2, where B1 is squarefree, B2 is squarefull, and
gcd(B1, B2) = 1. Since B divides n and n′, B2 | n2n3 and B2 | n′

2n
′
3, so that

B2
2 | n2n3n

′
2n

′
3. Now take a prime p | B1. Since n and n′ have no common unitary

divisor, p cannot exactly divide both n and n′. So either p2 | n2n3 or p2 | n′
2n

′
3.

Hence, B2
1 | n2n3n

′
2n

′
3 and (4.1) holds. By Lemma 4.3, given n2 there are only xo(1)

possibilities for n3. Similarly, n′
2 determines n′

3 in at most xo(1) ways. Thus, n2

and n′
2 determine the product n2n3n

′
2n

′
3 up to xo(1) possibilities. Now (4.1), along

with the maximal order of the divisor function, shows that n2 and n′
2 determine

B up to xo(1) possibilities. Invoking Lemma 4.1, n2, n
′
2 determine the pair n, n′ in

at most xo(1) ways. Since the number of squarefull numbers in [1, t] is O(t1/2), the
number of pairs is at most

(4.2) xθ2/2+θ′
2/2+o(1),

as x → ∞.
For a second upper bound, expanding the equation A

B = σ(N)
N , we find that

Bσ(N1)σ(n2)σ(n3) = AN1n2n3. Since gcd(n2, σ(n2)) = 1,

n2 | Bσ(N1)σ(n3), so that rad(n2) | U · σ(N1)σ(n3).

By Lemma 4.2, the number of possibilities for n = N1n2n3 is at most

(4.3) xδ+θ1+θ3/2+o(1).

By Wirsing’s theorem (or Lemma 4.1), this is also a bound on the number of
possibilities for the pair n, n′. A symmetric argument gives our third upper bound,

(4.4) xδ′+θ′
1+θ′

3/2+o(1).

To prove the fourth upper bound, note that since gcd(U,U ′) = 1, we have
U2U ′2 | B. Consequently, the number of possibilities for B is

�
∑

u1≥e−1xδ

u2≥e−1xδ′

xθ

u2
1u

2
2

� xθ−δ−δ′ .

By Lemma 4.1, the number of possibilities for the pair n, n′ is at most

(4.5) xθ−δ−δ′+o(1).

Taking the geometric mean of the four upper bounds (4.2), (4.3), (4.4), and (4.5),
the number of possibilities for the pair n, n′ does not exceed

(4.6) x
1
4 (θ1+θ′

1+
1
2 (θ2+θ′

2+θ3+θ′
3)+θ)+o(1).
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Since n = N1n2n3 ≤ x, we have θ1 ≤ 1 − θ2 − θ3 + o(1); similarly, θ′1 ≤ 1 − θ′2 −
θ′3 + o(1). From (4.1), 2θ ≤ θ2 + θ3 + θ′2 + θ′3 + o(1). Substituting these bounds for

θ1, θ
′
1 and θ into (4.6) gives a final upper bound of x

1
2+o(1), as x → ∞. �

4.1. Computations. To compile Table 2, for each n ≤ 10L, we found all solutions

m ≤ 10L with σ(n)
n = σ(m)

m , recording only those solutions m with gcud(m,n) = 1.
To find the values of m, we used the gp script solveBA of Michel Marcus (see [42]),
which was based on an earlier program by Jan Munch Pedersen. The script solveBA
uses a recursive algorithm to find all solutions n up to a given limit satisfying an

equation of the form σ(n)
n = A

B . The values of gcud(m,n) were computed using
Algorithm B3 below.

Algorithm B1:

Input: A natural number n and a divisor d of n
Output: The smallest D ‖ n with d | D
D ← d.
Iterate D �→ D · (D,n/D) until D stabilizes.
return D

Algorithm B2:

Input: A natural number n and a divisor d of n
Output: The largest D ‖ n with D | d
D ← d.
Iterate D �→ D/(D,n/D) until D stabilizes.
return D

Algorithm B3:

Input: Natural numbers m and n
Output: gcud(m,n)
d ← gcd(m,n)
d1 ← output of B1 with input d,m
d2 ← output of B1 with input d, n
d3 ← d1d2/d
return the output of B2 with the pair d, d3

5. The distribution function for F (n;x)

Define a friendly k-set as a set of k distinct integers all of which share the same

value of σ(n)
n , and call such a set primitive if there is no d > 1 that is a unitary

divisor of each element. The proof of Theorem 1.6 will use the following crude
upper bound on the count of primitive friendly k-sets.

Lemma 5.1. Fix k ≥ 2. The number of primitive friendly k-sets contained in [1, x]

is at most x1− 1
k+1+o(1), as x → ∞.

When k = 2, Lemma 5.1 gives an upper bound of x2/3+o(1), which is inferior
to the result of Theorem 1.5. However, the proof of Lemma 5.1 is substantially
simpler.
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Proof. List the elements of the set as n1, . . . , nk. Write the common value of σ(ni)
ni

as A
B in lowest terms. If rad(B) ≤ x1− 1

k+1 , then there are at most x1− 1
k+1+o(1)

possible values of B, by Lemma 4.2, and so also at most x1− 1
k+1+o(1) possibilities

for the k-set, by Lemma 4.1. So we suppose that rad(B) > x1− 1
k+1 .

Let p be a prime dividing B. Then p divides each ni. Since n1, . . . , nk is primitive
friendly, it is impossible for p to exactly divide each ni. Thus, if N = n1 · · ·nk,
then rad(B)k+1 | N . Hence, the number of possibilities for the integer N ≤ xk is
at most ∑

r>x
1− 1

k+1

xk

rk+1
� x1− 1

k+1 .

From the maximal order of the k-fold divisor function, N determines the set
{n1, . . . , nk} in at most xo(1) ways. The result follows. �

Proof of Theorem 1.6. We may assume k ≥ 1, since when k = 0 the asymptotic
claimed in the theorem holds with α0 = 1. We begin by placing each primitive
(k + 1)-set in increasing order, n0 < n1 < · · · < nk. We then list the primitive
(k+ 1)-sets in increasing order of nk, breaking ties arbitrarily. Say the jth tuple is
labeled as n0,j , . . . , nk,j . Put

Mi,j(x) := {dni,j : 1 ≤ d ≤ x/nk,j and gcd(d,

k∏

=0

n
,j) = 1},

and observe that a natural number m ≤ x has at least k friends in [1, x] if and only
if m belongs to one of the sets Mi,j(x). For each J ≥ 1, put

α
(J)
k = lim

x→∞

1

x
·#

⋃
1≤j≤J
0≤i≤k

Mi,j(x).

The existence of the limit follows from inclusion–exclusion. (Each finite intersection
of the sets Mi,j(x) can be described as the set of numbers not exceeding a certain

constant multiple of x that satisfy certain congruence conditions.) The α
(J)
k are

weakly increasing in J and bounded by 1; thus, it makes sense to set

αk = lim
J→∞

α
(J)
k .

Clearly, lim infx→∞ Nk(x)/x ≥ αk. We now show that lim supx→∞ Nk(x)/x ≤ αk.
If m ≤ x has at least k friends in [1, x], but m 
∈

⋃
1≤j≤J
0≤i≤k

Mi,j(x), then m ∈

Mi,j(x) for some j > J . Since #Mi,j(x) ≤ x
nk,j

, the number of these m ≤ x is at

most

(k + 1)x ·
∑
j>J

1

nk,j
.

We now study the sum on j. Without the restriction to j > J , the sum converges
(or is a finite sum). Indeed, from Lemma 5.1, the contribution to the unrestricted

sum from those j with X ≤ nk,j < 2X is bounded by X− 1
k+2+o(1), as X → ∞; the

desired result now follows upon summing X along the powers of 2. So with the
restriction to j > J , the series decays to 0 as J → ∞. Letting x → ∞ and then
J → ∞, in that order, we get that lim supx→∞ Nk(x)/x ≤ αk.
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It remains to prove that αk → 0. Since k · Nk(x) ≤
∑

n≤x F (n;x), Erdős’s

estimate (1.2) shows that αk � 1/k. �

Remark.

(i) A similar argument to the one just seen will show that each positive integral
moment 1

x

∑
n≤x F (n;x)k tends to a finite limit as x → ∞. Here one uses

that F (n;x)k can be viewed as the count of (ordered) friendly (k+1)-tuples
in [1, x] having final element n and all other elements distinct from n. As
a consequence, the αk tend to zero more rapidly than any power of k−1.

(ii) The computations of Ni(x), i = 1, . . . , 4, reported in Table 3 were made
with the aforementioned solveBA script.

We do not know how to show that each αk is nonzero. This is equivalent to the

assertion that the count of natural numbers n with σ(n)
n = α is unbounded in α, a

conjecture mentioned already in [19]. Note that this conjecture would follow from
the infinitude of perfect numbers. Since the αk may eventually vanish, we cannot
show that the αk are strictly decreasing. However, we can prove that the sequence
is strictly decreasing until it hits zero.

Theorem 5.2. If αk > 0, then αk > αk+1.

Proof. Since αk > 0, there are examples of friendly (k + 1)-sets. (When k = 0, we
consider every singleton subset of the natural numbers to be a friendly (k+1)-set.)
Fix such a set {n0 < n1 < · · · < nk} once and for all, chosen to have nk as small as
possible. This set is automatically primitive. Every integer of the form m = dnk,
with d ≤ x/nk and gcd(d, n0 · · ·nk) = 1, has at least k friends in [1, x]. It suffices
to show that � x values of d give rise to an m with exactly k friends in [1, x].

Sort all of the primitive friendly (k + 2)-sets in increasing order, and then list
the sets in order of their largest entry. Say the jth set consists of n0,j < n1,j <
· · · < nk+1,j . With J a large, fixed integer to be chosen later, we restrict attention
to d satisfying

(5.1)
x

nk + 1
< d ≤ x

nk
and d ≡ 1 (mod

k∏
i=0

ni

∏
0≤i≤k+1
1≤j≤J

ni,j).

Let MJ be the modulus of this congruence. For large x, there are � x/MJ values of
d satisfying (5.1). (The implied constant also depends on k and the set {n0, . . . , nk},
but since these parameters are fixed, we ignore this in our notation.) We now show
that for most of these d, the integer M = dnk has exactly k friends in [1, x].

If m = dnk has at least k + 1 friends in [1, x], then for some j,

dnk = d′ni,j , where d′ ≤ x/nk+1,j and gcd(d′,
k+1∏

=0

n
,j) = 1.

In particular, ni,j | dnk. Suppose to begin with that j ≤ J . Then gcd(ni,j , d) = 1
from (5.1), and so ni,j | nk. Putting e = nk/ni,j ,

d′ = de ≤ x

nk+1,j
, so that d ≤ x

e · nk+1,j
≤ x

nk+1,j
.

Since n0,j , . . . , nk,j are in increasing order and make up a friendly (k + 1)-set, we
have nk+1,j > nk,j ≥ nk, by the initial choice of nk. Hence, nk+1,j ≥ nk + 1, and
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so this last upper bound on d contradicts (5.1). So we must have j > J . From
dnk = d′ni,j and gcd(d,MJ) = 1, we see that gcd(ni,j ,MJ) | nk. In particular,
gcd(ni,j ,MJ ) � 1. Using dnk = d′ni,j and (5.1), we see that d′ belongs to a fixed
residue class modulo nKMJ/ gcd(ni,j , nKMJ ). The number of these d′ ≤ x/nk+1,j

is at most

x
gcd(ni,j , nkMJ )

nkMJ · nk+1,j
+ 1 � x

MJ · nk+1,j
+ 1.

Hence, the number of m = dnk with d satisfying (5.1) that have at least k + 1
friends in [1, x] is

�
k+1∑
i=0

∑
j>J

nk+1,j≤x

(
x

MJ · nk+1,j
+ 1

)
.

Since the sum on j is only over j > J , and since we can take J arbitrarily large,
the main term here can be made smaller than any constant multiple of x/MJ , by
the same argument used in the proof of Theorem 1.6. The error term is bounded
by a power of x less than 1, by Lemma 5.1. So fixing J large enough, we have that
for large x, there are � x/MJ � x values of d satisfying (5.1) for which m = dnk

has exactly k friends in [1, x], as desired. �

6. Some final remarks

In the paper [17], which inspired our work above on friendly pairs, Erdős writes
“I would like to call attention to three simple problems which as far as I know are
still unsolved”. The problems are:

• Are there infinitely many solutions to the equation σ(n) = ϕ(m)?
• For each real number c ≥ 1, is there an infinite sequence of pairs mk, nk

with σ(mk) = σ(nk) and mk/nk → c as k → ∞?
• If g(x) is the number of coprime pairs a, b with a < b ≤ x and σ(a) = σ(b),
do we have g(x)/x → ∞ as x → ∞?

We note that the first two problems have been recently solved in the affirmative
(see [24], [34]), and the third was “almost” solved in the affirmative (solved without
the coprimality condition) in 1980 (see [37]). It seems fitting to close this paper
with a complete proof of the third problem.

Following an idea of Erdős [14], say θ > 1 is such that there are yθ/(log y)O(1)

primes p ≤ yθ with P (p+ 1) ≤ y. Let x be large, let y = log x, let S be the set of
primes p ≤ yθ with P (p+1) ≤ y, let n = #S , and let k = �log x/ log(yθ)�. Consider
integers a which are the product of k distinct primes in S . Since

(
n
k

)
= x1−1/θ+o(1),

as x → ∞, there are x1−1/θ+o(1) of these integers a ≤ x, each with P (σ(a)) ≤ y.
But, as was shown by Erdős (see [11]), the number of integers to x not divisible
by any prime > y is xo(1). Hence, there is one value v such that σ(a) = v has
x1−1/θ+o(1) solutions a ≤ x, as x → ∞. It follows that there are x2−2/θ+o(1) pairs
a < b ≤ x with σ(a) = σ(b).

This would solve the third problem above if we had θ > 2 and if the pairs a, b
created were coprime. We know from [37] that θ > 2, the current record being a
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number slightly larger than 3.377; see [4]. Let ε > 0 be fixed but arbitrarily small,
and let k0 = �(1 − ε)k�. The number of pairs a, b which reduce to a coprime pair
a′, b′ with ω(a′) = ω(b′) = j is at most

(
n

j

)2(
n

k − j

)
.

Summing this for j ≤ k0 gives x
2−2/θ−(1−1/θ)ε+o(1). Thus, almost all of our pairs a, b

reduce to a pair a′, b′ where ω(a′) = ω(b′) > k0. In fact, there is some j0 ∈ (k0, k]
where x2−2/θ+o(1) pairs a, b reduce to coprime pairs a′, b′ with ω(a′) = ω(b′) = j0.
Each of these pairs comes from at most

(
n

k−j0

)
≤ x(1−1/θ)ε+o(1) pairs a, b, so there

must be at least x(2−ε)(1−1/θ)+o(1) coprime pairs a′, b′ ≤ x with σ(a′) = σ(b′). If ε
is sufficiently small, we see that g(x) > x1.4 for all sufficiently large values of x.
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[14] P. Erdős, On the normal number of prime factors of p − 1 and some related problems con-

cerning Euler’s ϕ-function, Q. J. Math., Oxford Ser. 6 (1935), 205–213.
[15] P. Erdös, On amicable numbers, Publ. Math. Debrecen 4 (1955), 108–111. MR0069198
[16] P. Erdös, On perfect and multiply perfect numbers, Ann. Mat. Pura Appl. (4) 42 (1956),

253–258. MR0082516
[17] P. Erdős, Remarks on number theory. II. Some problems on the σ function, Acta Arith. 5

(1959), 171–177. MR0107623
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