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Abstract

We study some numbers which have a definition similar to the

Catalan numbers.

1 Introduction

Let C(n) denote the nth Catalan number, defined as

C(n) =
1

n+ 1

(

2n

n

)

.

There are numerous combinatorial applications of the Catalan numbers, see
Stanley [5], and from any one of these we see that C(n) is an integer, being
the solution to a counting problem. From a number-theoretic perspective,
one can ask for a direct proof of the integrality of C(n). Of course, this is
not difficult, perhaps the easiest way to see it is via the identity

C(n) =

(

2n

n

)

−
(

2n

n− 1

)

.

But this raises the further issue of why the binomial coefficients are them-
selves integers, which is perhaps not immediately obvious from the formula

(

m

k

)

=
m!

k!(m− k)!
.
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For a prime p and a positive integer m, let vp(m) denote the number
of factors of p in the prime factorization of m. For example, v2(10) = 1,
v2(11) = 0, and v2(12) = 2. This function can be extended to positive
rational numbers via vp(a/b) = vp(a) − vp(b). Thus, a/b is integral if and
only if vp(a/b) ≥ 0 for all primes p.

It is easy to see that

vp(m!) =
∑

k≤m

vp(k) =
∑

k≤m

∑

1≤j≤vp(k)

1 =
∑

j≥1

∑

k≤m
pj |k

1 =
∑

j≥1

⌊

m

pj

⌋

,

since ⌊m/pj⌋ is the number of multiples of pj in {1, 2, . . . , m}. This result,
sometimes referred to as Legendre’s formula, is of course well known in ele-
mentary number theory, as well as the almost trivial inequality

⌊x+ y⌋ ≥ ⌊x⌋ + ⌊y⌋ (1)

for all real numbers x, y. From these two results it is immediate that
(

m
k

)

is
an integer, since for each prime p we have

vp

((

m

k

))

=
∑

j≥0

(⌊

m

pj

⌋

−
⌊

k

pj

⌋

−
⌊

m− k

pj

⌋)

≥
∑

j≥0

0 = 0. (2)

There is another consequence of this line of thinking. For a real number
x let {x} = x − ⌊x⌋, the fractional part of x. The inequality (1) can be
improved to an equation:

⌊x+ y⌋ − ⌊x⌋ − ⌊y⌋ = {x}+ {y} − {x+ y} =

{

1, if {x} + {y} ≥ 1,

0, if {x} + {y} < 1.

So by (2), vp(
(

m
k

)

) is exactly the number of values of j such that {k/pj} +
{(m− k)/pj} ≥ 1. Let’s write k and m− k in the base p, so that

k = a0 + a1p+ . . . , m− k = b0 + b1p+ . . . ,

where the “digits” ai, bi are integers in the range 0 to p− 1. For j ≥ 1,

{

k

pj

}

=
a0 + a1p+ · · ·+ aj−1p

j−1

pj
,

{

m− k

pj

}

=
b0 + b1p+ · · ·+ bj−1p

j−1

pj
,
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and so we see that {k/pj}+{(m−k)/pj} ≥ 1 if and only if in the addition of
k and m− k in the base p there is a carry into place j caused by the earlier
digits.

We thus have the remarkable result of Kummer from 1852: For each
prime p and integers 0 ≤ k ≤ m, vp

((

m
k

))

is the number of carries in the
addition k + (m− k) = m when done in the base p.

An immediate consequence of Kummer’s theorem is that the nth Catalan
number C(n) is an integer. Indeed, say p is a prime and vp(n+1) = j. Then
the least significant j digits in base p of n+1 are all 0, so the least significant
j digits in base p of n are all p − 1. Thus, in the addition n + n = 2n
performed in the base p, we have j carries from the least significant j digits,
and perhaps some other carries as well. So we have vp(

(

2n
n

)

) ≥ j. Since this

is true for all primes p, we have n + 1 |
(

2n
n

)

and so C(n) =
(

2n
n

)

/(n + 1) is
an integer.

This of course is not the easiest approach to seeing that C(n) is an integer,
but the proof “has legs”, meaning that it can be used to see some related
interesting results. One might wonder if other numbers near to n + 1 can
divide

(

2n
n

)

. In particular, one could ask if the numbers
(

2n
n

)

/(n + k) are
integral for a fixed value of k 6= 1. We show that in no case are they always
integral, but for k > 0, they usually are.

Theorem 1. For each integer k 6= 1 there are infinitely many positive inte-
gers n with n+ k ∤

(

2n
n

)

.

Thus, the case k = 1 of Catalan numbers is indeed special. However, the
set of numbers n satisfying the condition of Theorem 1 when k ≥ 2 is rather
sparse. To measure how dense or sparse a set S of positive integers is, let
S(x) denote the number of members of S in [1, x]. Then the “asymptotic
density” of S is limx→∞ S(x)/x if this limit exists. In general, the limsup
gives the upper density of S and the liminf the lower asymptotic density. For
example, the set of odd numbers has asymptotic density 1

2
, the set of prime

numbers has asymptotic density 0, and the set of numbers which have an
even number of decimal digits does not have an asymptotic density.

Theorem 2. For each positive integer k, the set of positive integers n with

(n+ 1)(n+ 2) · · · (n+ k)
∣

∣

∣

(

2n

n

)

has asymptotic density 1.
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So it is common for n + k to divide
(

2n
n

)

, but what about n− k?

Theorem 3. For each non-negative integer k the set of integers n > k with
n− k |

(

2n
n

)

is infinite, but has upper asymptotic density smaller than 1
3
.

Theorems 1 and 3 in the case k = 0 might be compared with Ulas [6,
Theorems 3.2, 3.4].

For other problems and results concerning divisibility properties of bino-
mial coefficients, the reader is referred to [1, 4].

2 Proofs

There is a quick proof of Theorem 1. First assume that k ≥ 2. Let p be a
prime factor of k and let n = pj − k where j is large enough so that n > 0.
Then n in base p has at most j digits and the least significant digit of n
is 0. Hence there are at most j − 1 carries when adding n to n and hence
n + k = pj ∤

(

2n
n

)

. For k ≤ 0, let p > 2|k| be an odd prime number. For
n = p+ |k|, we have that there are no carries when n is added to itself in the
base p, so that p ∤

(

2n
n

)

. But p = n+ k, so we are done.
The proof of Theorem 2 is a bit more difficult. We begin with a lemma.

Lemma 1. For each prime p and all real numbers x ≥ 2, the number of
integers 1 ≤ n ≤ x with p ∤

(

2n
n

)

is at most px1−log(3/2)/ log p.

Proof. If p ∤
(

2n
n

)

, then by Kummer’s theorem, every base-p digit of n is

smaller than p/2. (In particular, this implies that
(

2n
n

)

is always divisible by
2.) Let D = ⌊1+log x/ log p⌋, so that if 1 ≤ n ≤ x is an integer, then n has at
most D base-p digits. If we restrict these digits so that they are all smaller
than p/2, we thus have ⌈p/2⌉ choices in each place. Thus, the number of
choices for n is at most ⌈p/2⌉D. It remains to note that ⌈p/2⌉ ≤ 2

3
p so that

⌈p/2⌉D ≤
(

2
3
p
)D

< px
(

2
3

)log x/ log p
= px1−log(3/2)/ log p. (3)

Since the quotient px1−log(3/2)/ log p/x tends to 0 as x → ∞ (with p fixed),
Lemma 1 shows that for a given prime p, we usually have p |

(

2n
n

)

, in that the
set of such numbers n has asymptotic density 1. We now wish to strengthen
this lemma to show that pj usually divides

(

2n
n

)

for fairly large values of j.
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Lemma 2. Let p be an arbitrary prime, let x ≥ p be a real number, and let
D = ⌊1 + log x/ log p⌋. The number of integers 1 ≤ n ≤ x with vp(

(

2n
n

)

) ≤
D/(5 logD) is at most 3px1−1/(5 log p).

Proof. The calculation here is similar to the one in probability where you
compute the chance that a coin flipped D times lands heads fairly frequently.
We consider the number of assignments of D base-p digits where all but at
most B := ⌊D/(5 logD)⌋ of them are smaller than p/2. Since there are ⌈p/2⌉
integers in [0, p/2), the number of assignments is at most

B
∑

j=0

(

D

j

)

(

⌈p/2⌉
)D−j(

p− ⌈p/2⌉
)j

=
B
∑

j=0

(

D

J

)

(

⌈p/2⌉
)D

(

p− ⌈p/2⌉
⌈p/2⌉

)j

≤
(

⌈p/2⌉
)D

B
∑

j=0

(

D

j

)

.

A crude estimation using D ≥ 2 gets us

B
∑

j=0

(

D

j

)

≤
B
∑

j=0

Dj < 2DB,

and using the definition of B, we have

2DB = 2eB logD ≤ 2eD/5 ≤ 2e1/5x1/(5 log p).

Using the inequality in (3), we conclude that the number of n ≤ x with
vp(

(

2n
n

)

) ≤ B is at most

2
(

⌈p/2⌉
)D

DB ≤ 2e1/5px1−log(3/2)/ log p+1/(5 log p).

Since 2e1/5 < 3 and log(3/2) > 2/5, the lemma follows at once.

We are now ready to prove Theorem 2. Fix a value of k ≥ 1. For a
positive integer n and a prime p, let

v := vp
(

(n + 1)(n+ 2) · · · (n+ k)
)

.

First note that for each prime p ≥ 2k,

vp

((

2n

n

))

≥ v. (4)
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Indeed, since p divides at most one of n+ 1, n+ 2, . . . , n+ k, if v > 0, there
is a unique positive integer j ≤ k with vp(n + j) = v. And since the v least
significant digits of n + j in base p are 0, the v least significant digits of n
are at least p−k ≥ p/2. So by Kummer’s theorem, pv |

(

2n
n

)

. (Note that this
argument is essentially a reprise of the proof given in the Introduction that
Catalan numbers are integers.)

It remains to show that (4) holds for all primes p < 2k, and for “most”
integers n. Let x ≥ 2k be a real number and assume that we are considering
values of n ≤ x. With D as in Lemma 2, we consider two cases: v ≤
D/(5 logD) and v > D/(5 logD). In the first case, by Lemma 2, the number
of n with vp(

(

2n
n

)

) < v is at most 3px1−1/(5 log p). Summing this expression for

primes p < 2k gives a quantity smaller than 6k2x1−1/(5 log(2k)). Divided by
x, this expression tends to 0 as x → ∞, so we are left with the second case
when v > D/(5 logD). We shall show in this case that there are very few
values of n to consider, regardless if (4) holds. Let

v′ = max
1≤i≤k

vp(n+ i),

and note that (as in the proof Legendre’s formula)

v − v′ <
k

p
+

k

p2
+ · · · = k

p− 1
≤ k.

For each value of i in [1, k] we consider those n ≤ x with pv
′ | n + i. The

number of them is at most (x+i)/pv
′ ≤ 2x/pv

′

. Since there are k possibilities
for i, the number of choices for n ≤ x is at most

k
2x

pv′
≤ 2k

x

pv−k
< 2kpk

x

pD/(5 logD)
≤ 2kpkx1−1/(5 logD).

Now logD ≤ log(1 + log x/ log 2), call this expression L(x). Summing for
p < 2k, we get that the number of choices for n is at most k2(2k)kx1−1/(5L(x)).
When divided by x, this too goes to 0 as x → ∞, which completes the proof
of Theorem 2.

We remark that the proof allows for k to also tend to infinity, provided
it does not do so too quickly in comparison with x.

We now proceed to the proof of Theorem 3. Suppose that k ≥ 0, n is in
(k, x], x > 2k2, and p is the largest prime factor of n− k. Suppose too that
p >

√
2x. If n−k = cp, then n = cp+k and this is the base-p representation
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of n. Since x > 2k2, the digit k of n is smaller than
√

x/2 < 1
2
p. Further,

c ≤ x/p <
√

x/2 < 1
2
p. Thus, there are no carries when adding n to itself in

base p, so that p ∤
(

2n
n

)

, and so n− k ∤
(

2n
n

)

.
We now show that there are many values of n in (k, x] such that n − k

has a prime factor p >
√
2x, in fact more than 2

3
x of them. For each prime

p satisfying this inequality and x > 2k2, we count numbers n in (k, x] with
p | n − k, and this is ⌊(x − k)/p⌋ ≥ ⌊x/p⌋ − 1. No choice of n corresponds
to two different values of p, since their product would be too large to have
n ≤ x. Thus, the number of choices for n with k < n ≤ x and n− k ∤

(

2n
n

)

is
at least

∑

√
2x<p≤x

(

⌊x/p⌋ − 1
)

.

Using ⌊x/p⌋ > x/p− 1, this count exceeds

x
∑

√
2x<p≤x

1

p
− 2π(x),

where π(x) denotes the number of primes in [1, x]. Euler proved long ago in
1737 that the sum of the reciprocals of the primes diverges to infinity like
the double-log function, and using a more modern estimation (such as the
theorem of Mertens from 1874), we have

∑

√
2x<p≤x

1

p
= log log x− log log(

√
2x) + E(x),

where E(x) → 0 as x → ∞, see [2, 3]. The difference of double logs simplifies
to

log 2 + log

(

log x

log(2x)

)

,

which tends to log 2 as x → ∞. As mentioned before, the set of primes
has asymptotic density 0, in fact π(x)/x goes to 0 like 1/ log x by the prime
number theorem. Putting these thoughts together, it follows that for each
ǫ > 0 and x sufficiently large, there are more than (log 2 − ǫ)x values of n
with k < n ≤ x and n− k ∤

(

2n
n

)

. Since log 2 > 0.6931 > 2
3
, the second part

of Theorem 3 follows.
To complete the proof, we wish to show there are infinitely many values

of n where n − k |
(

2n
n

)

. We leave the few details for the reader, but using
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Kummer’s theorem, we have that if n = pq + k where p, q are primes with
k < p and 3

2
p < q < 2p, then n − k |

(

2n
n

)

. The number of such numbers
n ≤ x is greater than a positive constant times x/(log x)2.

It is not clear if the numbers n with n−k |
(

2n
n

)

comprise a set of positive
density. Perhaps some numerical investigations are warranted; the case k = 0
is especially attractive.

3 Odd rows of Pascal’s triangle

One might wonder what the fuss is about the middle entry
(

2n
n

)

in the 2nth
row of Pascal’s triangle. What about odd-numbered rows, where there are
the twin peaks

(

2n+1
n

)

=
(

2n+1
n+1

)

? It is easy to prove corresponding results on
divisibility here. For example, for k ≥ 2, (n + 2)(n + 3) . . . (n + k) usually
divides

(

2n+1
n

)

.
Looking at just the case k = 2, we have a near miss for n + 2 always

dividing
(

2n+1
n

)

. In fact, unless n + 2 is a power of 2, it divides, and even in

this case, it divides 2
(

2n+1
n

)

. Since there is a tie for the maximum entry in
this row of Pascal’s triangle, it makes sense to include both of them, and as
mentioned we always have

n+ 2
∣

∣

∣
2

(

2n+ 1

n

)

.

Thus, we might wonder, like with Catalan numbers, if the integer

2

n+ 2

(

2n+ 1

n

)

(5)

has combinatorial significance. Indeed it does. We know that the Catalan
number C(n) counts the number of paths from (0, 0) to (n, n) that do not
cross below the line y = x, and where each step of the path is one unit to the
right or one unit up. The number in (5) is similar, but now we are counting
paths from (0, 0) to (n, n+ 1), a so-called ballot number. We have come full
circle back to combinatorial considerations.

Acknowledgments. I wish to thank Sergi Elizalde, Florian Luca, and Paul
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