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1. INTRODUCTION

Early in 1992, W. R, ‘Red’ Alford, Andrew Granville and I {2] proved that
there are infinitely many Carmichael numbers. These are composite integers
n for which ™ = a mod n for every integer a, It had long been conjectured
that there are indeed infinitely many of these integers n, but the problem had
remained open for most of this century. (Carmichael gave the first examples
in 1910.) In this paper we shall discuss this new theorem and several other
results concerning Carmichael numbers.

2. FERMAT'S 'LITTLE THEOREM'
Part of the basic landscape of elementary number theory is the ‘little theorem'
of Fermat, which asserts that a”? = a mod p for all integers a and all primes p.
There are many simple proofs; here is one of them, For a given prime p, it is
only necessary to verify the congruence fora =0,1,...,p—1. It is trivially true
for @ = 0, and the truth for the remaining values of a now follows by induction
from the identity (e + 1)? = a? -+ 1.mod p. This identity looks like a poor
student’s mistaken version of the binomial theorem, but the coefficients of the
missing terms are each divisible by p, thus justifying the student’s ‘mistake’.

Fermat's little theorem is not an isolated mathematical curiosity. To the
contrary, it has been generalized by Fuler and Lagrange and in the latter form
it now stands as perhaps the first example of a nontrivial consequence of the
axioms of group theory.

From Fermat’s little theorem one easily sees that if p is prime and ¢ is
an integer, then a?*~! = oPaP~! = aa?"! = ¢” = a mod p, and similarly
a* = a mod p for every positive integer k with k — 1 divisible by p— 1. Suppose
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p, q are distinct primes and k is a positive integer with & — 1 divisible by both
p—1and ¢ — 1. Then o* = g mod pq for every integer a. This identity is the
backbone of the RSA cryptosystem, a very practical application of Fermat’s
little theorem, see {21].

. How easy is it {o verify Fermat’s little theorem numerically? For small values
of a and p this is of course very easy. Take a = 2, p = 5, for example. We have
2% = 32 and clearly 32 = 2 mod 5. It is less obvious that this is relatively easy
to compute for larger numbers, but nevertheless true. Let us check the Fermat
congruence for ¢ = 3 and p = 161. We do not want to actually compute the
power 3'6! nor do we have to, since we are only interested in its residue mod 161.
Further we can reach high powers of 3 mod 161 by successive squaring:

32 = 9 mod 161,3* = 81 = —80 mod 161, 3% = 40 mod 161,
3% = _10 mod 161, 33% = —61 mod 161, 3% = 18 mod 161,328 = 2 mod 161.

Since 161 = 128 + 32 + 1 {every positive integer can of course be written as a
sum of distinct powers of 2, since it can be written in binary), we have

3161  3128+32+1 = 31283323 = (2)(-61)(3) mod 161
= (39)(3) mod 161
= —44 mod 161,

Whoops! Have we made an error and shouldn’t the result be 37 No, there is
no error, but why doesn’t Fermat’s littie theorem apply here? It is because, as
the rea ' 'r probably already knows, 161 is not prime; it is 7 - 23.

This example illustrates one of the principal modern applications of Fermat’s
little theorem. Namely if you are presented with a large integer n and if for
some integer ¢ you see that a™ # g mod n, then you have discovered that »n is
composite. It is interesting that this proof of compositeness appears to reveal
nothing about the prime factorization of n.

I invite the reader to try another example — this time to compute the residue
of 2341 mod 341. If you do it correctly you will get the answer 2. What can be
concluded and in particular have we proved that 341 is prime? It is reported
in L. E. Dickson’s ‘History of the Theory of Numbers that Leibniz would have
answered ‘yes’. That is, he believed that if 2" = 2 mod n and = is an integer
larger than 1, then » is prime. However, 341 is 11 - 31, so Leibniz was wrong.

A composite integer n for which a” = a mod n is called a pseudoprime
to the base a. It was proved in 1903 by Malo that there are infinitely many
pseudoprimes to the base 2, and Cipolla did the same for every base a in the
same year. Here is Cipolla’s proof for @ = 2. If p is a prime with p > 5, then
n = (47 — 1)/3 is a pseudoprime base 2. Indeed, n is the product of 2P -- 1
and (27 +1)/3, so that n is composite. In addition, by Fermat’s little theorem,
p|n—1. Sincealso 2 |n— 1 we have 2p | n — 1, so that 22" — 1] 27~1 — 1,
But 227 — 1 = 3n, hence n | 2°~! - 1, which implies that n is a pseudoprime to
the base 2.
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3. KORSELT'S CRITERION

One can still wonder though if the converse of Fermat’s littie theorem might be
true. That is, if n is an integer exceeding 1 with a™ = @ mod n for all integers
a, must 1 be prime?

In 1899, KorsELT (15] gave an equivalent criterion for such an integer.
Namely, a positive integer n satisfies a" = a mod n for all integers e if and only
if n is squarefree and p — 1 | n — 1 for every prime p | n. However Korselt left
open the question of whether any composite numbers n satisfy this criterion.

It is very easy to prove Korselt’s criterion. Suppose a" = a mod n for every
integer a. We first prove n must be squarefree. Suppose not and k? | n for
some integer k > 1. We let @ = k, so that &" = & mod n. Since k% | n,
this congruence is true mod k%, so that k" = k mod k? which contradicts
k™ = 0 mod k*. Thus n is squarefree. Suppose p is a prime dividing n. It is
well known that the multiplicative group (Z/pZ)* of residues mod p relatively
prime to p is a cyclic group of order p— 1; this is the so-called theorem on the
primitive root. Suppose a is an integer such that @ mod p is a cyclic generator
of (Z/pZ)*. Since o™ = a mod n, we have ¢® = e mod p, and since a and p are
coprime, we have "' = 1 mod p. Since the order of @ mod p in (Z/pZ)* is
p—1, we have p — 1 | n — 1. This proves one-half of Korselt's criterion.

For the other half, assume n is squarefree and p — 1| n — 1 for every prime
p | n. Suppose p is some prime dividing n and a is an integer. As remarked
above, a* = a mod p for any positive integer k& with p — 1|k — 1 and so in
particular for & = n. Thus we have shown that ¢" — e is divisible by every
prime factor of n and since n is squarefree it follows that a" — a is divisible by
n. Thus Korselt’s criterion is proved.

In 1910, CARMICHAEL {6) discovered a criterion essentially equivalent to
Korselt’s criterion and actually gave some examples of composite numbers n
which satisfy it. The first example is n = 561 and indeed it is easy to check that
561 has the prime factorization 3-11-17 and that 560 is divisible by each of 2, 10
and 16. Thus the converse of Fermat’s little theorem is not true, since 561 is
a counter-example. We now call such counter-examples ‘Carmichael numbers’
after Carmichael, of course. It is curious that Korselt apparently overlooked
this simple example; otherwise we might call them ‘Korselt numbers’.

4, CHERNICK'S THEOREM AND THE PRIME k-TUPLES CONJECTURE
Perhaps the converse of Fermat’s little theorem is ‘almost true’ and there are
only finitely many Carmichael numbers, In 1939, CHERNICK (7] showed that
if 6m -+ 1, 12m + 1, 18m + 1 are all prime for the same positive integral value
of m, then the product of these three primes is a Carmichael number. For
example, when m = 1 we have the primes 7,13 and 19, so Chernick claims that
1720 = 7-13 .19 is a Carmichael number, and indeed it is.

We leave it to the reader to supply the simple argument that the numbers
described by Chernick satisfy Korselt’s criterion. '

One consequence of the prime k-tuples conjecture in analytic number theory
is that there are infinitely many integers m such that 6m+1, 12m+1, 18m+1
are simultaneously prime, Thus this conjecture and Chernick’s theorem imply
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there are infinitely many Carmichael numbers. Although Carmichael himself
suggested this was true in 1912, Chernick gave perhaps the first ‘evidence’ for
this.

Maybe the reader has already heard of the prime k-tuples conjecture, This
asserts that if a;, b; are integers withe; > O fori=1,2,..., k and if the number
of solutions of

(a1 + b1 Y(aaz + b2) . . . (apzx + b} = 0mod p

is less than p for every prime p, then there are infinitely many integers m such
that aym + by, asm + ba,...,axm + by are all prime numbers. It is easy to
check that

(6z + 1){(122 + 1)(18z +1) =0 mod p

has no solutions if p = 2 or 3 and of course for p > 3 it has at most 3,
which is less than p, solutions. Thus the prime k-tuples conjecture implies that
Chernick’s hypothesis holds infinitely often and so there are infinitely many
Carmichael numbers.

However, the prime k-tuples conjecture is a notorious unsolved problem. It
is a generalization of the prime twins conjecture, which is the case of the two
linear expressions z and = + 2. Although Chernick’s theorem lent credence to
the conjecture that there are infinitely many Carmichael numbers, it did not
seem like a promising line of attack.

5. THE THEOREMS OF BEEGER AND DUPARC
In 1950, N. G. W. H. BEEGER [4] proved that if p < g <7 are primes and pgr
is a Carmichael number, then ¢ < 2p? and r < p®. Thus there are only finitely
many Carmichael numbers with three prime factors with one of these primes
given. DUPARC [9] later generalized this result to show that ifn=mgrisa
Carmichael number where ¢, are primes, then ¢ < 2m? and r < m®. Thus
there are only finitely many Carmichael numbers if all but two prime factors
are fixed. The case m =— 1 shows that every Carmichael number has at least
three prime factors, a result first shown by Carmichael himself in [6].

Here is a proof of Duparc’s theorem. Suppose n = mgr is a Carmichael
number where g < r are primes. Then

l=n=mgr=mgmod (r—1), 1=n=mrmod(g—1),

so that ) 1
mg — mr —

= D=

¢ r—1" g-—1

are integers with 1 < C < m < D. We have

D(q—l)zmr—lzm(mqglﬂ)ul,

so that
CD(g—1)=m?q-m+mC—-C.
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We conclude that
(CD-—m*)g—1)=m*—m+mC—-C={(m+C)(m~-1)>0.

Thus_
g—1<(m+C)m-1)<m?+(C— 1)m, (1)

which with €' < m proves that ¢ < 2m?. But from (1),

so that » < m®. This concludes the proof of Duparc’s theorem.

Duparc’s theorem was recently used by Pinch [17] in his calculation of all of
the Carmichael numbers up to 10!, In case you are curious, Pinch found there
are 105,212 Carmichael numbers up to this point.

Can one show that there are only finitely many Carmichael numbers if all
but three prime factors are fixed? Probably not, for this would imply that
there are only finitely many Carmichael numbers with just three prime factors
and as we have seen, this would contradict the prime k-tuples conjecture.

6. THE ERDOS HEURISTIC AND THE ERDOS THEOREM
Let C(x) denote the number of Carmichael numbers n with n < z. In 1956,
ERp&s [11] published a proof of the theorem

C(m) < :Bl——c logloglogx/loglog =

for some positive constant ¢ and all sufficiently large z. This upper bound
on the one hand is a small function of x since it is eventually smaller than
z/ (log x)* for any fixed k. On the other hand, it is a large function of  since
it is eventually larger than z!~¢ for any fixed £ > 0.

Could it really be that C(x) > x!~¢ for all large 7 In the same paper, Erdds
gave a heuristic argument for this seemingly implausible assertion. In particu-
Jar, this gave another heuristic argument, completely different than Chernick’s,
for the infinitude of the set of Carmichael numbers,

Erd8s’s heuristic went sort of like this. Suppese L is the least common
multiple of the integers 1,2,3,...,m, where m is some large integer. Let P
denote the set of primes p with p > m and p — 1| L. Erdés first assumed that
P is very large, that is, L has many divisors of the form p — 1. Now suppose n
is the product of the primes in some subset of P with cardinality greater than
1. If n = | mod L, then n is a Carmichael number. Indeed n is composite,
squarefree, and if p is a prime factor of n, then p € P, so that p —1 | L, so
that p — 1 | n — 1. That is, n satisfies Korselt’s criterion and is therefore a
Carmichael number.

How many sich numbers n are there? In other words, how many subsets of
‘P have their product being I mod L7 Well if we say the “probability” that a
random subset of P has product 1 mod L is about 1/L or greater (it shouid




204 Carl Pomerance

be greater since all such products are already known to be coprime to L), then
there should be about 2P /L or more Carmichael numbers created in this way.
Indeed, P has 2|7! subsets in all, so that at least 2/P1 /L, of them should have
this special property.

In particular, it is not unreasonable to assume that [P| > g{1—¢}Hog L/ log log L
(since L has about glog L/ loglog L djyisors in all, and the “probability” that a
divisor is 1 less than a prime should be at least 1/log ). Thus Erdés would
have us believe that there are at least gatt-eales bllesloe b o rmichael numbers
composed only of primes p with p—1| L.

By refusing to use the larger primes p € P, Erd8s was able further to quantify
this argument to get C(z) > z!7%. In [19], [20}, [22], Erd6s’s argument was
further refined to give for any £ > 0, numbers zg(e) and 2, (e} with

C(SL‘) < $1—(1_£} logloglog z/loglog = for all z > :E()(E)
unconditionally and
C(.’B) - ml—(i+s)logloglogxlloglogz forall z> 5!21(5)

heuristically. That is, there should be a “Carmichael number theorem” that

C(:E) — ml—(l-{-o(l))lcglog]ogz/loglogz for = — oo,
We are half done with the proof, but probably this is the easy half!

7. CONNEGTIONS TO COMBINATORIAL GROUP THEORY

Let us examine the second heuristic assumption of Erdds more closely. Let
P = {p1,p2, .., Pk} 50 that the p;’s are the primes with p; — 1| L and p; { L.
We may view P as a sequence of (distinct) elements in the group (Z/LZ}* of
reduced residues modulo L. We would like to assert that there is a subsequence
of this sequence whose product is the group identity 1 mod L. In fact we would
like to assert there are many such subsequences,

One can ask more generally when a given sequence g1,...,gx of elements in
a finite group G has a “null subsequence”, that is, a nonempty subsequence
with product the identity of G. In particular, how large must k be to guarantee
the existence of a null subsequence?

It is easy to see that if k& > |G| (where |G| denotes the order of G), then
there must be a null subsequence in gi,...,¢:. Indeed, if not, then there are
only |G| — 1 possible values for the k > |G] products g1,9192,. ... 9192~ gk,
and so two of them must be equal. Say g192---¢;i = g1g2+++ g5 where i < j.
But then g;41,...,9; is a null subsequence.

If G is cyclic, then this estimate cannot be improved. Indeed for G = (g}, a
sequence consisting of |G| — 1 copies of g has no null subsequence.

Let us define by n(G) the length of the longest sequence of elements of G
which contains no null subsequence. Thus for a finite cyclic group G we have
n(G) = |G| - L.

In the late 1960's Kruyswik (see [3]) and OLSON [16] independently ob-
tained an exact formula for n(G) when G is a finite abelian p-group. They
proved that if G = (Z/p** Z) x ... x (Z/p™* Z), then n{G) = p*' +...+p* — L.




Carmichael Numbers 205

So far no one has been able to find a general formula for n(G), not even for
the case of G abelian, but vAN EMDE Boas and KRUYSWLIK [10] were able
to find a beautiful inequality for this case. They showed that if G is a finite
abelian group, then

n(G) < MG)log|@|,

where A(G)) denotes the maximal order of an element of G (that is, the order
of the largest cyclic subgroup of G).

Let us try to apply the van Emde Boas-Kruyswijk inequality to the group G
of the last section. Recall that L is the least common muitipleof 1,2, ..., and
G = (Z/LZ)*. We have |G| = p(L) where ¢ is Euler's function. What can we
say about A(G)? Well this is either the least common multiple of {(g) : ¢ < m,
q is a prime or a power of a prime} or is one-half of this least common multiple.
It is an interesting and fairly difficult problem to estimate A{G), but it is almost
certainly true that A{G) is about exp(mloglogm/logm). (Using some “big
guns” from analytic number theory one can show A(G) > e™’* for all large
m, but we cannot prove much more.} If A(G) is really as large as we think
it is, then we have no hope to use combinatorial group theory to force the
existence of a null subsequence of p1,p2,...,pr. Indeed, these are the primes
p with p — 1| L, p 4 L. There cannot be more such primes than L has
divisors, and the number of divisors of L is about 2'°8 £/10g1o8 L which is about
exp(cm/ logm), with ¢ = log 2. Thus we are too short by a factor loglogm in
the exponent. (We cannot even exploit the fact that pi,pa, ..., px Is a sequence
of distinct group elements, since it is easy to show that every nontrivial finite
group G has a sequence of at least [\/A(G)] distinct group elements with no
null subsequence.)

Obviously I wouldn't have brought up this issue of combinatorial group the-
ory if it was not to be of help. Can the reader spot an idea?

8. A NEW IDFA

It is clear that G = (Z/LZ)*, with L the least common multiple of the integers
up to m, is just the wrong group to use, since the value of A(G) is just too large
(in all likelihood). We would like to replace L with some integer N, say, where
for G = (Z/NZ)* we have A(G) being a fairly small function of N. Let us
abbreviate the more complicated expression A{((Z/NZ)** by just A(N}, which
is the usual notation used.

What is known about the order of magnitude of the arithmetic function
X(N) and how it compares to T{/N) the number of divisors of N? It is shown
in [12] that the average order of A(N) is a little larger than N/log N and
that the normal order of AM(N) (what is true for most values of N} is about
N/{log N)legloglog N On the other hand, it is well-known that 7(N) on average
is about log N and is normally about (log N)}°82. So average or normal values
of N will be of no help, since for these values of N we have A(N) much bigger
than 7{N).

Might it be true that there are no large values of N with A(N) < 7(N)?
Well occasionally A(N) is fairly small. Tt was shown in (1], [12] that there are
infinitely many N with A(N) < (log N)c'e8lesloe N for some positive constant
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c. On the other hand it is a classical theorem that the maximal order of 7(N)
is about 2108 N/Ioglog N G, the minimal order of A(N) is actually quite a bit
smaller than the maximal order of T(N), so there is still a glimmer of hope.

Suppose we take L as before, namely the least common multiple of the inte-
gers up to m, and we let N be the product of the primes p < m? withp—1] L.
It is possible to show using the tools of analytic number theory (for example,
see [18]) that the primes p < m? with p — 1 | L comprise at least a certain
fixed positive proportion of all of the primes p < m? as m — oo, Thus N has
at least ¢;m?/logm distinct prime factors for some positive constant ¢;, and
so T{N) > gam?/logm  Well, what can we say about A(N)? Since every prime
.p| N has p— 1| L, we also have A(N) [ L. Since L is about ™, we have that
A(N) is at most about €™ and this is enormously smaller than 21™°/1es™ e
did it! We found an infinite set of numbers N with A(N) much smaller than
{N).

But we are not out of the woods yet. It is not really T(N) that interests us,
but rather the number of divisors of N which are 1 less than a prime. Can
we show this is almost as big as 7(N)? This is close to Erd6s’s first heuristic
assumption and it is a hurdle standing squarely in our path.

9. THERE ARE INFINITELY MANY CARMICHAEL NUMBERS
Early in 1992, W. R. “Red” Alford, Andrew Granville and I found a way to
get over this last hurdle.

The proof in {1], [12] that A(N) < (log N)e'os1e&1o8 ¥ infinitely often, strongly
uses a much earlier result of PRACHAR [23]. What Prachar did was show the
existence of integers M with a great number of divisors of the form p—1, with
p prime. Then (as in the last section}, the product of these primes p is a large
number N with A{N) small, since A(N) | M.

Of course the trouble with existence proofs is that they just assert that
somewhere there is an example. The particular number N that you hold dear,
even if by all rights it “should be” an example, very well may not be.

What Alford, Granville and I were able to do was modify Prachar’s proof to
show that if N is the number of the last section (so that N is the product of
the primes p < m? such that p — 1 divides the least common multiple of the
integers up to rn), then there is some number & coprime to N such that kN has
at least (V)¢ divisors of the form p — 1 with p prime, p } N and p =1 mod k.
Here ¢y is some absolute positive constant and the above assertion holds for all
sufficiently large values of the parameter m.

Let us see if the van Emde Boas-Kruyswijk inequality is now of use to us.
Let G be the subgroup of (Z/(kNZ))* consisting of those residues congruent
to 1 mod k. Then from the above paragraph, we have a set of 7{/N)* elements
in the group G. From the last section we see that

T(N)C2 - 2c1czm2/ logm’

so we have a rather long list of group elements. What can we say about MG)Y?
Since G is isomorphic to (Z/(NZ)}*, A(G) is just A(N), and as we saw in the
last section, A{N)} is at most about ¢™. It remains to estimate log[G|. But
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|G| = (N} < N and N is at most the product of all the primes up to m?,

which is about e™. Thus log |G| is at most about m?,
In particular, we have for all large m that

MG log |G| < ™.

Thus comparing this inequality with the one displayed above, we see that the
van Emde Boas—Kruyswijk inequality now guarantees us that we can make
many Carmichael numbers from the primes p with p — 1 [ kN, p{ N, p =
1 mod k. Repeating the argument, for a larger m we get many more Carmichael
numbers and there is no limit. We have proved there are infinitely many
Carmichael numbers!

10. FURTHER RESULTS AND UNSOLVED PROBLEMS

So we have C{z), the number of Carmichael numbers up to z, unbounded. But
can we say anything interesting about the rate of growth of C(z) as z — co?
By refining the argument in the previous section, Alford, Granville and I were
able to prove C(z) > z?/7 for all sufficiently large =.

The exponent 2/7 arises from two other constants implicit in the above dis-
cussion. One of these constants is related to the number ¢z in the Prachar
argument, which in turn is related to a paper of HUXLEY [14} on estimates for
the number of zeros of certain Dirichlet L-functions in certain regions of the
critical strip.

The other constant we took as “2" in the above discussion: we let N be the
product of the primes p < m? such that p-- 1 divides the least common multiple
_ of the integers up to m. We cited [18] as saying there are a positive proportion
of all of the primes p < m? with this property. Using a result of Fr1edlander
[14], we may replace m? with m® for ¢ any number below 24/e.

Using both the Huxley and Friedlander results, we get C{z} > z° for all
sufliciently large x, for any

5 1
<-1m2~(lum) = 290306... .

In particular, ¢ = 2/7 works.

Is there any hope to prove Erdés’s conjecture that for each £ > 0, C(z) >
z!'~¢ for all large 2, depending on the choice of €7 This is probably a very hard
problem, but we can at least reduce it to another in analytic number theory that
is widely believed. Suppose that for each é > 0 and for all sufficiently large a:,
depending on the choice of 8, and for each integer d in the range 1 < d < x!
the number of primes p < z with p = 1 mod d exceeds z/{10dlogz). Then
Erdds’s conjecture follows.

It is safe to say that we shall never “use up” mathematics. With every
new advance, many new questions are suggested. Not only is Erdés’s * (gpl—en
conjecture still open, although perhaps more clearly in focus, we can ask if the
proof of the existence of infinitely many Carmichael numbers can be carried
over to other Carmichael-like numbers. For example, are there infinitely many
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squarefree composite integers n such that p+ 1| n+ 1 for every prime p | n?
That is, we have just changed the two minus signs in Korselt’s criterion to plus
signs, This problem is open.

BEEGER [5] was the first to prove there are infinitely many even pseudo-
primes. These are even numbers n > 2 that satisfy 2" = 2 mod n. Let B(z)
denote the number of even pseudoprimes up to z. Do we have B(z) > z° for
some positive constant ¢ and all large =7 This problem too is open.

Let Ci(z) denote the number of Carmichael numbers up to z with exactly
k distinct prime factors. We have seen that Chernick’s theorem and the prime
k-tuples conjecture imply that Ca(z) is unbounded. In particular a strong form
of the prime k-tuples conjecture implies that Ca(z) > cx1/3 /(log z)* for some
positive constant ¢ and all sufficiently large «. However we still cannot even
prove unconditionally that Cs(z) is unbounded, nor can we prove any of the
functions Cy{z) is unbounded.

What should we conjecture to be the true order of magnitude for C3(z)? A
simple argument (see [22]) gives Ca(z) < cx?? for all large z. A result in {8]
gives Cz{z) < Lz'/?(logz)!/4 for all & > 1. What is the “correct” exponent
on 2?7 That is, is there a number c3 such that Cs(z) = gotel) for 2 — 0a?
Granville has conjectured that ¢z = 1/3, so in some sense Chernick’s theorem
would be most of the story. In fact, Granville conjectures that for each integer
k > 3, we have Ci(z) = x'/*+o+() for & — oo, He may be right. It might
appear that this conjecture is antithetical to Erdés’s “zl=€" conjecture, but
there is no superficial reason why they both cannot be true.

REMARK. Recently, S.W. GRAHAM (‘Carmichael numbers with three prime
factors,’ to appear) has shown that Cz(z) < 2?5+ for £ — 0.

REFERENCES

1. L. M. ApLEMAN, C. POMERANCE and R. S. RUMELY, 1983, On distin-
guishing prime numbers from composite numbers, Annals.Math. 117, pp.
173-208. :

2. W. R. ALFORD, A. GRANVILLE AND C. POMERANCE, There are infinitely
many Carmichael numbers, Annals Math. (to appear).

3. P. C. BAAYEN, 1968, Een combinatorisch probleem voor eindige abelse
groepen, in Colloquium Discrete Wiskunde, MC Syllabus 5, Mathematisch
Centrum, Amsterdam, pp. 76-108.

4. N. G. W. H. BEEGER, 1950, On composite numbers n for which a™~' =
1( mod n) for every a prime to n, Scripta Math. 16, pp. 133-135.

5. N. G. W. H. BEEGER, 1951, On even numbers m dividing 2™ — 2, Amer.
Math. Monthly 58, pp. 553-555.

6. R. D. CARMICHAEL, 1910, Note on a new number theory function, Bull.
Amer. Math. Soc. 16, pp. 232-238,

7. J. CHERNICK, 1939, On Fermat’s simple theorem, Bull. Amer. Math. Soc.
45, pp. 269-274.




Carmichael Numbers 209

8.

10.

11.
:-f.12.
'-'13.
14.
15.
16.
17.
18.
19.

20.

21.

22,

23.

I. DaAMGARD, P. LANDROCK and C. POMERANCE, 1993, Average case
error estimales for the sirong probable prime test, Math. Comp. 61, pp.
177-194.

H. J. A. DurARrc, 1952 On Carmichael numbers, Simon Stevin 29, pp.
21-24.

P. vAN EMDE Boas and D. Kruvyswiik, 1969, A combinatorial problem
on finite abelian groups 111, Report ZW 1969-008, Mathematisch Centrum,
Amsterdam, 32 p.

P. ErnGs, 1956, On pseudoprimes and Carmichael numbers, Publ. Math.
Debrecen 4, pp. 201-206.

P. ErDds, C. POMERANCE and E. ScHMmUTZ, 1991, Carmichael’s lambda
function, Acta Arith. 58, pp. 363-385.

J. B. FRIEDLANDER, 1989, Shifted primes without large prime factors, in
Number Theory and Applications (ed. R. A. Mollin), Kluwer, Dordrecht,
NATO ASI, pp. 393-401.

M. N. HuxteY, 1975, Large values of Dirichlet polynomials, Acta Arith.
26, 435-444,

A. Korserr, 1899, Probléme chinois, L'intermédiare des mathématiciens
6, pp. 142-143.

J. OLson, 1969, A combinatorial problem on finite abelian groups, 1, J.
Number Theory 1, 8-10.

R. G. E. PINCH, 1993, The Carmichael numbers up to 10*®, Math. Comp.
61, pp. 381-391.

C. POMERANCE, 1980, Popular values of Euler’s function, Mathematika
27, pp. 84-89.

C. POMERANCE, 1981, On the distribution of pseudopmmes, Math. Comp.
37, pp. H87-543.

C. POMERANCE, 1989, Two methods in elementary analytic number theory,
in Number Theory and Applications (ed. R. A. Mollin), Kluwer, Dordrecht,
NATO ASI, 135-161.

C. POMERANCE, 19903, Cryptology and compulational number theory — an
introduction, in Cryptology and Computational Number Theory (ed. C.
Pomerance), Proc. Symp. Appl. Math. 42, Amer. Math. Soc., Providence,
1-12,

C. POMERANCE, J. L. SELFRIDGE and 5. 5. WAGSTAFF, Jr., 1980, The
pseudoprimes to 25 - 10?, Math. Comp. 35, 1003-1026.

K. PrAcHAR, 1955, Uber die Anzahl der Teiler einer natiirlichen Zahl,
welche die Form p — 1 haben, Monatsh. Math. 59, 91-97.




