The range of Carmichael's function

Carl Pomerance, Dartmouth College

with
Florian Luca, UNAM, Morelia

Carmichael's function $\lambda(n)$ is related to Euler's function $\varphi(n)$. Concisely,

$$
\varphi(n) \text { is the order of the group }(\mathbb{Z} / n \mathbb{Z})^{\times}
$$

while
$\lambda(n)$ is the exponent of the group $(\mathbb{Z} / n \mathbb{Z})^{\times}$.
That is,
$\lambda(n)$ is the order of the largest cyclic subgroup of $(\mathbb{Z} / n \mathbb{Z})^{\times}$.

In formulas, we have for a prime power p^{a} that

$$
\varphi\left(p^{a}\right)=(p-1) p^{a-1}
$$

and

$$
\lambda\left(p^{a}\right)= \begin{cases}\varphi\left(p^{a}\right), & \text { if } p>2 \text { or } a<3 \\ \frac{1}{2} \varphi\left(p^{a}\right), & \text { if } p=2 \text { and } a \geq 3\end{cases}
$$

Further,

$$
\varphi(n)=\prod_{p^{a} \| n} \varphi\left(p^{a}\right), \quad \lambda(n)=\operatorname{lcm}\left[\lambda\left(p^{a}\right): p^{a} \| n\right]
$$

For such important and ubiquitous functions, it would seem good to be able to say something interesting about their ranges.

Let $V_{f}(x)$ denote the number of values of the nunction $f(n)$ that lie in $[1, x]$.

In 1935, Paul Erdős showed that

$$
V_{\varphi}(x)=\frac{x}{(\log x)^{1+o(1)}}, x \rightarrow \infty .
$$

After subsequent work by Erdős \& Hall, Maier \& P, and Ford, we now know the true order of magnitude of $V_{\varphi}(x)$, but we still don't have an asymptotic formula, nor do we know for example that $V_{\varphi}(2 x) / V_{\varphi}(x) \rightarrow 2$ as $x \rightarrow \infty$.

However, we know much less about $V_{\lambda}(x)$. Clearly

$$
V_{\lambda}(x) \geq(1+o(1)) \frac{x}{\log x}, x \rightarrow \infty
$$

since $\lambda(p)=p-1$ for p prime.
In a paper from 1991 by Erdős, P, \& Schmutz it was shown that there is a positive number c such that

$$
V_{\lambda}(x) \leq \frac{x}{(\log x)^{c}}, \text { for all large } x .
$$

In particular, the range of λ has asymptotic density 0 .

The proof of this theorem uses a result of Erdős \& Wagstaff proved in a paper of theirs on Bernoulli numbers. A lemma in that paper:

There is a positive constant c such that for $2 \leq y \leq x$, the number of integers $n \in[1, x]$ divisible by some $p-1$, where $p \geq y$ is prime, is $O\left(x /(\log y)^{c}\right)$.

We apply this with $y=x^{1 / \log \log x}$, say. Suppose $\lambda(n) \leq x$. If this number is not divisible by any $p-1$ with $p \geq y$, then n is not divisibly by any $p \geq y$, so that $\lambda(n)$ has only primes at most y. Standard estimates give that this set of numbers in $[1, x]$ has at most $O(x / \log x)$ elements. And if a value is divisible by some $p-1$ with $p \geq y$, this puts the values in a set of cardinality $O\left(x /(\log y)^{c}\right)=x /(\log x)^{c+o(1)}$.

In a 2007 paper, Luca \& Friedlander showed that

$$
V_{\lambda}(x) \leq \frac{x}{(\log x)^{c_{0}+o(1)}}, c_{0}=1-(e \log 2) / 2=0.05791 \ldots .
$$

However, this can be improved to
$V_{\lambda}(x) \leq \frac{x}{(\log x)^{c_{1}+o(1)}}, c_{1}=1-(1+\log \log 2) / \log 2=0.08607 \ldots$,
(Luca \& P). The exponent c_{1} is known as the
Erdős-Ford-Tenenbaum constant: Erdős showed in 1960 that the number of distinct entries in the $N \times N$ multiplication table is $N^{2} /(\log N)^{c_{1}+o(1)}$, a result subsequently refined by Tenenbaum and later by Ford.

A heuristic argument can be fashioned to suggest that

$$
V_{\lambda}(x)=\frac{x}{(\log x)^{c_{1}+o(1)}}
$$

(thanks to Granville for a helpful conversation regarding this).

So, this focuses attention then on the lower bound for $V_{\lambda}(x)$.

In 2006, Banks, Luca, Friedlander, Pappalardi, \& Shparlinski "almost" showed that

$$
V_{\lambda}(x) \gg V_{\varphi}(x)
$$

but even all-the-way showing this does not give a lower bound of the shape

$$
V_{\lambda}(x) \geq \frac{x}{(\log x)^{c}}, \quad \text { for some } c<1
$$

Our principal new result (Luca \& P):

There is a number c with $0<c<1$ such that

$$
V_{\lambda}(x) \geq \frac{x}{(\log x)^{c}}, \quad \text { for } x \text { large } .
$$

It is a little unclear what the best (smallest) c can be gotten by our method. We have the details more-or-less written down for $c=5 / 8$. The abstract for this talk announced that the result could be proved for $c=3 / 5$. In preparing these slides, more careful estimates get c below $1 / 2$ down to about 0.457041 . There is another strategy that can be tried (Note that this talk is a "preliminary report"!)

How do we create many distinct values of $\lambda(n)$? We concentrate on numbers n of the form $p q$ where $p<q$ are primes.

Wait a second: the number of integers $p q \leq x$ is about $x(\log \log x) / \log x$, so how could this help?

Well, it is not $p q \leq x$ that we are considering, but rather $\lambda(p q)=[p-1, q-1] \leq x$. Thus, we are counting distinct integers of the form $a b d \leq x$ where $\operatorname{gcd}(a, b)=1, a d+1=p$ is prime, and $b d+1=q$ is prime. Let $r(n)$ be the number of such representations of n as $a b d$. Then, by Cauchy-Schwarz,

$$
V_{\lambda}(x) \geq \frac{\left(\sum_{n \leq x} r(n)\right)^{2}}{\sum_{n \leq x} r(n)^{2}}
$$

$$
V_{\lambda}(x) \geq \frac{\left(\sum_{n \leq x} r(n)\right)^{2}}{\sum_{n \leq x} r(n)^{2}}
$$

By choosing conditions for a, b, d well we can limit the size of the denominator without sacrificing too much in the numerator, and so get a decent lower bound for $V_{\lambda}(x)$.

For example, one choice of conditions that works fairly well: Choose $y=\exp \left((\log x)^{\alpha}\right)$, where $0<\alpha<1$ and $p=a d+1 \in\left(y^{1 / 2}, y\right]$. Choose p so that $p-1=a d$ has about $\log \log y$ prime factors. Choose $d \mid p-1$ so that $d<\sqrt{p}$ and d has about $\delta \log \log y$ prime factors. And choose b so that $b d \leq x / a, b d+1$ is prime, and b has about log log y prime factors in $[1, y]$. Then, compute like crazy and find that an optimal choice for α is near 0.787 and an optimal choice for δ is near 0.542 . This gives an estimate greater than $x /(\log x)^{1 / 2}$ for a lower bound for $V_{\lambda}(x)$.

The idea we will try next is to take p with $p-1$ having close to $\beta \log \log y$ prime factors, where β is not necessarily 1 , and similarly taking b with about $\gamma \log \log y$ prime factors. Fine tuning will yield perhaps a larger lower bound for $V_{\lambda}(x)$.

THANK YOU

MAHALO

