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Carmichael’s function λ(n) is related to Euler’s function ϕ(n).

Concisely,

ϕ(n) is the order of the group (Z/nZ)×,

while

λ(n) is the exponent of the group (Z/nZ)×.

That is,

λ(n) is the order of the largest cyclic subgroup of (Z/nZ)×.
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In formulas, we have for a prime power pa that

ϕ(pa) = (p− 1)pa−1,

and

λ(pa) =

ϕ(pa), if p > 2 or a < 3,
1
2ϕ(pa), if p = 2 and a ≥ 3.

Further,

ϕ(n) =
∏
pa‖n

ϕ(pa), λ(n) = lcm[λ(pa) : pa‖n].
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For such important and ubiquitous functions, it would seem

good to be able to say something interesting about their

ranges.
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Let Vf(x) denote the number of values of the nunction f(n)

that lie in [1, x].

In 1935, Paul Erdős showed that

Vϕ(x) =
x

(logx)1+o(1)
, x→∞.

After subsequent work by Erdős & Hall, Maier & P, and Ford,

we now know the true order of magnitude of Vϕ(x), but we still

don’t have an asymptotic formula, nor do we know for example

that Vϕ(2x)/Vϕ(x)→ 2 as x→∞.
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However, we know much less about Vλ(x). Clearly

Vλ(x) ≥ (1 + o(1))
x

logx
, x→∞,

since λ(p) = p− 1 for p prime.

In a paper from 1991 by Erdős, P, & Schmutz it was shown

that there is a positive number c such that

Vλ(x) ≤
x

(logx)c
, for all large x.

In particular, the range of λ has asymptotic density 0.
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The proof of this theorem uses a result of Erdős & Wagstaff

proved in a paper of theirs on Bernoulli numbers. A lemma in

that paper:

There is a positive constant c such that for 2 ≤ y ≤ x, the

number of integers n ∈ [1, x] divisible by some p− 1, where

p ≥ y is prime, is O(x/(log y)c).

We apply this with y = x1/ log logx, say. Suppose λ(n) ≤ x. If

this number is not divisible by any p− 1 with p ≥ y, then n is

not divisibly by any p ≥ y, so that λ(n) has only primes at most

y. Standard estimates give that this set of numbers in [1, x] has

at most O(x/ logx) elements. And if a value is divisible by

some p− 1 with p ≥ y, this puts the values in a set of

cardinality O(x/(log y)c) = x/(logx)c+o(1).
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In a 2007 paper, Luca & Friedlander showed that

Vλ(x) ≤
x

(logx)c0+o(1)
, c0 = 1− (e log 2)/2 = 0.05791 . . . .

However, this can be improved to

Vλ(x) ≤
x

(logx)c1+o(1)
, c1 = 1−(1+log log 2)/ log 2 = 0.08607 . . . ,

(Luca & P). The exponent c1 is known as the

Erdős–Ford–Tenenbaum constant: Erdős showed in 1960 that

the number of distinct entries in the N ×N multiplication table

is N2/(logN)c1+o(1), a result subsequently refined by

Tenenbaum and later by Ford.
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A heuristic argument can be fashioned to suggest that

Vλ(x) =
x

(logx)c1+o(1)
,

(thanks to Granville for a helpful conversation regarding this).

So, this focuses attention then on the lower bound for Vλ(x).

In 2006, Banks, Luca, Friedlander, Pappalardi, & Shparlinski
“almost” showed that

Vλ(x)� Vϕ(x),

but even all-the-way showing this does not give a lower bound
of the shape

Vλ(x) ≥
x

(logx)c
, for some c < 1.
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Our principal new result (Luca & P):

There is a number c with 0 < c < 1 such that

Vλ(x) ≥
x

(logx)c
, for x large.

It is a little unclear what the best (smallest) c can be gotten by

our method. We have the details more-or-less written down for

c = 5/8. The abstract for this talk announced that the result

could be proved for c = 3/5. In preparing these slides, more

careful estimates get c below 1/2 down to about 0.457041.

There is another strategy that can be tried . . . . (Note that

this talk is a “preliminary report”!)
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How do we create many distinct values of λ(n)? We

concentrate on numbers n of the form pq where p < q are

primes.

Wait a second: the number of integers pq ≤ x is about

x(log logx)/ logx, so how could this help?

Well, it is not pq ≤ x that we are considering, but rather

λ(pq) = [p− 1, q − 1] ≤ x. Thus, we are counting distinct

integers of the form abd ≤ x where gcd(a, b) = 1, ad+ 1 = p is

prime, and bd+ 1 = q is prime. Let r(n) be the number of such

representations of n as abd. Then, by Cauchy–Schwarz,

Vλ(x) ≥

(∑
n≤x r(n)

)2

∑
n≤x r(n)2 .
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Vλ(x) ≥

(∑
n≤x r(n)

)2

∑
n≤x r(n)2 .

By choosing conditions for a, b, d well we can limit the size of

the denominator without sacrificing too much in the

numerator, and so get a decent lower bound for Vλ(x).
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For example, one choice of conditions that works fairly well:

Choose y = exp((logx)α), where 0 < α < 1 and

p = ad+ 1 ∈ (y1/2, y]. Choose p so that p− 1 = ad has about

log log y prime factors. Choose d | p− 1 so that d <
√
p and d

has about δ log log y prime factors. And choose b so that

bd ≤ x/a, bd+ 1 is prime, and b has about log log y prime factors

in [1, y]. Then, compute like crazy and find that an optimal

choice for α is near 0.787 and an optimal choice for δ is near

0.542. This gives an estimate greater than x/(logx)1/2 for a

lower bound for Vλ(x).

The idea we will try next is to take p with p− 1 having close to

β log log y prime factors, where β is not necessarily 1, and

similarly taking b with about γ log log y prime factors. Fine

tuning will yield perhaps a larger lower bound for Vλ(x).
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THANK YOU
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MAHALO
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