On numbers related to Catalan numbers

Carl Pomerance
Mathematics Department, Dartmouth College, Hanover, NH 03755, USA
carl. pomerance@dartmouth.edu

September 13, 2013

Abstract

We study some numbers which have a definition similar to the Catalan numbers.

1 Introduction

Let $C(n)$ denote the nth Catalan number, defined as

$$
C(n)=\frac{1}{n+1}\binom{2 n}{n}
$$

There are numerous combinatorial applications of the Catalan numbers, see Stanley [5], and from any one of these we see that $C(n)$ is an integer, being the solution to a counting problem. From a number-theoretic perspective, one can ask for a direct proof of the integrality of $C(n)$. Of course, this is not difficult, perhaps the easiest way to see it is via the identity

$$
C(n)=\binom{2 n}{n}-\binom{2 n}{n-1}
$$

But this raises the further issue of why the binomial coefficients are themselves integers, which is perhaps not immediately obvious from the formula

$$
\binom{m}{k}=\frac{m!}{k!(m-k)!} .
$$

For a prime p and a positive integer m, let $v_{p}(m)$ denote the number of factors of p in the prime factorization of m. For example, $v_{2}(10)=1$, $v_{2}(11)=0$, and $v_{2}(12)=2$. This function can be extended to positive rational numbers via $v_{p}(a / b)=v_{p}(a)-v_{p}(b)$. Thus, a / b is integral if and only if $v_{p}(a / b) \geq 0$ for all primes p.

It is easy to see that

$$
v_{p}(m!)=\sum_{k \leq m} v_{p}(k)=\sum_{k \leq m} \sum_{1 \leq j \leq v_{p}(k)} 1=\sum_{\substack{ \\j \geq 1}} \sum_{\substack{k \leq m \\ p^{j} \mid k}} 1=\sum_{j \geq 1}\left\lfloor\frac{m}{p^{j}}\right\rfloor,
$$

since $\left\lfloor m / p^{j}\right\rfloor$ is the number of multiples of p^{j} in $\{1,2, \ldots, m\}$. This result, sometimes referred to as Legendre's formula, is of course well known in elementary number theory, as well as the almost trivial inequality

$$
\begin{equation*}
\lfloor x+y\rfloor \geq\lfloor x\rfloor+\lfloor y\rfloor \tag{1}
\end{equation*}
$$

for all real numbers x, y. From these two results it is immediate that $\binom{m}{k}$ is an integer, since for each prime p we have

$$
\begin{equation*}
v_{p}\left(\binom{m}{k}\right)=\sum_{j \geq 0}\left(\left\lfloor\frac{m}{p^{j}}\right\rfloor-\left\lfloor\frac{k}{p^{j}}\right\rfloor-\left\lfloor\frac{m-k}{p^{j}}\right\rfloor\right) \geq \sum_{j \geq 0} 0=0 . \tag{2}
\end{equation*}
$$

There is another consequence of this line of thinking. For a real number x let $\{x\}=x-\lfloor x\rfloor$, the fractional part of x. The inequality (1) can be improved to an equation:

$$
\lfloor x+y\rfloor-\lfloor x\rfloor-\lfloor y\rfloor=\{x\}+\{y\}-\{x+y\}= \begin{cases}1, & \text { if }\{x\}+\{y\} \geq 1 \\ 0, & \text { if }\{x\}+\{y\}<1\end{cases}
$$

So by (2), $v_{p}\left(\binom{m}{k}\right)$ is exactly the number of values of j such that $\left\{k / p^{j}\right\}+$ $\left\{(m-k) / p^{j}\right\} \geq 1$. Let's write k and $m-k$ in the base p, so that

$$
k=a_{0}+a_{1} p+\ldots, \quad m-k=b_{0}+b_{1} p+\ldots,
$$

where the "digits" a_{i}, b_{i} are integers in the range 0 to $p-1$. For $j \geq 1$,

$$
\left\{\frac{k}{p^{j}}\right\}=\frac{a_{0}+a_{1} p+\cdots+a_{j-1} p^{j-1}}{p^{j}},\left\{\frac{m-k}{p^{j}}\right\}=\frac{b_{0}+b_{1} p+\cdots+b_{j-1} p^{j-1}}{p^{j}},
$$

and so we see that $\left\{k / p^{j}\right\}+\left\{(m-k) / p^{j}\right\} \geq 1$ if and only if in the addition of k and $m-k$ in the base p there is a carry into place j caused by the earlier digits.

We thus have the remarkable result of Kummer from 1852: For each prime p and integers $0 \leq k \leq m$, $v_{p}\left(\binom{m}{k}\right)$ is the number of carries in the addition $k+(m-k)=m$ when done in the base p.

An immediate consequence of Kummer's theorem is that the nth Catalan number $C(n)$ is an integer. Indeed, say p is a prime and $v_{p}(n+1)=j$. Then the least significant j digits in base p of $n+1$ are all 0 , so the least significant j digits in base p of n are all $p-1$. Thus, in the addition $n+n=2 n$ performed in the base p, we have j carries from the least significant j digits, and perhaps some other carries as well. So we have $\left.v_{p}\binom{2 n}{n}\right) \geq j$. Since this is true for all primes p, we have $n+1 \left\lvert\,\binom{ 2 n}{n}\right.$ and so $C(n)=\binom{2 n}{n} /(n+1)$ is an integer.

This of course is not the easiest approach to seeing that $C(n)$ is an integer, but the proof "has legs", meaning that it can be used to see some related interesting results. One might wonder if other numbers near to $n+1$ can divide $\binom{2 n}{n}$. In particular, one could ask if the numbers $\binom{2 n}{n} /(n+k)$ are integral for a fixed value of $k \neq 1$. We show that in no case are they always integral, but for $k>0$, they usually are.
Theorem 1. For each integer $k \neq 1$ there are infinitely many positive integers n with $n+k \nmid\binom{2 n}{n}$.

Thus, the case $k=1$ of Catalan numbers is indeed special. However, the set of numbers n satisfying the condition of Theorem 1 when $k \geq 2$ is rather sparse. To measure how dense or sparse a set S of positive integers is, let $S(x)$ denote the number of members of S in $[1, x]$. Then the "asymptotic density" of S is $\lim _{x \rightarrow \infty} S(x) / x$ if this limit exists. In general, the limsup gives the upper density of S and the liminf the lower asymptotic density. For example, the set of odd numbers has asymptotic density $\frac{1}{2}$, the set of prime numbers has asymptotic density 0 , and the set of numbers which have an even number of decimal digits does not have an asymptotic density.

Theorem 2. For each positive integer k, the set of positive integers n with

$$
(n+1)(n+2) \cdots(n+k) \left\lvert\,\binom{ 2 n}{n}\right.
$$

has asymptotic density 1 .

So it is common for $n+k$ to divide $\binom{2 n}{n}$, but what about $n-k$?
Theorem 3. For each non-negative integer k the set of integers $n>k$ with $n-k \left\lvert\,\binom{ 2 n}{n}\right.$ is infinite, but has upper asymptotic density smaller than $\frac{1}{3}$.

Theorems 1 and 3 in the case $k=0$ might be compared with Ulas [6, Theorems 3.2, 3.4].

For other problems and results concerning divisibility properties of binomial coefficients, the reader is referred to $[1,4]$.

2 Proofs

There is a quick proof of Theorem 1. First assume that $k \geq 2$. Let p be a prime factor of k and let $n=p^{j}-k$ where j is large enough so that $n>0$. Then n in base p has at most j digits and the least significant digit of n is 0 . Hence there are at most $j-1$ carries when adding n to n and hence $n+k=p^{j} \nmid\binom{2 n}{n}$. For $k \leq 0$, let $p>2|k|$ be an odd prime number. For $n=p+|k|$, we have that there are no carries when n is added to itself in the base p, so that $p \nmid\binom{2 n}{n}$. But $p=n+k$, so we are done.

The proof of Theorem 2 is a bit more difficult. We begin with a lemma.
Lemma 1. For each prime p and all real numbers $x \geq 2$, the number of integers $1 \leq n \leq x$ with $p \nmid\binom{2 n}{n}$ is at most $p x^{1-\log (3 / 2) / \log p}$.

Proof. If $p \nmid\binom{2 n}{n}$, then by Kummer's theorem, every base- p digit of n is smaller than $p / 2$. (In particular, this implies that $\binom{2 n}{n}$ is always divisible by 2.) Let $D=\lfloor 1+\log x / \log p\rfloor$, so that if $1 \leq n \leq x$ is an integer, then n has at most D base- p digits. If we restrict these digits so that they are all smaller than $p / 2$, we thus have $\lceil p / 2\rceil$ choices in each place. Thus, the number of choices for n is at most $\lceil p / 2\rceil^{D}$. It remains to note that $\lceil p / 2\rceil \leq \frac{2}{3} p$ so that

$$
\begin{equation*}
\lceil p / 2\rceil^{D} \leq\left(\frac{2}{3} p\right)^{D}<p x\left(\frac{2}{3}\right)^{\log x / \log p}=p x^{1-\log (3 / 2) / \log p} \tag{3}
\end{equation*}
$$

Since the quotient $p x^{1-\log (3 / 2) / \log p} / x$ tends to 0 as $x \rightarrow \infty$ (with p fixed), Lemma 1 shows that for a given prime p, we usually have $p \left\lvert\,\binom{ 2 n}{n}\right.$, in that the set of such numbers n has asymptotic density 1 . We now wish to strengthen this lemma to show that p^{j} usually divides $\binom{2 n}{n}$ for fairly large values of j.

Lemma 2. Let p be an arbitrary prime, let $x \geq p$ be a real number, and let $D=\lfloor 1+\log x / \log p\rfloor$. The number of integers $1 \leq n \leq x$ with $v_{p}\left(\binom{2 n}{n}\right) \leq$ $D /(5 \log D)$ is at most $3 p x^{1-1 /(5 \log p)}$.

Proof. The calculation here is similar to the one in probability where you compute the chance that a coin flipped D times lands heads fairly frequently. We consider the number of assignments of D base- p digits where all but at $\operatorname{most} B:=\lfloor D /(5 \log D)\rfloor$ of them are smaller than $p / 2$. Since there are $\lceil p / 2\rceil$ integers in $[0, p / 2)$, the number of assignments is at most

$$
\begin{aligned}
\sum_{j=0}^{B}\binom{D}{j}(\lceil p / 2\rceil)^{D-j}(p-\lceil p / 2\rceil)^{j} & =\sum_{j=0}^{B}\binom{D}{J}(\lceil p / 2\rceil)^{D}\left(\frac{p-\lceil p / 2\rceil}{\lceil p / 2\rceil}\right)^{j} \\
& \leq(\lceil p / 2\rceil)^{D} \sum_{j=0}^{B}\binom{D}{j}
\end{aligned}
$$

A crude estimation using $D \geq 2$ gets us

$$
\sum_{j=0}^{B}\binom{D}{j} \leq \sum_{j=0}^{B} D^{j}<2 D^{B}
$$

and using the definition of B, we have

$$
2 D^{B}=2 e^{B \log D} \leq 2 e^{D / 5} \leq 2 e^{1 / 5} x^{1 /(5 \log p)}
$$

Using the inequality in (3), we conclude that the number of $n \leq x$ with $v_{p}\left(\binom{2 n}{n}\right) \leq B$ is at most

$$
2(\lceil p / 2\rceil)^{D} D^{B} \leq 2 e^{1 / 5} p x^{1-\log (3 / 2) / \log p+1 /(5 \log p)}
$$

Since $2 e^{1 / 5}<3$ and $\log (3 / 2)>2 / 5$, the lemma follows at once.
We are now ready to prove Theorem 2. Fix a value of $k \geq 1$. For a positive integer n and a prime p, let

$$
v:=v_{p}((n+1)(n+2) \cdots(n+k))
$$

First note that for each prime $p \geq 2 k$,

$$
\begin{equation*}
v_{p}\left(\binom{2 n}{n}\right) \geq v \tag{4}
\end{equation*}
$$

Indeed, since p divides at most one of $n+1, n+2, \ldots, n+k$, if $v>0$, there is a unique positive integer $j \leq k$ with $v_{p}(n+j)=v$. And since the v least significant digits of $n+j$ in base p are 0 , the v least significant digits of n are at least $p-k \geq p / 2$. So by Kummer's theorem, $p^{v} \left\lvert\,\binom{ 2 n}{n}\right.$. (Note that this argument is essentially a reprise of the proof given in the Introduction that Catalan numbers are integers.)

It remains to show that (4) holds for all primes $p<2 k$, and for "most" integers n. Let $x \geq 2 k$ be a real number and assume that we are considering values of $n \leq x$. With D as in Lemma 2, we consider two cases: $v \leq$ $D /(5 \log D)$ and $v>D /(5 \log D)$. In the first case, by Lemma 2 , the number of n with $v_{p}\left(\binom{2 n}{n}\right)<v$ is at most $3 p x^{1-1 /(5 \log p)}$. Summing this expression for primes $p<2 k$ gives a quantity smaller than $6 k^{2} x^{1-1 /(5 \log (2 k))}$. Divided by x, this expression tends to 0 as $x \rightarrow \infty$, so we are left with the second case when $v>D /(5 \log D)$. We shall show in this case that there are very few values of n to consider, regardless if (4) holds. Let

$$
v^{\prime}=\max _{1 \leq i \leq k} v_{p}(n+i),
$$

and note that (as in the proof Legendre's formula)

$$
v-v^{\prime}<\frac{k}{p}+\frac{k}{p^{2}}+\cdots=\frac{k}{p-1} \leq k
$$

For each value of i in $[1, k]$ we consider those $n \leq x$ with $p^{v^{\prime}} \mid n+i$. The number of them is at most $(x+i) / p^{v^{\prime}} \leq 2 x / p^{v^{\prime}}$. Since there are k possibilities for i, the number of choices for $n \leq x$ is at most

$$
k \frac{2 x}{p^{v^{\prime}}} \leq 2 k \frac{x}{p^{v-k}}<2 k p^{k} \frac{x}{p^{D /(5 \log D)}} \leq 2 k p^{k} x^{1-1 /(5 \log D)}
$$

Now $\log D \leq \log (1+\log x / \log 2)$, call this expression $L(x)$. Summing for $p<2 k$, we get that the number of choices for n is at most $k^{2}(2 k)^{k} x^{1-1 /(5 L(x))}$. When divided by x, this too goes to 0 as $x \rightarrow \infty$, which completes the proof of Theorem 2.

We remark that the proof allows for k to also tend to infinity, provided it does not do so too quickly in comparison with x.

We now proceed to the proof of Theorem 3. Suppose that $k \geq 0, n$ is in ($k, x], x>2 k^{2}$, and p is the largest prime factor of $n-k$. Suppose too that $p>\sqrt{2 x}$. If $n-k=c p$, then $n=c p+k$ and this is the base- p representation
of n. Since $x>2 k^{2}$, the digit k of n is smaller than $\sqrt{x / 2}<\frac{1}{2} p$. Further, $c \leq x / p<\sqrt{x / 2}<\frac{1}{2} p$. Thus, there are no carries when adding n to itself in base p, so that $p \nmid\binom{2 n}{n}$, and so $n-k \nmid\binom{2 n}{n}$.

We now show that there are many values of n in $(k, x]$ such that $n-k$ has a prime factor $p>\sqrt{2 x}$, in fact more than $\frac{2}{3} x$ of them. For each prime p satisfying this inequality and $x>2 k^{2}$, we count numbers n in $(k, x]$ with $p \mid n-k$, and this is $\lfloor(x-k) / p\rfloor \geq\lfloor x / p\rfloor-1$. No choice of n corresponds to two different values of p, since their product would be too large to have $n \leq x$. Thus, the number of choices for n with $k<n \leq x$ and $n-k \nmid\binom{2 n}{n}$ is at least

$$
\sum_{\sqrt{2 x}<p \leq x}(\lfloor x / p\rfloor-1) .
$$

Using $\lfloor x / p\rfloor>x / p-1$, this count exceeds

$$
x \sum_{\sqrt{2 x}<p \leq x} \frac{1}{p}-2 \pi(x),
$$

where $\pi(x)$ denotes the number of primes in $[1, x]$. Euler proved long ago in 1737 that the sum of the reciprocals of the primes diverges to infinity like the double-log function, and using a more modern estimation (such as the theorem of Mertens from 1874), we have

$$
\sum_{\sqrt{2 x}<p \leq x} \frac{1}{p}=\log \log x-\log \log (\sqrt{2 x})+E(x)
$$

where $E(x) \rightarrow 0$ as $x \rightarrow \infty$, see $[2,3]$. The difference of double logs simplifies to

$$
\log 2+\log \left(\frac{\log x}{\log (2 x)}\right)
$$

which tends to $\log 2$ as $x \rightarrow \infty$. As mentioned before, the set of primes has asymptotic density 0 , in fact $\pi(x) / x$ goes to 0 like $1 / \log x$ by the prime number theorem. Putting these thoughts together, it follows that for each $\epsilon>0$ and x sufficiently large, there are more than $(\log 2-\epsilon) x$ values of n with $k<n \leq x$ and $n-k \nmid\binom{2 n}{n}$. Since $\log 2>0.6931>\frac{2}{3}$, the second part of Theorem 3 follows.

To complete the proof, we wish to show there are infinitely many values of n where $n-k \left\lvert\,\binom{ 2 n}{n}\right.$. We leave the few details for the reader, but using

Kummer's theorem, we have that if $n=p q+k$ where p, q are primes with $k<p$ and $\frac{3}{2} p<q<2 p$, then $n-k \left\lvert\,\binom{ 2 n}{n}\right.$. The number of such numbers $n \leq x$ is greater than a positive constant times $x /(\log x)^{2}$.

It is not clear if the numbers n with $n-k \left\lvert\,\binom{ 2 n}{n}\right.$ comprise a set of positive density. Perhaps some numerical investigations are warranted; the case $k=0$ is especially attractive.

3 Odd rows of Pascal's triangle

One might wonder what the fuss is about the middle entry $\binom{2 n}{n}$ in the $2 n$th row of Pascal's triangle. What about odd-numbered rows, where there are the twin peaks $\binom{2 n+1}{n}=\binom{2 n+1}{n+1}$? It is easy to prove corresponding results on divisibility here. For example, for $k \geq 2,(n+2)(n+3) \ldots(n+k)$ usually divides $\binom{2 n+1}{n}$.

Looking at just the case $k=2$, we have a near miss for $n+2$ always dividing $\binom{2 n+1}{n}$. In fact, unless $n+2$ is a power of 2 , it divides, and even in this case, it divides $2\binom{2 n+1}{n}$. Since there is a tie for the maximum entry in this row of Pascal's triangle, it makes sense to include both of them, and as mentioned we always have

$$
\begin{array}{l|l}
n+2 & 2\binom{2 n+1}{n} .
\end{array}
$$

Thus, we might wonder, like with Catalan numbers, if the integer

$$
\begin{equation*}
\frac{2}{n+2}\binom{2 n+1}{n} \tag{5}
\end{equation*}
$$

has combinatorial significance. Indeed it does. We know that the Catalan number $C(n)$ counts the number of paths from $(0,0)$ to (n, n) that do not cross below the line $y=x$, and where each step of the path is one unit to the right or one unit up. The number in (5) is similar, but now we are counting paths from $(0,0)$ to $(n, n+1)$, a so-called ballot number. We have come full circle back to combinatorial considerations.

Acknowledgments. I wish to thank Sergi Elizalde, Florian Luca, and Paul Pollack for some helpful comments.

References

[1] A. Granville, "Arithmetic properties of binomial coefficients. I. Binomial coefficients modulo prime powers", in Organic mathematics (Burnaby, BC, 1995), pp. 253-276, CMS Conf. Proc., 20, Amer. Math. Soc., Providence, RI, 1997.
[2] P. Pollack, Not always buried deep, a second course in elementary number theory, Amer. Math. Soc., Providence, RI, 2009.
[3] P. Pollack, "Euler and partial sums of the prime harmonic series", Elem. Math., to appear.
[4] J. W. Sander, "A story of binomial coefficients and primes", Amer. Math. Monthly 102 (1995), 802-807.
[5] R. P. Stanley, Enumerative combinatorics, vol. 2, Cambridge University Press, Cambridge, 1999.
[6] M. Ulas, "A note on Erdős-Straus and Erdős-Graham divisibility problems (with an appendix by Andrzej Schinzel)", Int. J. Number Theory 9 (2013), 583-599.

