A NOTE ON CARMICHAEL NUMBERS IN RESIDUE CLASSES

Carl Pomerance
Mathematics Department, Dartmouth College, Hanover, NH, USA
carlp@math.dartmouth.edu

Received:, Revised:, Accepted: , Published:

Abstract

Improving on some recent results of Matomäki and of Wright, we show that the number of Carmichael numbers to X in a coprime residue class exceeds $X^{1 /(6 \log \log \log X)}$ for all sufficiently large X depending on the modulus of the residue class.

In memory of Ron Graham (1935-2020)
and Richard Guy (1916-2020)

1. Introduction

The "little theorem" of Fermat asserts that when p is a prime number, we have $b^{p} \equiv b(\bmod p)$ for all integers b. Given two integers b, p with $p>b>0$, it is computationally easy to check this congruence, taking $O(\log p)$ arithmetic operations in $\mathbb{Z} / p \mathbb{Z}$. So, if the congruence is checked and we find that $b^{p} \not \equiv b(\bmod p)$ we immediately deduce that p is composite. Unfortunately there are easily found examples where n is composite and the Fermat congruence holds for a particular b. For example it always holds when $b=1$. It holds when $b=2$ and $n=341$, and another example is $b=3, n=91$. In fact, there are composite numbers n where $b^{n} \equiv b(\bmod n)$ holds for all b, the least example being $n=561$. These are the Carmichael numbers, named after R. D. Carmichael who published the first few examples in 1910, see [4]. (Interestingly, Simerka published the first few examples 25 years earlier, see [8].)

We now know that there are infinitely many Carmichael numbers, see [1], the number of them at most X exceeding X^{c} for a fixed $c>0$ and X sufficiently large.

A natural question is if a given residue class contains infinitely many Carmichael numbers. After work of Matomäki [7] and Wright [9], we now know there are infinitely many in a coprime residue class. More precisely, we have the following
two theorems. Let

$$
C_{a, M}(X)=\#\{n \leq X: n \text { is a Carmichael number, } n \equiv a(\bmod M)\}
$$

Theorem M (Matomäki). Suppose that a, M are positive coprime integers and that a is a quadratic residue $\bmod M$. Then $C_{a, M}(X) \geq X^{1 / 5}$ for X sufficiently large depending on the choice of M.

Theorem W (Wright). Suppose that a, M are positive coprime integers. There are positive numbers K_{M}, X_{M} depending on the choice of M such that $C_{a, M}(X) \geq$ $X^{K_{M} /(\log \log \log X)^{2}}$ for all $X \geq X_{M}$.

Thus, Wright was able to remove the quadratic residue condition in Matomäki's theorem but at the cost of lowering the count to an expression that is of the form $X^{o(1)}$. The main contribution of this note is to somewhat strengthen Wright's bound.

Theorem 1. Suppose that a, M are positive coprime integers. Then $C_{a, M}(X) \geq$ $X^{1 /(6 \log \log \log X)}$ for all sufficiently large X depending on the choice of M.

That is, we reduce the power of $\log \log \log X$ to the first power and we remove the dependence on M in the bound, though there still remains the condition that X must be sufficiently large depending on M. (It's clear though that such a condition is necessary since if $M>X$ and $a=1$, then there are no Carmichael numbers $n \leq X$ in the residue class $a \bmod M$.)

Our proof largely follows Wright's proof of Theorem W, but with a few differences.

Unlike with primes, it is conceivable that a non-coprime residue class contains infinitely many Carmichael numbers, e.g., there may be infinitely many that are divisible by 3 . This is unknown, but seems likely. Let $\lambda(n)$ denote the universal exponent of the group $(\mathbb{Z} / n \mathbb{Z})^{*}$ (so that a composite number n is a Carmichael number if and only if $\lambda(n) \mid n-1)$. For a residue class $a(\bmod M)$, let $g=\operatorname{gcd}(a, M)$ and let $h=\operatorname{gcd}(\lambda(2 g), M)$. A necessary condition that there is a Carmichael number $n \equiv a(\bmod M)$ is that $h \mid a-1$. I conjecture that if this condition holds then there are infnitely many Carmichael numbers $n \equiv a(\bmod M)$. (This modifies a similar conjecture in [3].) Though we don't know this for any example with $g>1$, the old heuristic of Erdős [5] suggests that $C_{a, M}(X) \geq X^{1-o(1)}$ as $X \rightarrow \infty$.

2. Proof of Theorem 1

There is an elementary and easily-proved criterion for Carmichael numbers: a composite number n is one if and only if it is squarefree and $p-1 \mid n-1$ for each prime
p dividing n. This is due to Korselt, and perhaps others, and is over a century old. In our construction we will have a number L composed of many primes, a number k coprime to L that is not much larger than L, and primes p of the form $d k+1$ where $d \mid L$. We will show there are many $n \equiv a(\bmod M)$ that are squarefree products of the p 's and are $1(\bmod k L)$. Such n, if they involve more than a single p, will satisfy Korselt's criterion and so are therefore Carmichael numbers.

We may assume that $M \geq 2$. Let $\mu=\varphi(4 M)$, so that $4 \mid \mu$. Let y be an independent variable; our other quantities will depend on it. For a positive integer n let $P(n)$ denote the largest prime factor of n (with $P(1)=1$), and let $\omega(n)$ denote the number of distinct prime factors of n.

Let

$$
\mathcal{Q}_{0}=\left\{q \text { prime }: y<q \leq y \log ^{2} y, q \equiv-1(\bmod \mu), P(q-1) \leq y\right\}
$$

If $q \leq y \log ^{2} y$ and $P(q-1)>y$, then q is of the form $m r+1$, where $m<\log ^{2} y$ and r is prime. By Brun's sieve (see $[6,(6.1)]$), the number of such primes q is at most

$$
\sum_{m<\log ^{2} y} \sum_{\substack{r \text { prime }^{m r \leq y \log ^{2} y} \\ r m+1 \text { prime }^{2}}} 1 \ll \sum_{m<\log ^{2} y} \frac{y \log ^{2} y}{\varphi(m) \log ^{2} y} \ll y \log \log y
$$

Also, the number of primes $q \leq y \log ^{2} y$ with $q \equiv-1(\bmod \mu)$ is $\sim \frac{1}{\varphi(\mu)} y \log y$ as $y \rightarrow \infty$ by the prime number theorem for residue classes. We conclude that

$$
\begin{equation*}
\# \mathcal{Q}_{0} \sim \frac{1}{\varphi(\mu)} y \log y \text { and } \prod_{q \in \mathcal{Q}_{0}} q=\exp \left(\frac{1+o(1)}{\varphi(\mu)} y \log ^{2} y\right), \quad y \rightarrow \infty \tag{1}
\end{equation*}
$$

We also record that

$$
\begin{equation*}
\sum_{q \in \mathcal{Q}_{0}} \frac{1}{q}=o(1), \quad y \rightarrow \infty \tag{2}
\end{equation*}
$$

since this holds for all of the primes in the interval $\left(y, y \log ^{2} y\right]$.
Fix $0<B<5 / 12$; we shall choose a numerical value for B near to $5 / 12$ at the end of the argument. Let

$$
\begin{equation*}
x=M^{1 / B} \prod_{q \in \mathcal{Q}_{0}} q^{1 / B} \tag{3}
\end{equation*}
$$

It follows from $[1,(0.3)]$ that there is an absolute constant D and a set $\mathcal{D}(x)$ of at most D integers greater than $\log x$, such that if $n \leq x^{B}, n$ is not divisible by any member of $\mathcal{D}(x), b$ is coprime to n, and $z \geq n x^{1-B}$, then the number of primes $p \leq z$ with $p \equiv b(\bmod n)$ is $>\frac{1}{2} \pi(z) / \varphi(n)$.

For each number in $\mathcal{D}(x)$ we choose a prime factor and remove this prime from \mathcal{Q}_{0} if it happens to be there. Let L be the product of the primes in the remaining
set \mathcal{Q}, so that L is not divisible by any member of $\mathcal{D}(x)$, and \mathcal{Q} satisfies (1) and (2). In particular,

$$
\begin{align*}
L= & \exp \left(\frac{1+o(1)}{\varphi(\mu)} y \log ^{2} y\right), \quad \omega(L) \sim \frac{1}{\varphi(\mu)} y \log y \\
& \text { and } \sum_{q \mid L} \frac{1}{q}=o(1) \text { as } y \rightarrow \infty \tag{4}
\end{align*}
$$

In addition, we have $M L \leq x^{B}$.
For each $d \mid L$ and each quadratic residue $b(\bmod L / d)$ we consider the primes

- $p \leq d x^{1-B}$,
- $p \equiv a(\bmod M)$,
- $p \equiv 1(\bmod d)$,
- $p \equiv b(\bmod L / d)$.

Since M is coprime to L, the congruences may be glued to a single congruence modulo $M L$, and the number of such primes p is

$$
>\frac{\pi\left(d x^{1-B}\right)}{2 \varphi(M L)}>\frac{d x^{1-B}}{3 \varphi(M L) \log x}
$$

for y sufficiently large.
We add these inequalities over the various choices of b, the number of which is $\varphi(L / d) / 2^{\omega(L / d)}$, so the number of primes p corresponding to $d \mid L$ is

$$
>\frac{d x^{1-B} 2^{\omega(d)}}{3 \cdot 2^{\omega(L)} \varphi(M d) \log x}
$$

We wish to impose an additional restriction on these primes p, namely that $\operatorname{gcd}((p-$ $1) / d, L)=1$. For a given prime $q \mid L$ the number of primes p just counted and for which $q \mid(p-1) / d$ is, via the Brun-Titchmarsh inequality,

$$
\ll \frac{d x^{1-B} 2^{\omega(d)}}{2^{\omega(L)} q \varphi(M d) \log (x /(q M L))} \ll \frac{d x^{1-B} 2^{\omega(d)}}{2^{\omega(L)} q \varphi(M d) \log x} .
$$

Summing this over all $q \mid L$ and using that $\sum_{q \mid L} 1 / q=o(1)$, these primes p are seen to be negligible. It follows that for y sufficiently large, there are

$$
>\frac{d x^{1-B} 2^{\omega(d)}}{2^{\omega(L)+2} \varphi(M d) \log x}>\frac{x^{1-B} 2^{\omega(d)}}{2^{\omega(L)+2} \varphi(M) \log x}
$$

primes $p \leq d x^{1-B}$ with $p \equiv 1(\bmod d), \operatorname{gcd}((p-1) / d, L)=1, p \equiv a(\bmod M)$, and p is a quadratic residue $(\bmod L)($ noting that $1(\bmod d)$ is a quadratic residue $(\bmod d))$.

For each pair p, d as above, we map it to $(p-1) / d$ which is an integer $\leq x^{1-B}$ coprime to L. The number of pairs p, d is

$$
>\frac{x^{1-B}}{2^{\omega(L)+2} \varphi(M) \log x} \sum_{d \mid L} 2^{\omega(d)}=\frac{x^{1-B} 3^{\omega(L)}}{2^{\omega(L)+2} \varphi(M) \log x}
$$

We conclude that there is a number $k \leq x^{1-B}$ coprime to L which has more than $(3 / 2)^{\omega(L)} /(4 \varphi(M) \log x)$ representations as $(p-1) / d$. Let \mathcal{P} be the set of primes $p=d k+1$ that arise in this way. Then

$$
\begin{equation*}
\# \mathcal{P}>\frac{(3 / 2)^{\omega(L)}}{4 \varphi(M) \log x} \tag{5}
\end{equation*}
$$

For a finite abelian group G, let $n(G)$ denote Davenport's constant, the least number such that in any sequence of group elements of length $n(G)$ there is a non-empty subsequence with product the group identity. It is easy to see that $n(G) \geq \lambda(G)$ (the universal exponent for G), and in general it is not much larger: $n(G) \leq \lambda(G)(1+\log (\# G))$. This result is essentially due to van Emde BoasKruyswijk and Meshulam, see [1].

Let G be the subgroup of $(\mathbb{Z} / k M L \mathbb{Z})^{*}$ of residues $\equiv 1(\bmod k)$. We have $\# G \leq$ $M L$. Also, $\lambda(G) \leq M \lambda(L)$. (Note that, as usual, we denote $\lambda\left((\mathbb{Z} / L \mathbb{Z})^{*}\right)$ by $\lambda(L)$. It is the lcm of $q-1$ for primes $q \mid L$, using that L is squarefree.) Each prime dividing $\lambda(L)$ is at most y and each prime power dividing $\lambda(L)$ is at most $y \log ^{2} y$, so that

$$
\lambda(L) \leq\left(y \log ^{2} y\right)^{\pi(y)}
$$

Thus, for large y, using (4),

$$
\begin{equation*}
n(G) \leq M\left(y \log ^{2} y\right)^{\pi(y)} \log (M L) \leq e^{2 y} \tag{6}
\end{equation*}
$$

For a sequence A of elements in a finite abelian group G, let A^{*} denote the set of nonempty subsequence products of A. In Baker-Schmidt [2, Proposition 1] it is shown that there is a number $s(G)$ such that if $\# A \geq s(G)$, then G has a nontrivial subgroup H such that $(A \cap H)^{*}=H$. Further,

$$
s(G) \leq 5 \lambda(G)^{2} \Omega(\# G) \log (3 \lambda(G) \Omega(\# G))
$$

where $\Omega(m)$ is the number of prime factors of m counted with multiplicity. Thus, with G the group considered above, we have

$$
s(G) \leq e^{2.5 y}
$$

for y sufficiently large.
It is this theorem that Matomäki and Wright use in their papers on Carmichael numbers. The role of the sequence A is played by \mathcal{P}, the set of primes constructed
above of the form $d k+1$ where $d \mid L$. So, if $\# \mathcal{P}>s(G)$ we are guaranteed that every member of a nontrivial subgroup H of G is represented by a subset product of $\mathcal{P} \cap H$.

We don't know precisely what this subgroup H is, but we do know that it is nontrivial and that it is generated by members of \mathcal{P}. Well, suppose p_{0} is in $\mathcal{P} \cap H$. Then $p_{0}^{m} \in H$ for every integer m. Note that by construction, $\operatorname{gcd}(\lambda(L) / 2, \varphi(M))=$ 1 , so there is an integer $m \equiv 1(\bmod \varphi(M))$ and $m \equiv 0(\bmod \lambda(L) / 2)$. Further, since p_{0} is a quadratic residue $(\bmod L)$, it follows that $p_{0}^{\lambda(L) / 2} \equiv 1(\bmod L)$. Thus, $p_{0}^{m} \equiv 1(\bmod L)$ and $p_{0}^{m} \equiv a(\bmod M)($ since $m \equiv 1(\bmod \varphi(M))$.

Thus, there is a subsequence product n of \mathcal{P} that is $1(\bmod k L)$ and $a(\bmod M)$. (Note that every member of G is $1(\bmod k)$.) Further, n is squarefree and for each prime factor p of n we have $p-1 \mid k L$. Since $n \equiv 1(\bmod k L)$ we have $p-1 \mid n-1$. Thus, $n \equiv a(\bmod M)$ is either a prime or a Carmichael number.

We actually have many subsequence products n of \mathcal{P} that satisfy these conditions, and \mathcal{P} has at most one element that is $1(\bmod L)$, so we do not need to worry about the case that n is prime. We let $t=\left\lceil e^{3 y}\right\rceil$, so that $t>s(G)$. As shown in [7], [9], the Baker-Schmidt result implies that \mathcal{P} has at least

$$
N:=\binom{\# \mathcal{P}-n(G)}{t-n(G)} /\binom{\# \mathcal{P}-n(G)}{n(G)}
$$

subsequence products n of length at most t which are Carmichael numbers in the residue class $a(\bmod M)$. Thus,

$$
\begin{aligned}
N & >\left(\frac{\# \mathcal{P}-n(G)}{t-n(G)}\right)^{t-n(G)}(\# \mathcal{P})^{-n(G)} \\
& >\left(\frac{\# \mathcal{P}}{t}\right)^{t-n(G)}(\# \mathcal{P})^{-n(G)}>(\# \mathcal{P})^{t-2 n(G)} t^{-t}
\end{aligned}
$$

Let $X=x^{t}$. Since each $p \in \mathcal{P}$ has $p \leq x$, it follows that all of the Carmichael numbers constructed above are at most X. Using (1), (3), and (6), we have

$$
X=\exp \left(\frac{1 / B+o(1)}{\varphi(\mu)} t y \log ^{2} y\right)
$$

and using (5) and (4) gives

$$
\begin{aligned}
N & \geq \exp \left(\frac{\log (3 / 2)+o(1)}{\varphi(\mu)} t y \log y-t \log t\right) \\
& =\exp \left(\frac{\log (3 / 2)+o(1)}{\varphi(\mu)} t y \log y\right)
\end{aligned}
$$

Thus, $N \geq X^{(B \log (3 / 2)+o(1)) / \log y}$. Now,

$$
\log X \sim \frac{1}{B \varphi(\mu)} t y \log ^{2} y
$$

so that using $t=\left\lceil e^{3 y}\right\rceil$,

$$
\log \log X=3 y+O(\log y), \quad \log \log \log X=\log y+O(1)
$$

We thus have $N \geq X^{(B \log (3 / 2)+o(1)) / \log \log \log X}$. The number $B<5 / 12$ can be chosen arbitrarily close to $5 / 12$ and since $(5 / 12) \log (3 / 2)>1 / 6$, the theorem is proved.

References

[1] W. R. Alford, A. Granville, and C. Pomerance, There are infinitely many Carmichael numbers, Ann. of Math. (2) 139 (1994), 703-722.
[2] R. C. Baker and W. M. Schmidt, Diophantine problems in variables restricted to the values 0 and 1, J. Number Theory 12 (1980), 460-486.
[3] W. D. Banks and C. Pomerance, On Carmichael numbers in arithmetic progressions, J. Aust. Math. Soc. 28 (2010), 313-321.
[4] R. D. Carmichael, A new number-theoretic function, Bull. Amer. Math. Soc. (N.S.) 16 (1910), 232-238.
[5] P. Erdős, On pseudoprimes and Carmichael numbers, Publ. Math. Debrecen 4 (1956), 201206.
[6] H. Halberstam and H.-E. Richert, Sieve Methods, London Mathematical Society Monographs, No. 4. Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], London-New York, 1974.
[7] K. Matomäki, Carmichael numbers in arithmetic progressions, J. Aust. Math. Soc. 94 (2013), 268-275.
[8] V. Šimerka, Zbytky z arithmetické posloupnosti. (Czech) [On the remainders of an arithmetic progression]. Časopis pro pěstování mathematiky a fysiky, 14 (1885), 221-225.
[9] T. Wright, Infinitely many Carmichael numbers in arithmetic progressions, Bull. Lond. Math. Soc. 45 (2013), 943-952.

